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Abstract

In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-
equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures.
However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord
itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the
examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis
and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as
2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who
had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same
scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually
traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences
in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean
contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D
fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need
supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for
quantitative signal measurements in the spinal cord.
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Introduction

Magnetic resonance imaging (MRI) is commonly used to assess

chronic neck pain because of its relative safety as well as the

excellent contrast it provides for osseous structures, neural tissue,

and cerebrospinal fluid [1]. A typical MRI examination is

composed of multiple sequences, each of which is directed towards

different clinical questions. In the evaluation of cervical spondy-

losis, an MRI examination often includes multiple T2-weighted

sequences that can assess the degree of degenerative spinal stenosis

as well as detect the presence of cord pathology such as spondylotic

myelopathy [2,3]. These sequences generally use T2*-weighted

gradient-recalled echo techniques or T2-weighted fast spin echo

techniques.

Gradient-recalled echo techniques typically have a short

repetition time (TR) due to their lack of a refocusing pulse. This

results in faster acquisition time that can be leveraged to perform

3D imaging and improve resolution [4–7]. However, gradient-

recalled echo techniques are prone to artifact from magnetic

susceptibility that may cause image degradation near osseous

structures such as the spine, aliasing in the slice select direction,

and limited signal-to-noise ratios in comparison to spin echo

sequences [4–10].

Fast spin echo techniques tend to have longer TR than

gradient-recalled echo sequences, even with the use of echo trains

to reduce overall scan time. Consequently, conventional fast spin

echo techniques are more prone to motion artifact and generally

unsuitable for 3D imaging. Driven-equilibrium pulses, when

applied to fast spin echo sequences, use a resonant 90-degree

radiofrequency pulse to reduce the time needed to transform

residual transverse magnetization into longitudinal magnetization

[11]. The addition of this pulse to a fast spin echo sequence can

shorten TR sufficiently to make 3D acquisition feasible at high

resolution [12–14].

Apart from reduced scan times, driven-equilibrium fast spin

echo sequences have radiographic features that make them well-

suited for imaging the cervical spine. A complex combination of

T2 and T1 tissue signal characteristics results in a "myelographic

effect" that may facilitate evaluation of the cervical spinal canal

[5,6,12–14]. Near-isotropic voxel dimensions allow radiologists to

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e100964

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0100964&domain=pdf


perform multiplanar reformation, resulting in improved visualiza-

tion of the vertebral bodies, intervertebral disks, posterior

longitudinal ligaments, facet joints, and uncovertebral joints

[5,6,15].

Many lesions in the cervical spinal cord are inconspicuous,

small, and prone to partial volume effects [16]. Thus, 3D driven-

equilibrium fast spin echo (3D-FSE) sequences, which typically use

relatively thin slices, could potentially detect cord lesions as well as

conventional 2D fast spin echo (2D-FSE) sequences. However, to

our knowledge the appearance of cord lesions on these two

sequences has not been directly compared. If they were equivalent,

then 3D-FSE sequences could replace 2D-FSE sequences, total

scan time could be reduced, and patient comfort could improve. In

this work, we address the hypothesis that the appearance of

spondylotic cord lesions in the cervical spine is equivalent on 2D-

FSE and 3D-FSE sequences.

Materials and Methods

Ethics statement
All study protocols were approved by the institutional review

board of the Philadelphia VA Medical Center. Waiver of informed

consent was obtained due to the retrospective nature of this study.

Patient records were de-identified prior to analysis.

A retrospective imaging review was performed for 30 adult

patients consecutively diagnosed with spondylotic myelopathy over

a six month period. In each of these cases, patients had undergone

a clinical MRI examination of the cervical spine using both 2D-

FSE and 3D-FSE sequences. These patients had no history of

demyelination, spinal neoplasm, spinal infarction, or spinal

infection.

All imaging was performed on a single 1.5 tesla scanner

(Siemens Avanto). 2D-FSE images were acquired in the axial

plane (Repetition time = 4310 ms, echo time = 99 ms, slice

thickness = 3 mm, field of view = 200 mm, matrix dimensions

= 2006256, echo train length = 15, acquisition time = 4:26) using

GRAPPA parallel imaging with a reduction factor (R) of 2. 3D-

FSE images were acquired in the sagittal plane and reformatted in

the axial plane (Repetition time = 1200 ms, echo time = 119 ms,

slice thickness = 0.9 mm, field of view = 280 mm, matrix

dimensions = 3206320, acceleration factor = 3, echo train length

= 69, acquisition time = 5:53, voxel dimensions

= 0.9 mm60.9 mm60.9 mm) using GRAPPA parallel imaging

with a reduction factor (R) of 3.

Regions of interest (ROIs) were manually placed on cord lesions

by a rater without knowledge of the medical record. Evaluation

sessions for 2D-FSE and 3D-FSE images were scheduled

separately in order to reduce recall bias. For each lesion, in-plane

axial dimensions, area, and location were recorded. Within the

lesion ROIs, mean signal intensity (Slesion) was measured. Within

one level of the lesion, mean signal intensity of normal cord

(Snormal cord) was measured. Finally, mean signal in a region of air

was measured in each study. These measurements were used to

calculate the contrast-to-noise ratio (CNR) for each lesion, defined

as:

CNR~
DSlesion{Snormal cordD

sair

where sair is the standard deviation of air signal intensity

measurements [5,6].

Lesions were cross-referenced by location and classified into

three groups depending on the sequences that depicted them.

Lesions visible both on 2D-FSE images and on 3D-FSE images

were classified as ‘‘type 1’’. Lesions visible only on 2D-FSE images

were classified as ‘‘type 2’’. Lesions visible only on 3D-FSE images

were classified as ‘‘type 3’’.

Comparisons of mean lesion dimensions, mean lesion area, and

CNR were performed using the unpaired Student’s t-test. Cohen’s

d was calculated for comparisons meeting the significance

threshold (two-tailed p,0.05 with Bonferroni correction for

multiple comparisons).

Results

The study population consisted of 27 men and 3 women with a

mean age of 61 years. Qualitatively, the appearance of cord lesions

was fairly similar on 2D-FSE and 3D-FSE sequences (see Figure 1).

We found no significant difference between 2D-FSE and 3D-

FSE sequences in the mean number of lesions detected (2.0 lesions

per patient and 2.2 lesions per patient respectively, uncorrected

p.0.05). The majority of these were type 1 lesions (1.4 lesions per

patient). There was no significant difference in the mean number

of type 2 lesions on 2D-FSE sequences and the mean number of

Figure 1. Example of cord lesion in the cervical spine. Images of
the cervical spine in a representative patient demonstrated a region of
abnormal cord signal both on (a) 2D-FSE sequences and (b) 3D-FSE
sequences. The lesion was qualitatively similar on both sequences and
approximately the same size. However, it appeared slightly less
hyperintense on 3D-FSE images than on 2D-FSE images. A red outline
illustrates the typical placement of the ROIs used for analysis.
doi:10.1371/journal.pone.0100964.g001
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type 3 lesions on 3D-FSE sequences (0.6 lesions per patient and

0.8 lesions per patient respectively, uncorrected p.0.05).

There was no significant difference between 2D-FSE and 3D-

FSE sequences in mean lesion dimensions or mean lesion area (see

Table 1). However, mean CNR was greater on 2D-FSE sequences

than on 3D-FSE sequences (d = 1.6, corrected p,0.001). This was

a robust finding that persisted when considering only type 1 lesions

(d = 1.5, corrected p,0.001) or when comparing type 2 to type 3

lesions (d = 1.8, corrected p,0.01).

On 2D-FSE sequences, there was no significant difference

between type 1 and type 2 lesions in mean lesion dimensions,

mean lesion area, or mean CNR. On 3D-FSE sequences, there

was no significant difference between type 1 and type 3 lesions in

mean lesion dimensions, mean lesion area, or mean CNR.

Discussion

We found no significant differences in the number of lesions

detected using 2D-FSE and 3D-FSE sequences. Likewise, the

dimensions and area of cord lesions did not differ significantly.

Since these are the characteristics that are most often used to

characterize cord lesions in a clinical setting, this study offers

support for the equivalence of these sequences when evaluating

cord signal in spondylotic myelopathy. Nevertheless, a caveat is

presented by our measurements of CNR, which significantly

favored 2D-FSE sequences.

A possible explanation for the differences in CNR may lie in the

complex character of the signal in 3D-FSE sequences, which

depends on both T1 and T2 [5,6,14]. This produces strong

contrast between cerebrospinal fluid and the spinal cord in 3D-

FSE sequences, but may also contribute to reduced contrast in

spinal cord lesions. While differences in CNR had no observable

effects on lesion detection in our study, this may be a more

important factor in situations that require quantitative signal

analysis.

Cord signal change is rare in asymptomatic patients but more

common in patients presenting for preoperative evaluation of

cervical stenosis [17–19]. Abnormal cord signal on MRI is strongly

correlated to cord injury on histopathologic evaluation [16,20].

Furthermore, a recent study suggested that intraparenchymal T2

hyperintensity in spondylotic cord lesions is correlated to the

presence of abnormalities on physical examination [21]. This has

been corroborated by preoperative comparisons of the clinical

condition of patients with and without cord signal abnormality

[20]. However, other studies have not shown a relationship

between clinical severity and findings on cervical spine MRI

[22,23]. MRI of the cervical spine may play a more important role

as a prognostic tool. Many studies have suggested that the

appearance of cord lesions on MRI can predict clinical

improvement after cervical spine decompression [20,24–36],

particularly if cord signal improves after surgery, although a few

studies have raised some doubts [23,37–39].

Our study is limited by several factors. First, we calculated CNR

based on noise measured in air, outside of the lesion ROI.

However, the parallel imaging techniques we used may cause

inherent spatial variation in the distribution of noise, resulting in

uncertainty in the accuracy of lesion CNR [4]. Although the

sequence parameters we used are typical of those used in practice,

it is possible that different results could have been obtained with

different sequence parameters or sampling regions.

Because of the retrospective nature of this study, we were not

able to assess clinical outcomes in the patients we examined. Thus,

we cannot determine which findings are best correlated to current

or future neurological deficits. Due to practical considerations, we
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did not obtain a histopathologic reference standard for cord

lesions, and thus we cannot determine the diagnostic accuracy of

our imaging findings. Instead, we classified lesions according to

their visibility on 2D-FSE and 3D-FSE images. Type 1 lesions,

visible on both sequences, are most likely to represent ‘‘true

positives’’. Type 2 and type 3 lesions, each visible on only one

sequence, could represent either ‘‘false positives’’ on the sequence

that depicted them or ‘‘false negatives’’ on the sequence that did

not depict them. Regardless, type 2 and type 3 lesions only

accounted for about a third of all detected cord lesions, confirming

that cord signal change is generally a reproducible finding [40].

Finally, as this was a study of patients with radiologically

identified cord lesions, we could not determine whether the

differences we observed in CNR would affect miss rates in clinical

practice. These important issues should be further evaluated in

future prospective studies. We expect that continued development

of dedicated sequences for the cervical spine will improve both the

diagnostic and prognostic value of MRI in spondylotic myelop-

athy.
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