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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer. Approximately 80% of patients initially
diagnosed with locally advanced or metastatic disease survive only 4–11 months after diagnosis. Tremendous
efforts have been made toward understanding the biology of PDAC.

Results: In this study, we first utilized next-generation sequencing technique and existing microarray datasets to
identify significant differentially expressed genes between PDAC and non-tumor adjacent tissue. By comparing top
significant survival genes in PDAC Gene Expression Profiling Interactive Analysis database and PDAC transcriptome
data from patients, our integrated analysis discovered five potential central genes (i.e., MYEOV, KCNN4, FAM83A,
S100A16, and DDX60L). Subsequently, we analyzed the cellular functions of the potential novel oncogenes MYEOV
and DDX60L, which are highly expressed in PDAC cells. Notably, the knockdown of MYEOV and DDX60L significantly
inhibited the metastasis of cancer cells and induced apoptosis. Further RNA sequencing analyses showed that
massive signaling pathways, particularly the TNF signaling pathway and nuclear factor-kappa B (NF-κB) signaling
pathway, were affected in siRNA-treated cancer cells. The siDDX60L and siMYEOV significantly inhibited the
expression of chemokine CXCL2, which may potentially affect the tumor microenvironment in PDAC tissues.

Conclusions: The present findings identified the novel oncogene DDX60L, which was highly expressed in PDAC.
Transcriptome profiling through siRNA knockdown of DDX60L uncovered its functional roles in the PDAC in humans.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is an ex-
tremely aggressive and deadly cancer. Approximately
80% of patients with PDAC are diagnosed with locally
advanced or metastatic disease, and their prognosis

remains dismal [1]. Genomic analysis of PDAC tissues
showed that mutated cancer-related genes were signifi-
cantly enriched, such as KRAS, TP53 [2]. These mutated
genes aggregate into multiple signaling pathways, includ-
ing KRAS, TGF-β, WNT, NOTCH [3]. Mutations in
these genes will significantly change these signaling
pathways, which play vital roles in regulating DNA re-
pair, cell proliferation, cell survival and death, and fur-
ther promote the progress of PDAC, including migration
and metastasis [4, 5].
Currently, next-generation sequencing technologies

are widely used for the identification of genetic
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alterations in cancer cells. Biological functions and mo-
lecular mechanisms of oncogenic genes and their inter-
actions with cell signaling pathways involving cellular
behaviors could also be revealed by advanced sequencing
data analyses [6]. Thus far, a list of gene mutations and
biomarkers, including serologic patterns, aberrant overex-
pressed mRNAs, miRNAs, proteins, and epigenetic signa-
tures, have been associated with PDAC states. These
could potentially be used as future early diagnostic and
therapeutic strategies. In recent years, such strategies util-
izing high-throughput next-generation sequencing discov-
ered a series of novel somatic mutations and differentially
expressed genes (DEGs) in solid tumors and circulating
tumor cells [7–9]. However, the information obtained
from genomic and transcriptomic sequencing data have
not yet improved the care of patients with PDAC. The ap-
proach through which high-throughput genomic sequen-
cing techniques can be applied to targeted-gene therapies
for PDAC remains undetermined. Thus, there is an urgent
need to identify novel oncogenes that can alter disease
progression and provide guidance on therapeutic options
for PDAC.
In the present study, we analyzed gene expression pro-

files using our RNA sequencing (RNA-seq) data and
public microarray data of specimens obtained from pa-
tients with PDAC to identify highly interconnected
genes that may serve as potential oncogenes for targeted
therapy against PDAC. Furthermore, we investigated the
function of these possible oncogenes in cell lines and re-
vealed their associated signaling pathways that may be
potentially used for targeted gene therapies.

Materials and methods
Cell culture
Human pancreatic cancer cell lines (MiaPaCa2 and
PANC-1; American Type Culture Collection, Manassas,
VA, USA) were maintained in Dulbecco’s modified Eagle’s
medium supplemented with 2mM glutamine, 1 mM Na-
pyruvate, 100 units/ml penicillin, 100 μg/ml streptomycin,
and 10% fetal bovine serum (all from Gibco, Thermo
Fisher Scientific, Inc., Waltham, MA, USA) at 37 °C in a
humidified atmosphere containing 10% CO2.

Tissue collection, cell collection, and RNA extraction
Pancreatic cancer tissues were collected at The First
Affiliated Hospital of Kunming Medical University
(Kunming, China). Following resection, the tumor and
adjacent tissues were examined by a pathologist,
placed in cryotubes with RNAlater reagent, and fro-
zen in liquid nitrogen. Total RNA was isolated using
RNeasy Mini kit (Qiagen, Germantown, MD, USA)
according to the instructions provided by the manu-
facturer. PANC-1 and MiaPaCa2 cells were trans-
fected with siRNAs for 48 h (three replicates per

sample) and collected. Total RNAs were extracted
using the RNeasy Mini kit (Qiagen, Germantown,
MD, USA). The quantity and quality of extracted
RNAs were assessed using a Nanodrop spectropho-
tometer and Agilent Bioanalyzer 2100 (Agilent Tech-
nologies, Inc., Santa Clara, CA, USA), respectively.
Sequence libraries were prepared using a TruSeq
Stranded mRNA Library Prep kit for NeoPrep, ac-
cording to the instructions provided by the manufac-
turer, and sequenced using an Illumina HiSeq 2000
platform. All the RNA-seq data in the present study
are available from the Gene Expression Omnibus re-
pository (GSE171485 and GSE171486).

RNA-seq and bioinformatics analyses
Sequencing libraries were constructed and sequenced
using the Illumina HiSeq2000 platform with SE50. A
total of 21.0 ± 6.9 million reads were generated for each
sample. RNA-seq data were aligned to the human refer-
ence genome (GrCH37, Ensembl build 74) using Tophat
version 2.0.12 [10]. Gene expression levels, represented
as fragments per kilo-base per million mapped reads
(FPKM), were obtained for 63,783 genes/transcripts an-
notated using Ensemble GrCH37 database release 74.
Functional and pathway enrichments were assessed
using the Database for Annotation, Visualization and In-
tegrated Discovery (DAVID) bioinformatics resources.
Only functional/pathway enrichments meeting a false-
discovery rate < 5% are presented.

Public databases used in this study
For identifying the potential oncogenes in PDAC, we
downloaded Affymetrix CEL files from the Gene Expres-
sion Omnibus database with accession number
GSE28735, GSE16535, and GSE15471. For gene expres-
sion in cancer tissues, we downloaded the expression
data in Gene Expression Profiling Interactive Analysis
(GEPIA, http://gepia.cancer-pku.cn/). For gene expres-
sion in cancer cell lines, we downloaded the expression
data in Cancer Cell Line Encyclopedia (CCLE, https://
depmap.org/portal/download/) Expression 21Q2 Public.

Microarray data analysis
The microarray gene expression data were processed
and analyzed using R and Bioconductor. Affymetrix
U133 plus 2.0 whole genome microarrays and Affyme-
trix Gene Chip Human Gene ST1.0 microarrays were
analyzed using R with affy and oligo packages, respect-
ively. The microarray data were subsequently normalized
using the Robust Multi-Array Average RMA method.
The normalized expression values from all samples were
log2 transformed. Genes differentially regulated between
the biologic groups were identified using limma.
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Quantitative real-time polymerase chain reaction (PCR)
For quantitative real-time PCR, 1 μg of total RNA was
reverse-transcribed and triplicate PCR reactions were
performed on an ABI 7500 Real-Time PCR System (Fos-
ter City, CA, USA). Glyceraldehyde-3-phosphate de-
hydrogenase mRNA was used as internal control. The
PCR reaction was conducted according to the recom-
mended protocol. The primers used for quantitative
PCR are described in Supplementary Table S1.

Cell viability assay
Cell viability was determined using the Cell Counting
Kit-8 (CCK-8) assay. Briefly, fresh culture medium con-
taining 10 μl CCK-8 (Dojindo Molecular Technologies,
Inc.) was placed in each well. The culture plates were in-
cubated for an additional 4 h at 37 °C, and absorbance
was measured at 450 nm using a microplate spectropho-
tometer (Molecular Devices Corp., Sunnyvale, CA,
USA).

Cell Transwell assay
The chambers were placed in a 24-well plate; serum-free
medium (100 μl) was added to the upper chamber, and
the plate was placed in an incubator at 37 °C for 1 h. A
serum-free cell suspension was prepared, and 100 μl (105

cells) were placed on the plate. Next, 30% fetal bovine
serum medium (600 μl) was added in the lower chamber,
and the cells were incubated at 37 °C. The cells were
fixed with 4% paraformaldehyde. The cells were counted
using microscope photos (original magnification × 200),
the data were analyzed, and differences in cell migratory
ability between the experimental group (siRNAs) and
the control group (siControl) were determined.

The Kaplan–Meier plotter analysis
To explore the potential prognostic value of the genes in
cancer patients, the Kaplan–Meier Plotter analysis
(http://kmplot.com/analysis/) pan-cancer RNA-seq data-
base was used to perform overall survival analysis
(PDAC, n = 177) [11]. In accordance with the instruc-
tions, the prognostic value of two genes were also ana-
lyzed with the Kaplan–Meier Plotter (PDAC), and
GraphPad Prism 8.3.0 was used to further display the
data.

Statistical analysis
All experiments in this study were independently per-
formed in triplicate. The data are presented as the mean
with standard error of the mean or standard deviation.
All graphs were plotted and analyzed using the Graph-
Pad Prism 8 software (San Diego, CA, USA). A p-value
< 0.05 denoted statistically significant difference.

Results
PDAC DEGs identified from RNA-seq and microarray
analyses
For the identification of specific genes expressed in
PDAC, we constructed sequencing libraries from
polyadenylated-RNA extracted from six PDAC speci-
mens, three non-tumor adjacent tissues, and three pan-
creatic tissues from normal individuals. Approximately
21M raw reads were obtained. We aligned the RNA-seq
data, yielding an average mapping rate of 97.0 ± 0.6%.
The quality of the RNA-seq data was determined using
the Pearson correlation of the associations between the
transcriptome data obtained from different specimens.
RNA-seq data indicated that the Pearson correlation co-
efficients of transcriptome data with same phenotypes
(PDAC versus PDAC: 0.87 and Control versus Control:
0.92) were higher than those noted with different pheno-
types (PDAC versus Control: 0.66) (Figs. 1A–C). These
findings suggested that non-tumor pancreas and PDAC
specimens show distinct global gene expression patterns.
The heatmap of a total of 1371 unique DEGs identified
from the comparison between six PDAC and six non-
tumor control pancreas specimens distinguished PDAC
versus non-tumor controls (Fig. 1D). Of those, 607 genes
were upregulated and 763 genes were downregulated in
PDAC specimens using cutoff criteria of |log2(fold-
change [FC])| > 0.5 (log2(FC) > 0.5) and p < 0.05 (the full
list of DEGs is provided in Supplementary Table S2A).
AffymetrixHG-U133 Plus 2.0 and Human Gene 1.0 ST

microarray platforms have been commonly used in pre-
vious studies [12–14] to study the gene expression pro-
files of the whole genome. This approach resulted in the
discovery novel tumor biomarker genes and investigated
the molecular mechanisms for PDAC [15]. We sought to
better understand the biology of cancer and compare
the numbers and percentages of overlapping DEGs be-
tween RNA-seq and other independent data sets on
microarray platforms. For this purpose, we revisited the
gene expression profiles of PDAC versus non-tumor
pancreatic tissues by reprocessing the gene expression
microarray data from three independent studies [12–14].
We combined two data sets on the same Affymetrix
HG-U133 Plus 2.0 platform and processed the combined
data sets (GSE15471 and GSE16515) [12, 13] using R
and Bioconductor packages “affy” and “affycoretools”. In
the comparison between 75 PDAC and 55 non-tumor
pancreatic tissue gene expression profiles, 7776 probes
which reflect a total of 5598 unique genes (log2(FC) >
0.5 and p < 0.001) were revealed to be differentially
expressed between PDAC and non-tumor pancreas tis-
sues. The identified DEGs consist of 3636 unique upreg-
ulated genes (5388 probes) and 1962 unique
downregulated genes (2388 probes) in PDAC (the full
list of DEGs is provided in Supplementary Table S2B).
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Fig. 1 (See legend on next page.)
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Meanwhile, using R and the Bioconductor package
“oligo”, we obtained a list of unique DEGs by reanalyzing
the dataset GSE28735 of 90 human PDAC and adjacent
non-tumor tissues (45 PDAC versus 45 non-tumor spec-
imens) reported by Zhang [14] using the Affymetrix Hu-
man Gene 1.0 ST microarray platform. A total of 1546
probes (1473 unique DEGs) were identified; 1006 probes
(961 unique genes) were upregulated and 540 probes
(512 unique genes) were downregulated in PDAC with
cutoff criteria of |log2(FC)| > 0.5 and p < 0.001 (the full
list of DEGs is provided in Supplementary Table S2C).
To determine which overrepresented signaling path-

ways are shared among all PDAC data sets, we com-
pared the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways identified from all lists of DEGs.
DAVID-KEGG analysis of these DEGs revealed that the
shared signaling pathways for upregulated genes across
all data sets at three platforms were the signaling path-
ways of the pathways in cancer, p53, extracellular
matrix-receptor, apoptosis, and cell cycle (Supplemen-
tary Table S3). However, there were no shared KEGG
pathways identified for downregulated genes in the DEG
lists in these data sets.

Identification of potential oncogenes responsible for the
progression of PDAC
We subsequently compared the lists of DEGs identified
from the data sets on two independent Affymetrix
microarray platforms. Approximately 82% (795/961) of
the upregulated DEGs and 49% (252/512) of the down-
regulated DEGs from Human Gene 1.0 ST microarray
data were also identified in the HG-U133 Plus 2.0
microarray platform (Fig. 1E and F). Heatmaps and hier-
archical clustering of all PDAC versus non-tumor pan-
creatic specimens obtained from three independent
groups clearly showed that these 1047 DEGs can distin-
guish between PDAC and non-tumor pancreas speci-
mens (Fig. 1G). With higher statistical stringency, the
comparison between two lists of DEGs from microarray
data revealed 204 upregulated and 39 downregulated
overlapped DEGs in PDAC using cutoff criteria of
|log2(FC)| > 1 and p < 0.0001 (the full lists of overlapped
DEGs are provided in Supplementary Table S4A).

Next, we compared the list of DEGs from our PDAC
RNA-seq data with the lists of DEGs identified from the
above microarray data sets. The cross-platform compari-
son revealed that approximately 43% (260/607) and 64%
(387/607) of the upregulated DEGs identified through
RNA-seq overlapped with the lists of DEGs obtained
from the HG 1.0 ST and HG-U133 Plus 2.0 platforms,
respectively (Fig. 2A). Conversely, only 6% (47/764) and
15% (116/764) of the downregulated DEGs recorded
from the RNA-seq data were identified from the HG 1.0
ST and HG-U133 Plus 2.0 data sets, respectively (Fig.
2B). The cross-platform analysis identified 227 upregu-
lated and 32 downregulated genes in PDAC that were
shared in both RNA-seq data and two other microarray
data sets (the full list of DEGs is provided in Supplemen-
tary Table S4B).
For the identification of the most significant potential

oncogenes in PDAC, we overlapped these 259 identified
genes with the top 100 significant survival genes in PDAC
(Gene Expression Profiling Interactive Analysis [GEPIA]
database); five genes (myeloma overexpressed [MYEOV],
potassium calcium-activated channel subfamily N member
4 [KCNN4], family with sequence similarity 83 member A
[FAM83A], S100 calcium binding protein A16 [S100A16],
and DExD/H-box 60 like [DDX60L]) were identified (Fig.
2C, Supplementary Table S4C). Kaplan–Meier Plotter ana-
lysis showed that the expression levels of these five genes
are also closely related to the prognosis of patients with
PDAC. Of note, patients with pancreatic cancer expressing
high levels of these potential oncogenes have a very poor
prognosis (p < 0.001) (Supplementary Fig. S1A). In the
GEPIA database, these potential oncogenes were highly
expressed in the cancer tissues of patients with pancreatic
cancer (Fig. 2D), and their expression levels were positively
correlated with the cancer stages (Supplementary Fig. S1B).
Compared with the early-stage (stages I–II), pancreatic can-
cer tissues obtained from patients with stage III–IV disease
showed markedly higher expression levels of these potential
oncogenes. The results indicated that these genes may be
involved in the progression of pancreatic cancer (Supple-
mentary Fig. S1B). In summary, based on our RNA-seq and
public microarray data, we identified five potential onco-
genes that may play vital roles in the occurrence and pro-
gression of PDAC.

(See figure on previous page.)
Fig. 1 Identification of differentially expressed genes (DEGs) in PDAC using RNA-seq and microarray data. (A–C) Scatter plots of FPKM values for
gene expression of PDAC versus PDAC (A), non-tumor pancreas versus non-tumor pancreas (B), and PDAC versus matching non-tumor pancreas
(C). Pearson correlation coefficients are shown above the corresponding scatter plots. (D) Heatmap of 1371 DEGs identified from the comparison
between six PDAC and six non-tumor control specimens (p < 0.05 and |log2FC| > 0.5). (E, F) Venn diagram of DEGs identified from previous
published microarray studies of PDAC versus non-tumor controls using two types of Affymetrix microarray platforms. Overlapping upregulated
DEGs (n = 795) (E) and downregulated DEGs (n = 252) (F) are shown. (G) Heatmaps and hierarchical clustering of all PDAC specimens versus non-
tumor controls from three independent groups clearly show that these 1047 DEGs can distinguish PDAC from non-tumor pancreas specimens
FC, fold change; FPKM, fragments per kilo-base per million mapped reads; PDAC, pancreatic ductal adenocarcinoma; RNA-seq, RNA sequencing.
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Expression and siRNA knockdown of novel oncogene
DDX60L in PDAC
We investigated the expression of these potential oncogenes
(MYEOV, KCNN4, FAM83A, S100A16, and DDX60L) in the
pancreatic cancer cell lines of the Cancer Cell Line
Encyclopedia (CCLE) database. The results showed that
MYEOV, KCNN4, S100A16, and DDX60L are highly

expressed in most pancreatic cancer cell lines, but FAM83A
is not (Fig. 3A). Further quantitative real-time-PCR valid-
ation performed using the MiaPaCa2 cell line was consistent
with the CCLE data (Fig. 3B). Recent studies have shown
that MYEOV [16–18], KCNN4 [19, 20], and S100A16 [21–
23] act as oncogenes and play vital roles in cancer progres-
sion. In this study, we found a novel potential oncogene –

Fig. 2 Identification of overlapped genes responsible for the progression of PDAC. (A-B) Venn diagram of DEGs identified in the RNA-seq analysis
of this study and in previous microarray studies of PDAC versus non-tumor controls. Overlapping upregulated (A) and downregulated (B) DEGs
across multiple platforms are shown. (C) Venn diagram of the identified DEGs and the Top 100 overall survival-related genes in PDAC. Five most
significant potential oncogenes were identified: MYEOV, KCNN4, FAM83A, S100A16, and DDX60L. (D) Expression of five significant potential
oncogenes in PDAC tissues of the GEPIA database. One-way ANOVA is used to analyze significant differences in the gene expression levels
between PDAC normal tissues and cancer tissues. *represents significant differences in RNA expression, p < 0.01. DDX60L, DExD/H-box 60 like;
DEGs, differentially-expressed genes; FAM83A, family with sequence similarity 83 member A; GEPIA, Gene Expression Profiling Interactive Analysis;
KCNN4, potassium calcium-activated channel subfamily N member 4; MYEOV, myeloma overexpressed; PDAC, pancreatic ductal adenocarcinoma;
RNA-seq, RNA sequencing; S100A16, S100 calcium binding protein A16
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DDX60L. To validate the potential functions of DDX60L in
pancreatic cancer (MYEOV was used as positive control),
we designed three siRNAs to knockdown its expression in
cancer cells (sequences are shown in Supplementary Table
S1B). The knockdown efficiency of these siRNAs was tested
using the MiaPaCa2 cell line. The analysis showed that
siMYEOV-3 and siDDX60L-2 resulted in effective inhibition
of target gene expression (Fig. 3C). Next, we used these vali-
dated siRNAs to inhibit the expression of target genes in
MiaPaCa2 and PANC-1 cells, demonstrating excellent ef-
fectiveness (> 60%) (Fig. 3D and E).
One-way ANOVA is used to analyze significant differ-

ences in the gene expression levels between control can-
cer cells and siRNA treated cancer cells. *p < 0.05; **p <

0.01; ***p < 0.001; ***p < 0.0001. CCLE, Cancer Cell Line
Encyclopedia; DDX60L, DExD/H-box 60 like; FAM83A,
family with sequence similarity 83 member A; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; KCNN4, po-
tassium calcium-activated channel subfamily N member
4; MYEOV, myeloma overexpressed; PAAD, pancreatic
adenocarcinoma; S100A16, S100 calcium binding protein
A16.

Knockdown of DDX60L inhibited the migration of PDAC
cells, but not their proliferation
DDX60L is highly expressed in pancreatic cancer and re-
lated to the overall survival of patients with cancer.
Therefore, it may play a vital role in the progression of

Fig. 3 Knockdown of MYEOV, KCNN4, S100A16, and DDX60L expression through siRNA. (A) Expression of MYEOV, KCNN4, FAM83A, S100A16, and
DDX60L in pancreatic cancer cells using data from the CCLE database (CCLE-PAAD). (B) Expression of MYEOV, KCNN4, FAM83A, S100A16 and
DDX60L in MiaPaca2 pancreatic cancer cell (compared with the expression of GAPDH). (C) Screening for siRNAs that could knock down the
expression of MYEOV and DDX60L in MiaPaca2 cells. (D, E) Knockdown of MYEOV and DDX60L expression with indicated siRNAs in MiaPaca2 cells
(D) and PANC-1 cells (E)
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pancreatic cancer. Using siRNA knockdown of DDX60L,
we further investigated its potential functions in Mia-
PaCa2 and PANC-1 cells. The CCK-8 assay of siRNA
knockdown target genes showed that siMYEOV signifi-
cantly reduced the proliferation of MiaPaCa2 and
PANC-1 cells (p < 0.001), whereas siDDX60L had no ef-
fect on proliferation (Fig. 4A and B). The effect of
DDX60L on the migration of pancreatic cancer cells was
investigated using Transwell migration assay. The results
showed that siRNA knockdown of MYEOV and DDX60L
could significantly inhibit the migration of MiaPaCa2
and PANC-1 cells (Fig. 4C and D).

Knockdown of DDX60L induced apoptosis of PDAC cells,
but not cell cycle arrest
Since DDX60L did not affect the proliferation of pancre-
atic cancer cells, we also investigated the rate of apop-
tosis and cell cycle in pancreatic cancer cells. The
analysis was performed in siRNA-treated or -untreated
pancreatic cancer cells through flow cytometry. The
apoptosis analysis of siRNA-treated MiaPaCa2 and
PANC-1 cells showed that, compared with control
siRNA, siDDX60L (p < 0.001 in MiaPaCa2; p < 0.01 in
PANC-1 cells) and siMYEOV (p < 0.05 in MiaPaCa2;
p < 0.05 in PANC-1 cells) significantly induced cell
apoptosis (Fig. 5A and B). The cell cycle analysis of
siRNA-treated MiaPaCa2 and PANC-1 cells showed
that, compared with control siRNA, siDDX60L and
siMYEOV did not have any significant effects on the cell
cycle (Fig. 5C and D). In summary, these results indi-
cated that DDX60L could inhibit the migration of pan-
creatic cancer cells and induce their apoptosis, which
may play a vital role in the progression of pancreatic
cancer.

Transcriptome analyses revealed alterations of genes and
signaling pathways in PDAC after knockdown of DDX60L
The transcriptome alterations induced by siDDX60L
were also investigated through RNA-seq. For the tran-
scriptome analysis, we acquired approximately 26M
clean reads from siRNA-transfected and control Mia-
PaCa2 and PANC-1 cells with Q30 > 90%, respectively.
After bioinformatics analysis of these RNA-seq data, the
upregulated and downregulated DEGs were identified.
For the positive control gene, MiaPaCa2 and PANC-1

cells were transfected with siMYEOV; 618 downregu-
lated genes and 513 upregulated genes were identified
(Fig. 6A). The KEGG_PATHWAY category of these
DEGs showed that the upregulated genes were clustered
into seven subcategories (p < 0.05; three subcategories
with p < 0.01), including alcoholism (p = 0.0014), sys-
temic lupus erythematosus (p = 0.0022), and viral car-
cinogenesis (p = 0.0043) (Fig. 6B, Supplementary Table
S5A). The downregulated genes were clustered into 27

subcategories (p < 0.05; 10 subcategories with p < 0.01),
including the tumor necrosis factor (TNF) signaling
pathway (p = 3.92*E-05), small cell lung cancer (p =
0.0012), p53 signaling pathway (p = 0.003), nuclear
factor-kappa B (NF-κB) signaling pathway (p = 0.005)
and cell cycle (p = 0.017) (Fig. 6B, Supplementary Table
S5A). In particular, siMYEOV significantly inhibited the
expression of chemokine C-X-C motif chemokine ligand
1 (CXCL1), chemokine C-X-C motif chemokine ligand 2
(CXCL2), and chemokine C-X-C motif chemokine ligand
3 (CXCL3) in the TNF signaling pathway. These results
suggested that siRNA knockdown of MYEOV repressed
the expression of genes involved in the cell cycle, and
significantly influenced the immune response of PDAC
cells.
In siDDX60L-transfected MiaPaCa2 and PANC-1

cells, 214 downregulated genes and 186 upregulated
genes were identified (Fig. 6C). These DEGs were sub-
jected to DAVID analysis (a web-based high-throughput
functional genomics analysis tool) for a systematic clus-
tering of these genes. In the KEGG_PATHWAY cat-
egory, we found that the upregulated genes were
clustered into 16 subcategories (p < 0.05; one subcat-
egory with p < 0.01), including the pathways in cancer
(p = 0.011) and purine metabolism (p = 0.012) (Fig. 6D,
Supplementary Table S5B). The downregulated genes
were clustered into 15 subcategories (p < 0.05; eight sub-
categories with p < 0.01), including the TNF signaling
pathway (p = 8.91*E-07), NF-κB signaling pathway (p =
0.0001), insulin signaling pathway (p = 0.0018), and
nucleotide-binding oligomerization domain (NOD)-like
receptor signaling pathway (p = 0.0055) (Fig. 6D, Supple-
mentary Table S5B). Interestingly, siDDX60L signifi-
cantly inhibited the expression of chemokine CXCL2 in
the TNF signaling pathway. These results indicate that
siRNA knockdown of DDX60L significantly altered the
TNF and NF-κB signaling pathways in PDAC cells.
Hence, the downregulated chemokines may influence
the immune response of PDAC cells.

Knockdown of DDX60L and MYEOV inhibited the
expression of CXCL2 and potentially affected the
prognosis in PDAC
Interestingly, the RNA-seq data of DDX60L and MYEOV
showed some similar alterations of the signaling path-
ways in PDAC cells, such as the TNF signaling pathway
and NF-κB signaling pathway. These pathways were sig-
nificantly inhibited in PDAC cells treated with
siDDX60L and siMYEOV. Similarly, we found that the
expression of neutrophil chemotactic chemokine CXCL2
was significantly inhibited in PDAC cells treated with
siDDX60L and siMYEOV (Fig. 7A). With the Kaplan–
Meier Plotter analysis, the expression of CXCL2 in pan-
creatic cancer significantly affects the prognosis of
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patients (n = 177), and high expression levels are associ-
ated with a poor prognosis (Fig. 7B). Furthermore, by
combining the expression levels of DDX60L and MYEOV,
the cohorts of CXCL2lowDDX60Llow and CXCL2low-

MYEOVlow showed a better prognosis in patients with
PDAC from TCGA database (Fig. 7C and D). In summary,
these data indicated that the four genes identified in this
study affect the cellular functions of PDAC. These genes
may also affect the microenvironment of cancer cells
through transcriptomic alterations of chemokines.

Discussion
In this study, we integrated a large number of tran-
scriptome profiling data from PDAC and non-tumor
pancreatic tissue specimens to identify significant dif-
ferentially expressed genes. A list of aberrantly over-
expressed genes was associated with PDAC states.
Among these identified genes, we found five genes re-
lated to cancer prognosis, and further verified their
cellular functions and potential signaling pathways in
pancreatic cancer cells. Therefore, it is reasonable to

Fig. 4 Knockdown of DDX60L inhibited the migration of PDAC cells, but not their proliferation. (A, B) Viability of siRNA-transfected PDAC cells.
CCK-8 assay analyzed the siControl-, siMYEOV-, and siDDX60L-transfected PANC-1 (A) and MiaPaca2 (B) cells. (C, D) The invasive ability of siRNA-
transfected PDAC cells. Transwell assay analyzed the siControl-, siMYEOV-, and siDDX60L-transfected PANC-1 (C) and MiaPaca2 (D) cells. One-way
ANOVA is used to analyze significant differences. *p < 0.05; **p < 0.01; ***p < 0.001. CCK-8, Cell Counting Kit-8; DDX60L, DExD/H-box 60 like;
MYEOV, myeloma overexpressed; PDAC, pancreatic ductal adenocarcinoma
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hypothesize that these genes could be served as im-
munohistochemical prognostic markers and potential
therapeutic targets for PDAC.
Interestingly, the five genes identified in this study

(DDX60L, FAM83A, KCNN4, MYEOV, and S100A16)
showed some similar characteristics; they were highly

expressed and corelated with poor prognosis in pan-
creatic cancer. Previously, MYEOV [16–18], KCNN4
[19, 20], S100A16 [21–23], and FAM83A [24, 25] had
been reported as oncogenes in various types of can-
cer, which could promote the proliferation and inva-
sion of cancer cells. However, the novel oncogene

Fig. 5 Knockdown of DDX60L induced apoptosis of PDAC cells, but not cell cycle arrest. (A, B) Apoptosis of siRNA-transfected PDAC cells. FACS
analyzed the apoptosis of the siControl-, siMYEOV-, and siDDX60L-transfected PANC-1 (A) and MiaPaca2 (B) cells. (C, D) Cell cycle of siRNA-
transfected PDAC cells. FACS analyzed the cell cycle of the siControl-, siMYEOV-, and siDDX60L-transfected PANC-1 (C) and MiaPaca2 (D) cells.
One-way ANOVA is used to analyze significant differences. Ns, no significant differences, *p < 0.05; **p < 0.01; ***p < 0.001. DDX60L, DExD/H-
box 60 like; FACS, fluorescence-activated cell sorting; MYEOV, myeloma overexpressed; PDAC, pancreatic ductal adenocarcinoma
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DDX60L we identified did not influence the prolifera-
tion of cancer cells, but significantly influenced their
invasive ability. Further RNA-seq analysis showed that
siRNA knockdown of DDX60L significantly inhibited
the genes in the TNF signaling and NF-κB signaling
pathway, particularly the chemotactic cytokine
CXCL2.
Chemotactic cytokines, also termed chemokines,

play a key role in mediating the recruitment of im-
mune cells to tumor sites [26, 27]. CXC chemokine

CXCL2 possesses potent neutrophil chemotactic activ-
ity [28, 29]. The involvement of tumor monocyte-
derived chemokines and cytokines in modulating neu-
trophil accumulation and functions was previously
studied [30, 31]. The knockdown of oncogenes
MYEOV and DDX60L inhibited the expression of
CXCL2 in pancreatic cancer cells. These findings sug-
gested that repression of these oncogenes could po-
tentially reduce the metastasis of cancer cells and
repress the immunosuppressive ability of cancer cells.

Fig. 6 Transcriptome analyses showed alterations of genes and signaling pathways in siMYEOV- and siDDX60L-transfected PDAC cells. (A)
Heatmap and Venn diagram of DEGs identified in siMYEOV-transfected MiaPaca2 and PANC-1 cells. (B) DAVID-KEGG analysis of the DEGs in
siMYEOV-transfected MiaPaca2 and PANC-1 cells (p < 0.05). (C) Heatmap and Venn diagram of DEGs identified in siDDX60L-transfected MiaPaca2
and PANC-1 cells. (D) DAVID-KEGG analysis of the DEGs in siDDX60L-transfected MiaPaca2 and PANC-1 cells (p < 0.05). DAVID-KEGG, Database for
Annotation, Visualization and Integrated Discovery-Kyoto Encyclopedia of Genes and Genomes; DDX60L, DExD/H-box 60 like; DEGs, differentially-
expressed genes; PDAC, pancreatic ductal adenocarcinoma; MYEOV, myeloma overexpressed
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However, these results should be further validated in
mouse xenograft models of pancreatic cancer.

Conclusions
The present study integrated a systematic approach to
identify key genes associated with PDAC tumorigenesis
based on gene expression profiling data. Several key
genes including MYEOV, KCNN4, FAM83A, S100A16,
and DDX60L were identified. Further cellular experi-
ments validated the function of the novel oncogene
DDX60L. These genes could potentially serve as targets
and for tumor imaging to guide therapeutic selection in
PDAC.
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