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In case-control studies, genetic associations for complex diseases may be probed either with single-locus tests or with
haplotype-based tests. Although there are different views on the relative merits and preferences of the two test
strategies, haplotype-based analyses are generally believed to be more powerful to detect genes with modest effects.
However, a main drawback of haplotype-based association tests is the large number of distinct haplotypes, which
increases the degrees of freedom for corresponding test statistics and thus reduces the statistical power. To decrease
the degrees of freedom and enhance the efficiency and power of haplotype analysis, we propose an improved
haplotype clustering method that is based on the haplotype cladistic analysis developed by Durrant et al. In our
method, we attempt to combine the strengths of single-locus analysis and haplotype-based analysis into one single
test framework. Novel in our method is that we develop a more informative haplotype similarity measurement by
using p-values obtained from single-locus association tests to construct a measure of weight, which to some extent
incorporates the information of disease outcomes. The weights are then used in computation of similarity measures to
construct distance metrics between haplotype pairs in haplotype cladistic analysis. To assess our proposed new
method, we performed simulation analyses to compare the relative performances of (1) conventional haplotype-based
analysis using original haplotype, (2) single-locus allele-based analysis, (3) original haplotype cladistic analysis
(CLADHC) by Durrant et al., and (4) our weighted haplotype cladistic analysis method, under different scenarios. Our
weighted cladistic analysis method shows an increased statistical power and robustness, compared with the methods
of haplotype cladistic analysis, single-locus test, and the traditional haplotype-based analyses. The real data analyses
also show that our proposed method has practical significance in the human genetics field.
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Introduction Haplotype analysis is favorable for genetics association
studies because it conserves joint LD structure and incorpo-

Recent advances in biotechnology such as high-throughput
single nucleotide polymorphism (SNP) genotyping have
provided useful tools to improve our understanding of the
genetic basis of human complex diseases. With these
advances, an intense and comprehensive evaluation of
candidate genes, linkage regions, and the whole human

genome can be conducted by genotyping dense SNPs.

rates information from multiple adjacent SNP markers.
However, as the number of SNPs within the region of interest
increases, the number of distinct haplotypes increases
rapidly. This may decrease the power and efficiency of the
association tests by largely increased degrees of freedom (df)
[12-19].

To tackle the problem of increased df in haplotype

Associations between genetic variants and disease out- analysis, Templeton et al. [20] did their pioneer work using

comes are typically asse.ssed using single-locus or haplotype- the haplotype cladistic analysis method. Since then, a series
based analyses. Investigators have compared these two
approaches to determine their relative efficiency in associa-

tion studies, with somewhat inconsistent conclusions [1-9].

of haplotype-clustering methods was proposed for reducing
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Some investigations believe that haplotype-based analysis
provides higher power than single-locus tests [1-4,8,9], while
others have different opinions [6,7]. These different opinions
may partially be attributable to different assumptions on SNP
numbers and the linkage disequilibrium (LD) structure
(particularly, frequencies and LD of markers and functional
variants) at the locus of interest [10]. In general, haplotype-
based approaches may have greater power than single-locus
analysis when the SNPs are in strong LD with the risk locus
[9]. In particular, haplotype-based analysis may be helpful in
identifying rare causal variants [11].
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Author Summary

Methods of haplotype-based analysis and single-locus analysis are
widely used in genetic association studies. There is no consensus as
to the best strategy for the performance of the two methods.
Although haplotype-based analysis is a powerful tool, the large
number of distinct haplotypes may reduce its efficiency. Haplotype
clustering analysis is a promising way of decreasing haplotype
dimensionality. A potential limitation of many existing clustering
methods is that they do not allow the clustering to adapt to the
position of the underlying trait locus. In this study, we proposed a
weighted haplotype cladistic analysis method by incorporating a
single-locus test into haplotype clustering. Under this framework,
relationships between single loci and the disease outcomes can be
considered when creating the hierarchical tree of haplotypes. The
extensive simulations show that our method is robust against varied
simulation conditions and is more powerful than either the original
unweighted cladistic analysis method or single-locus analysis
methods in case-control studies. Our hybrid method combining
haplotype-based and single-locus analyses can be readily extended
to whole genome association studies.

the haplotype dimensionality in association studies. These
methods can be broadly divided into two distinct categories.
One is based on constructing tests based on comparing
haplotype similarities between groups [21-26]. In haplotype
similarity comparison method, the df of the test equals the
number of markers studied within the haplotype region,
which is usually much less than the number of distinct
haplotypes. The other method aims at reducing the number
of haplotypes by grouping distinct haplotypes into clusters
and at comparing haplotype distributions based on clustered
haplotypes rather than the original unclustered haplotypes
[12,13,19,24,27-29].

In this study, we developed a novel haplotype-clustering
approach that combines information from single-locus tests.
Our method was developed based on the haplotype cladistic
analysis method (CLADHC) originally proposed by Durrant
et al. [19]. In our method, we combine single-locus tests and
haplotype-based tests into a single test framework. Specifi-
cally, we incorporate information of single-locus tests into
haplotype cladistic analysis by using p-values of single-locus
test statistics to form weights that are used to construct
distance metrics of haplotype pairs. By considering both
single-locus and haplotype-based tests in haplotype cladistic
analysis, we hypothesize that our method can improve the
power and robustness of the association analysis. To validate
our hypothesis, we generated the observed haplotypes by
using Hudson’s MS program [30], combined with similar
simulation scheme of Durrant et al. [19]. We then conducted
association studies under different scenarios for case-control
designs. We compared the performance of our weighted
cladistic analysis method with that of the CLADHGC, single-
locus allele-based test and the traditional haplotype-based
analysis. The results show that our method is advantageous
over the other three methods in terms of statistical power and
robustness. Furthermore, we used the real data to compare
the above four methods and found that our weighted cladistic
method outperformed the other two haplotype-based analysis
methods.
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Results

Simulation Studies

From simulated 6-SNP haplotypes, we generated 24 sets of
case-control samples using a complete combinatorial design
based on the following parameters: three levels of hetero-
zygote genotype relative risk (GRR) (1.5 and 1.75 versus 2.0),
two types of genetic models (additive model versus dominant
model), two levels of risk allele frequencies (0.1 versus 0.3),
and two types of haplotype structures (high diversity versus
low diversity). To evaluate the performance of detecting risk
alleles based on our weighted cladistic analysis method, we
conducted four association tests for each of the haplotype
samples: (1) association tests based on the individual
haplotype distribution without being clustered; (2) associa-
tion tests based on the single-locus allele-based analysis; (3)
association tests based on the clustered haplotype distribu-
tions obtained from CLADHC; and (4) association tests based
on the clustered haplotype distributions generated from our
weighted cladistic analysis method.

In our analyses, the log likelihood ratio (LLR) statistics
under the logistic regression model are employed to test
gene-disease associations using the four different methods
aforementioned. In the analyses, we define the type-I error
rate and the power as the proportions of significant
associations reported in 2,000 independent replicates for
the same marker under the null model (the GRR for the
disease SNP was assumed to be 1.0) and the true disease
model (the GRR > 1.0), respectively. Note that we report the
significant associations for single-locus tests in terms of the
maximal statistic for all the SNPs within the region
considered.

We estimated the type-I error rates and powers of the four
methods under different scenarios. In each scenario, we
generated five sets of haplotypes with different dimensions
(the number of distinct haplotypes varied between five and
nine in the scenarios with low haplotype diversity, and
between 11 and 15 in the scenarios with high haplotype
diversity). Based on each set of haplotype within the same
scenario, we performed 2,000 replication tests for disease-
gene association to estimate type-I error rates and powers for
each analysis method. The final results of the type-I error rate
and power for each analysis method are averaged over the
estimates obtained from the five sets of haplotype data within
each scenario.

The type-I error rates of the association analyses for the
four methods (at the 5% experiment-wise significance level)
are presented in Table 1. All the methods, except the
traditional haplotype-based method, are conservative to some
extent due to Bonferroni correction for multiple tests, either
between different partitions in both of the two haplotype
clustering approaches or between different SNP loci in
single-locus tests. The CLADHC procedure is the most
conservative among the four analysis methods. Our weighted
cladistic analysis method (denoted by “weighted” in Table 1)
is less conservative compared with CLADHC and single-locus
analysis. In contrast to the other three analysis methods that
use Bonferroni correction, the traditional haplotype associ-
ation analysis (denoted by “traditional” in the table)
generated more reasonable estimates of type-I error rate.
Both the haplotype structure and disease allele frequency
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Table 1. Type-l Error (%) of the Global Test (Accounting for
Multiple Testing) Based on the LLR Statistic under a Logjistic
Regression Model at 5% Significance Level and Various
Conditions

Analysis Method Type-l Error (%)

Low Diversity® High Diversity®

qc=0.1 q=03 q=0.1 q=03
Weighted® 426 417 3.75 3.96
CLADHC® 2.58 2.69 2.04 1.87
Traditional® 491 4.50 438 462
Single-locus® 3.83 4.03 3.26 3.65

In each setting, there are 800 case haplotypes and 800 control haplotypes. Different
haplotype structures and DAFs are considered.

“The number of distinct haplotypes is between five and nine.

®The number of distinct haplotypes is between 11 and 15.

q, DAF.

40ur weighted cladistic method.

€Unweighted cladistic method proposed by Durrant et al. [19].

raditional original haplotype-based method.

9Single-locus allele-based analysis method.

doi:10.1371/journal.pgen.0030046.t001

(DAF) have no apparent influences on estimates of type-I
error rate for each analysis method.

Table 2 shows the power for the four analytical methods to
detect disease-marker association under the assumption of a
5% experiment-wise significance level, with Bonferroni
correction for multiple testing in the two clustering methods
as well as in single-locus allele-based analysis. The estimated
power averaged over haplotype diversity is presented for each
method under 24 different scenarios considering different
DAFs, haplotype structures, heterozygote GRRs, and disease
genetic models. Under each setting, we highlight the maximal
power for emphasizing the best performance among the four
analysis methods. It is within our expectation that the largest
increases in power occur most frequently in our weighted
clustering method.

Comparison between two cladistic methods under different
scenarios shows that the power of our weighted cladistic
method is higher than that of CLADHC in the wide range of
situations investigated. To formally test the difference
between the two methods, we performed difference signifi-
cance tests and obtained respective p-values under different
scenarios presented in Table 2. Although the power of the
two methods is comparable in some situations (nine of total
24 settings cannot reach significant level, i.e., p-value > 0.05),
our method can substantially enhance the power in most
simulated situations (15 of total 24 settings obtained the p-
values < 0.05). This further confirms that, compared with
CLADHC, our weighted cladistic method can enhance the
power. An important point is that there was no power loss
using our weighted cladistic method in all the simulations.

Comparison of the powers between the two clustering
methods and with that of the traditional haplotype-based
analysis method shows that clustering methods outperform
the traditional method in all the simulated conditions. The
power increase is more obvious for high diversity than for low
diversity, and for small GRR than for high GRR. That is, when
the original haplotypes have a higher dimensionality and the
casual SNP entails a lower GRR, the two clustering methods
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have more advantages over the traditional haplotype-based
method. These results suggest that reducing the df is of
apparent benefit to power improvement in a trade-off against
correction for the additional levels of multiple testing.

When comparing the performance across the three
haplotype-based analysis methods and with that of the
single-locus analysis method, our weighted cladistic method
consistently shows advantages over the single-locus test in
power level except by only one setting. However, the other
two haplotype-based methods (CLADHC and the traditional
haplotype-based analysis method) are not more powerful
than the single-locus analysis method. Specifically, for the
scenarios of low diversity haplotypes, power levels of
CLADHC and the traditional haplotype-based analysis
method exceed those of single-locus tests in most cases;
however, for those scenarios of high diversity haplotypes, the
single-locus analysis method shows better performance in
most conditions than the two haplotype-based methods.

From Table 2, we can see that the highest power for all four
methods is obtained under the combinational design of a
higher DAF (0.3), a larger heterozygote GRR (2.0), a lower
haplotype diversity, and the additive genetic model, and the
power of all four methods is influenced by each of these
parameters in a consistent manner.

Finally, we investigated the distribution of the number of
clustered haplotypes in the best partition T[best] (designated
as the partition with the smallest p-value, i.e.,, maximal LLR
value, among all separate LLR tests) in 2,000 simulations when
using two clustering methods including our weighted cladistic
method and CLADHC. Overall, under each different setting,
the mode of this distribution in clustered haplotypes in
T[best] ranges from three to six for haplotypes with low
diversity and five to ten for haplotypes with high diversity in
the two clustering methods. However, our proposed method
has a smaller mode than CLADHC in most scenarios. This
suggests that our weighted cladistic method tends to produce
T[best] with fewer clusters compared to CLADHC. Thus, our
weighted cladistic method may have a better performance to
decrease the df of statistic than CLADHC in association
analyses. Figure 1 presents examples of the distributions of the
clustered haplotypes of T[best] in the two clustering methods.

Real Data Analyses

To validate our proposed method, we applied it to analyze
the published data by Gupta et al. [31]. In their studies, data
from 120 unrelated rheumatoid arthritis (RA) disease
individuals and 119 unrelated healthy individuals were
collected to study the susceptibility of the mannose-binding
lectin (MBL2) candidate gene. Haplotypes were defined by
five intragenic SNPs of the MBL2 gene, thus ten different
haplotypes with frequencies >0.01 were observed. In the
original analysis, one haplotype, CGCAG, was identified to
show a significant difference in frequency between cases and
controls (raw uncorrected p-value = 0.002).

In our analysis, we used four different methods including
the original haplotype-based method, single-locus allele-
based test, the CLADHC, and our weighted cladistic analysis
method to perform association analyses between RA disease
status and haplotypes of MBL2 gene based on the data
aforementioned. The p-value of the original haplotype-based
analysis is 0.023, df being 9; the CLADHC used 3 df and has
the p-value 3.90 X 107% (after Bonferroni correction); our
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Table 2. Powers of the Association Tests Based on the LLR Statistic under a Logistic Regression Model at 5% Significance Level

Haplotype Diversity GRR Analysis Method Power
Additive Model Dominant Model
q = 0.1 q=03 q = 0.1 q=03
Low® 1.5 Weighted® 0.388¢ 0.642° 0.347¢ 0.443¢
CLADHC? 0.385 0.637 0.334 0.409
Traditional® 0.354 0.608 0315 0.362
Single-locus’ 0.342 0.625 0.312 0.350
p-Value NS NS NS 0.015
1.75 Weighted® 0.803¢ 0.992¢ 0.647¢ 0.735¢
CLADHC® 0.758 0.979 0.634 0.723
Traditional® 0.741 0.976 0.626 0.711
Single-locus 0.727 0.935 0.594 0.720
p-Value 293 X 107* 291 x 107* NS NS
2.0 Weightedb 0.915¢ 0.999°¢ 0.865°¢ 0.930°
CLADHC 0.910 0.999° 0.853 0.912
Traditional® 0.897 0.985 0.848 0.886
Single-locus’ 0.903 0.967 0.816 0.863
p-Value NS NS NS 0.017
High? 1.5 Weightedb 0.343¢ 0.557 0.283¢ 0.390°
CLADHC 0314 0.462 0.259 0.302
Traditional® 0.266 0.428 0.207 0.241
Single-locus’ 0.327 0.563¢ 0.218 0.313
p-Value 0.025 9.34 x 107 '° 0.043 247 X 107°
1.75 Weighted® 0.782 ¢ 0.844 © 0.623 © 0.704 ©
CLADHC? 0.696 0.759 0.536 0.658
Traditional® 0.607 0.718 0.465 0.572
Single»locusf 0.654 0.821 0.440 0.683
p-Value 298 X 107 '° 8.03 X 10 "2 1.25 X 1078 9.01 X 10°*
2.0 Weighted® 0.891°¢ 0.938° 0.807¢ 0.889°
CLADHC? 0.862 0.901 0.789 0.835
Traditional® 0.784 0.850 0.610 0.713
Single-locus 0.822 0914 0.605 0.847
p-Value 266 X 1073 852 X 107° NS 3.70 X 1077

In each setting, there are 800 case haplotypes and 800 control haplotypes. Different haplotype structures and DAFs are considered. p-Value was obtained from difference significance test
between two clustered analysis methods.

“The number of distinct haplotypes is between five and nine.

2Our weighted cladistic method.

“Maximal power for emphasizing the best performance among the four analysis methods.
4Unweighted cladistic method proposed by Durrant et al. [19].

®Traditional original haplotype-based method.

fSingle-locus allele-based analysis method.

9The number of distinct haplotypes is between 11 and 15.

NS, no significance; g, DAF.

doi:10.1371/journal.pgen.0030046.t002

weighted cladistic analysis method obtained the corrected p-
value 3.97 X 10™* using 2 df. Our method produced a p-value
that is nearly 10-fold smaller than that of CLADHC and 60-
fold smaller than that of original haplotype-based method.
However, the p-value obtained from single-locus allele-based
tests is 2.20 X 10~ (after Bonferroni correction because of
multiple loci), which shows no substantial difference from our
method. The results suggest that our proposed method
outperforms the other two haplotype-based analysis methods.

Table 3 presents the best partition of haplotypes of
strongest association, together with the corresponding odds
ratios for RA, when the cluster with the highest frequency of
controls is taken as baseline. Cluster 3 has the highest odds of
RA disease.

Discussion

Haplotype analysis is likely to continue to play a key role in
genetic epidemiology studies [32], because it effectively
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captures both the joint marker correlations and the evolu-
tionary history. A main drawback of haplotype-based
association tests is the comparatively large number of distinct
haplotypes to be evaluated. As the number of haplotypes
increases, the df for the corresponding test statistic also
increases, thereby limiting the power of these tests.
Currently, the evolutionary-based clustering method is a
useful tool to reduce the df in haplotype-based analysis. Some
other clustering analysis methods were also proposed. For
example, Seltman et al. [27] employed generalized linear
models to analyze data for association studies. As an
extension of the cladistic analysis method of Templeton et
al. [20,33] and Templeton [20,33], their method is more
flexible for its ability to deal with uncertainty of haplotype
phases and allow for covariates. In Seltman et al. [27], the
cladogram-collapsing algorithm was used to perform sequen-
tial statistical tests. The increasing size of cladogram nodes
may lead to a very complex cladogram or network including
many nodes each having only one or a few grouped
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The number of clusters at the best partition in 2,000 simulations

Figure 1. Examples of Distributions of Clusters at the Best Partition (T[best]) in 2,000 Simulations with the Two Clustering Methods under Different

Settings

A-1 and A-2 present the distributions of clusters at T[best] using our weighted cladistic analysis method and CLADHC, respectively, when original
haplotypes have a high diversity (the number of distinct haplotypes is 12); B-1 and B-2 display the distributions of clusters at T[best] corresponding to
using our proposed method and CLADHC when original haplotypes have a low diversity (the number of distinct haplotypes is eight). Other parameters
considered in the simulations are the same for A-1, A-2, B-1, and B-2, which include: g = 0.1, r = 1.75, and assuming an additive model.

doi:10.1371/journal.pgen.0030046.g001

haplotypes. Tzeng [13] also proposed a cladistic analysis
method for association studies. The procedure of Tzeng [13]
determines the cluster by preserving common haplotypes
using a criterion built on the Shannon information content.
Each haplotype is then assigned to its appropriate clusters
probabilistically according to the cladistic relationship. An
interesting feature of Tzeng’s method is that the rare
haplotypes can be grouped into the closest major haplotypes.
This method requires phase-known haplotypes and does not
handle covariates.

In addition to the aforementioned evolutionary-based
clustering methods, Bayesian fine-mapping methods based
on Markov chain Monte Carlo algorithm were also proposed,
such as BLADE [34,35] and COLDMAP [36,37]. In BLADE, a
Bayesian framework was developed using full haplotype
information to handle various complications such as multiple
founders, phase-unknown genotypes, and incomplete marker
data. A stochastic model was employed to describe the
dependence structure among several variables characterizing
the observed haplotypes. A potential limitation is its
assumption that the number of clusters is fixed by the
analyst, which may not be robust if the number of clusters is
misspecified [32]. The method of COLDMAP built many
coalescent models for the genealogy underlying a sample of
case chromosomes in the vicinity of a putative disease locus,
which can incorporate the “shattered” coalescent model for
genealogies and allows for multiple founding mutations at the
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disease locus and for sporadic cases. A major concern with
these Bayesian fine-mapping methods is the computational
burden due to Markov chain Monte Carlo algorithm, which
may limit their applications in genome-wide scan studies.

It should be noted that a potential limitation of many
existing clustering methods is that haplotype clustering is
conducted without considering associations between haplo-
types and the disease outcomes. That is, the clustering process
does not use the information of phenotype data and the
position of the underlying disease locus [32]. Given this
consideration, we aim to develop a more informative
haplotype similarity measurement. Here we propose a
weighted cladistic analysis method, which incorporates
information of single-locus tests into haplotype cladistic
analysis, to perform association tests between disease
phenotypes and clustered haplotypes. Our method is largely
an improvement of Durrant et al. [19]. In the study of Durrant
et al. [19], the authors used a simple form of the similarity
metric to group the original haplotype, although they
mentioned a general weighted form for calculating the
similarity metric between pairs of haplotypes. Our method
has several promising aspects. First, we construct a weighted
distance metric for pairs of haplotypes through extracting the
information from single-locus association analysis, and
bridge a gap between single-locus analysis and haplotype-
based analysis in case-control studies. Hence, we can group
haplotypes based on both cladistic relationship of haplotypes
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Table 3. The Best Partitions of Haplotypes and Their Corre-
sponding Odds Ratios for RA Disease

Cluster Clustered Number Number Odds Ratios
Haplotype of Cases of Controls (95% Cl)

Cluster 1: CGCGG 77 75
CGCGA 8 6
CGTGG 12 10 1 (baseline)
GGCGG 54 47
GGTGG 7 6

Cluster 2:  CCCGG 48 30 0.786 (0.509-1.213)
GCCGG 19 18

Cluster 3: CGCAG 9 27
CCCAG 2 5 3.365 (1.801-6.286)
GGCAG 4 14

Data from Gupta et al. [31].
doi:10.1371/journal.pgen.0030046.t003

and association between trait and SNPs within haplotype
region of interest. Second, in CLADHC, haplotype diversity is
assumed to be driven by marker mutation in the absence of
recombination. In our weighted cladistic method, this
assumption may be relaxed to some extent because the
potential LD level between SNPs and disease gene can been
partially captured by the constructed weight function
—log(p;). We hypothesized that association tests combining
the single-locus and haplotype methods are more favorable
and powerful by incorporating their respective strengths into
one framework of tests. In fact, extensive simulations showed
that our method is robust and more powerful than either
original CLAHDC or single-locus analysis in case-control
studies.

Theoretically, our method may lead to inflations of type-I
errors due to incorporating information from single-locus
tests. This was confirmed in our simulation analyses by
comparing estimates of type-1 error rate between CLADHC
and our method. However, the type-I error rate estimates in
our method are still within the range of nominal significance
level 5% in all 24 simulated scenarios. Since Bonferroni
correction for multiple testing is conservative if the different
test statistics are correlated, it may be more reasonable to
determine the test thresholds using permutation procedure.
Thus, to further confirm the gain in power of our weighted
cladistic method, we performed tests by simulating null
distributions of LLR statistics for the four different analytic
methods based on permutation procedure, instead of using
the theoretical null distribution of the statistic for traditional
haplotype-based analysis method, or using adjusted p-values
via Bonferroni correction for multiple testing for other three
analysis methods. Because the permutational analogue is too
time consuming, it is infeasible to analyze all sets of haplotype
for the 24 scenarios we simulated. For illustration without
losing generality, we only simulated one set of haplotype for
each simulation scenario but kept the same simulation
parameter of GRR = 1.5. For each simulated haplotype set,
we performed 2,000 replications. In each replicate, the
empirical critical values for different analysis methods were
obtained by choosing the 95th percentile of the highest test
statistic over the 1,000 permutation replicates. The results
(unpublished data) demonstrated that when the critical values
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were obtained from permutation procedure rather than the
theoretical null distribution and Bonferroni correction, our
method still outperforms the other three methods, further
validating gain in power of our weighted haplotype cladistic
method. Although the results were obtained from a portion
of the simulated haplotype sets, the overall trend of power
increase has been clearly demonstrated. Therefore, the
proposed method should be preferably acceptable for
haplotype-based association studies for its robustness and
the gain in statistical power.

In our simulation studies, we performed statistical tests
based on phased haplotypes, which is not always available in
practical studies. Commonly, we can infer haplotypes of
phrase-unknown genotypes using the software HAPLO-
TYPER [38] or PHASE [39], which are widely used in the
field. We can then conduct the subsequent analysis based on
the inferred haplotypes. However, due to genotyping error
and statistical haplotype reconstruction, phasing error or
uncertainty of haplotypes is possible, especially for rare
haplotypes. The rare haplotypes can increase df, resulting in a
decrease of power in haplotype-based association tests. A
common practice is to discard the rare haplotypes, which may
result in information loss as current statistical methods
cannot completely distinguish between the real rare haplo-
types and rare haplotypes because of genotyping error. An
alterative method is to pool the rare haplotypes into a single
baseline group, this method is widely used in the field [40-42].
However, it may be difficult to interpret the odds ratio of the
pooled rare haplotypes in association analyses, unless we
assume all the rare haplotypes have the same genetic effect.
An appealing approach summarized in Schaid [32] is to
“shrink” the effects of rare haplotypes. The shrinkage can be
either toward a common mean, with the effects of the rare
haplotypes shrunk somewhat to the same degree as those
haplotypes with which they are most similar, or toward the
effects of the haplotypes that are most similar to the rare ones
[32]. In our analyses, we pooled the clusters with relative
sample frequencies <5%. We believe that the problem by
pooling rare haplotypes here is not a serious issue in our
study. The reason is that the hierarchical clustering technique
is a natural way to cluster the rare haplotypes according to
distance metric among haplotypes. In the clustering process,
rare haplotypes were firstly grouped according to distance
metric among haplotypes, and those rare clusters under the
cut-off threshold (5%) were pooled. Thus the proportion of
rare haplotypes being pooled in the best partition was
virtually low among the 2,000 simulation replications (the
proportion of pooled rare haplotype group was 0 in most
cases under scenario of low diversity, and varied from 0% to
~15% under a scenario of high diversity). In contrast, in
traditional haplotype-based analyses, rare haplotypes under
cut-off threshold were pooled directly and, accordingly, the
proportion of pooled haplotypes varied from 0% to ~37.5%
(three out of eight) for scenario of low diversity, and from
~13% (two out of 15) to ~38.5% (five out of 13) for high
diversity. In this study, we adopted 5% as the cut-off
threshold for pooling the rare haplotypes, which is commonly
used in the field. Lowering the threshold (e.g., from 5% to
2.5% or to 2%) may be helpful to keep the size of the pooled
rare haplotype group under better control, as we can avoid
pooling those “moderate” rare haplotypes each having quite
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different haplotypic effect under a lower threshold. This is a
topic that we will pursue in future studies.

Here our simulations are largely based on phase-known
data. For uncertainty of haplotypes inferred from phase-
unknown data, if only the most likely haplotype configura-
tions are used, it may cause a loss of information and
potential bias in the subsequent analyses. As summarized in
Schaid [32], we can adopt the following steps to handle the
uncertainty of haplotypes: (1) enumerate the possible
haplotypes by suitable haplotype reconstruction software;
(2) reconstruct the hierarchical tree for those enumerated
haplotypes using our weighted haplotype distance metric; (3)
develop a design matrix, with the columns corresponding to
haplotype clusters and the rows corresponding to all
individuals. At the i¢th row of the matrix, for each possible
pair of haplotypes carried by individual 7, the columns can be
used to count the clusters that individual i haplotypes are
grouped into; (4) average design matrix row by row for each
individual according to the posterior probabilities of those
phase-unknown haplotypes; and (5) the averaged design
matrix can be used in logistic regression model to perform
the LLR test.

Recent advances in high-throughput genotyping technol-
ogy have made it feasible to use empirical LD patterns to
search the whole human genome for disease risk variants. The
sliding windows approach combined with haplotype-based
association represents one of the most suitable methods to
perform whole genome association (WGA) studies. Several
groups have explored this approach from both statistical
[43,44] and applied perspectives [45-47]. Our proposed
weighted cladistic method can be easily adapted for WGA
studies using the sliding window approach. For example, our
method can be used in WGA studies by the following
procedures: (1) haplotype reconstruction (softwares are
available, such as HAPLOTYPER [38] or PHASE [39]) and
haplotype block partition (htSNPer [48] or HaploBlockFinder
[49]) for whole genome genotype data; (2) in each haplotype
block, reconstruct the hierarchical tree within each of the
sliding windows using the weighted haplotype distance
metric, and detect association between clustered haplotype
and disease outcomes in each window; and (3) correct for two
levels of multiple testing including the number of blocks and
the number of windows in each block. It should be noted that
the number and the length of sliding windows have obvious
impacts on the results, because the long windows might
include haplotypes with recombination, while many short
windows increase the stringency to reach statistical signifi-
cance due to the need to correct for multiple testing.
Compared with CLADHC, a strength of our method is that
the assumption of no recombination within each sliding
window (which is not always held in practice) is not strictly
required, because our method can partially capture informa-
tion of recombination between markers and disease gene by
the constructed weight function —log(p;). Therefore, longer
sliding windows can be applied with no extra power loss when
performing WGA using our weighted cladistic analysis
method.

Optimizing the length of sliding windows is important for
WGA studies. A commonly used method to optimize sliding
window size is through identifying regions of high and low
LD. Thus, the constructed windows can reflect different
amount of LD in the data. Generally, we can adopt windows
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of large sizes for genomic regions of extensive LD, and small
sizes for regions of moderate or weak LD. However, in
practice, it is not always easy to obtain the optimal window
sizes [50]. Another commonly used method is to use windows
of variable sizes to screen regions densely genotyped. That is,
for a given maximal window width, all possible widths of
windows are utilized to find the strongest evidence of
association (the maximum statistic) for each locus under
investigation [51-53]. However, the issue of thousands of tests
is a stumbling block for detecting the causal variant. Recently,
Mathias et al. [54] proposed a new method named Graphical
Assessment of Sliding p-values, which provides a graphical
overview of all tests from sliding windows without subselec-
tion, and thus may alleviate the multiple testing problem to
some extent.

In our single-locus analysis, we performed allele-based
association tests at each SNP under logistic regression model.
Analysis based on alleles regardless of the genotypes is
counter-intuitive, which can provide the most powerful
method of testing under the multiplicative genetic model
[65]. Under this framework, the assumption of HWE is
essential. If departure from HWE is seen for the genotype
data, we can directly analyze genotype data per se instead of
basing on allele counting method. In our study, for ease of
comparison among different method, LLR tests under logistic
regression model were used to detect gene-disease association
in all four different analysis methods aforementioned.
Compared to the conventional Pearson’s x? test for con-
tingency table, the logistic regression analysis can construct a
better fitting and biologically more reasonable model to
describe the relationship between disease status (dependent
or response variable) and a set of independent variables
including markers and covariates.

In summary, we report here a weighted haplotype cladistic
method that is capable of effectively constructing a clado-
gram of distinct haplotypes by incorporating associations
between single marker loci and phenotype data. Compared
with the original CLAHDC, traditional haplotype-based
analysis, and single-locus analysis methods, our proposed
method can substantially improve the power of association
tests and is more robust for a variety of simulation conditions
for the case-control design.

Materials and Methods

In our method, we determined haplotype diversity by the
proportion of allele matches at each SNP locus within a haplotype
region under a mutation model. In the mutation model, mutations at
marker loci resulted in haplotype diversity, and no recombination
events happened [19,25,28]. This is the same model as that used in the
CLADHC. This metric of haplotype diversity will be used to construct
cladograms of haplotypes using standard hierarchical clustering
procedures [56]. If a haplotype covers the disease susceptible
mutation, the cladogram can be approximately regarded as the
genealogical tree underlying the shared ancestry of case and control
haplotypes [19]. Therefore, association between disease and hap-
lotype clusters in the cladogram can be detected because those
clusters containing mutated haplotypes share more recent common
ancestry than those containing nonmutated haplotypes.

We evaluated the proposed weighted cladistic analysis method by
performing simulation studies using a case-control design and
compared false positive error rates (type-I error rates), powers of
our method with those of single-locus allele-based analysis, CLADHC,
and traditional haplotype-based methods.

Definition of distance metric. Construction of distance metric
between pairs of haplotypes in our method includes two steps: First,
we performed single-locus allele-based analysis using an LLR test
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based on the logistic regression model under the case-control design.
Second, we employed the p-values obtained in single-locus tests to
calculate weights. These weights were assigned to the similarity index
of haplotype pairs at each corresponding SNP locus. We used the
weighted similarity to define the distance metric between pairs of
haplotypes.

We considered n tightly linked SNPs in a region of interest. We
assumed that haplotype phase information is known. The pair of
haplotypes carried by individual k is denoted by H; = {H;;,H;e}, and
the haplotype Hy; = {Hk]m,H,,j[)], <uHyjpg} (=1, 2). We coded two
different alleles at SNP 7, Hyj;;, 1 and 2 (code 2 denotes the minor
allele), respectively. The frequency of allele 2 at SNP i is g;.

We assumed that there were m distinct haplotypes for a
chromosome region carried by a sample of unrelated cases (affected)
and controls (unaffected). Following the basic idea of CLADHC [19],
we employed a cladogram to depict haplotype diversity for these m
distinct haplotypes, which can be depicted by a similar figure
example elsewhere (referring to Figure 2 in reference [19]). At the
bottom of the cladogram, m distinct haplotypes are treated as m
clusters in the first partition, T[m]. At the top of the cladogram, all
distinct haplotypes are merged in a single cluster in the last partition,
T[1]. From partition T[m] to T[1], all successive merging are formed
stepwise according to the distances between clusters.

We constructed cladograms using simple hierarchical group
averaging techniques. At each partition, clusters of haplotypes with
a minimum average distance from the previous partition are merged,
and thus the mean pairwise haplotype diversity is minimized within
the new clade. We constructed the distance metric to represent the
diversity between a pair of haplotypes,Hy, j, andHj,, :

N
Z Shyji kojoli ( IOg(p )
Dkl]’hszz =1- oL N (%)

Z(*log(ﬁz))

i=1

where flog(p ;) acts as the weight assigned to the similarity,s; j, i[> at
locus 7, and p; is the p-value obtained in single-locus dllele based
association analysis at SNP 7 using traditional Pearson’s %> test. The
similarity of two haplotypes at SNP i,s;,;, can be given by:

kajoli] >
qi lf Hyji1i) = Higjol = 1
Shjkoiold = L =4 Hyjy = Higpo) = 2 (4)

0 otherwise

As shown in Equations 3 and 4, haplotypes that share rare alleles
are believed to share more recent ancestry than haplotypes sharing
common alleles and thus show greater similarity by means of the
definition of haplotype diversity. Therefore, the complementary
allele frequency, i.e., ¢; for sharing allele 1, and 1—¢; for sharing allele
2 at SNP i, is used to evaluate allele sharing. Furthermore, —log(p;) is
treated as the weight to the similarity at locus 7, which means that a
SNP with a lower p-value in single-locus analysis will play a more
important role in determining the distances between haplotypes. To
some extent, a lower p-value reflects stronger evidence of LD between
the marker and the putative disease mutation. Therefore, if a lower p-
value is obtained at a SNP locus, the pair of haplotypes sharing alleles
at this locus will have a higher probability of sharing alleles of the
disease mutation. Correspondingly, the pair of haplotypes with
mismatched alleles at this locus will have a lower probability of
sharing alleles of the disease mutation.

We use our weight-based distance metric to successively merge
original distinct haplotypes into different clusters in the hierarchical
cluster framework, and thus original distinct haplotypes within a
cluster can be regarded as the same haplotype in the next round of
merging. Therefore, association analysis between clustered haplo-
types and disease phenotype can be conducted in case-control studies.

Statistical tests. A weighted cladistic analysis using LLR test
statistic under a logistic model was used. After reconstruction of
the hierarchical tree using our weighted haplotype distance matrix,
we performed association analysis between clustered haplotypes and
disease at each partition included in the cladogram based on the
logistic regression model, which is essentially the same as that of
Durrant et al. [19]. A general description of this statistical test method
is provided in Protocol S1.

The traditional haplotype-based analysis method used in our study
refers to the method that directly analyzes haplotype data based on
LLR test under logistic regression model. In the analysis, we treat each
haplotype with a frequency >5% as a distinguishable “cluster” and
pool those haplotypes with relative frequencies <5% into a single
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baseline group. As such, the LLR test statistic with df m—/ is used to
perform haplotypeldisease association. Here m and [ denote the
numbers of distinct haplotypes and those haplotypes being pooled,
respectively. Equations Al1-A4 in Protocol S1 can be adopted in

traditional haplotype-based analysis by changing independent vari-
ables Bgmkland ﬁ%]w in Equation A1 to B and By, respectively. Here,
Br1 and By denote the log-odds of two haplotypes Hy; and Ho carried
by individual k. Similarly, we denote By as the log-odd of either

haplotype with a relative frequency <5% carried by individual k.

Single-locus allele-based analysis was also performed by using LLR
test statistic under a logistic regression model. Comparisons among
the four different analysis methods are based on the same framework.
The LLR statistic construed at each SNP locus within the haplotype
region follows a 2 distribution with 1 df under the null hypothesis
that cases and controls have equal odds of carrying each allele. The
models used for traditional haplotype-based analysis can be
employed here to test SNP-disease association by treating B, and
Bre to be the log-odds of two alleles at each locus instead of two
haplotypes carried by individual k. The raw p-value obtained from
each single-locus test is used to form weight for constructing distance
metric between haplotype pairs in the subsequential weighted
cladistic analysis. The minimal p-value among all separate tests is
adjusted for multiple testing with Bonferroni correction and then is
regarded as the evidence of association.

To confirm the gain in power of our weighted cladistic method
compared to CLAHDC, we constructed a test statistic to formally test
the difference of power between the two methods.

powery,

\/U}owerw + power,)/2 - (1 — (power,, + power,)/2) - (m + m)

— power,

where, power,, and power, are the power estimates for our method and
CLADHC, respectively, and round, and round, are the simulation
replicates in power estimation. The test statistic u approximately
follows a stand normal distribution under null hypothesis of no
difference in power between the two methods.

Simulation scheme. In our study, we generated SNP haplotypes and
disease phenotypes by three steps. First, we used the MS program
developed by Hudson [30], which mimics haplotype data based on the
coalescent theory to simulate haplotypes. Second, a certain SNP is
designated to be the causal variant of a complex disease, which is used
to determine disease status. Third, the causal variant is removed from
the original simulated haplotype. In this case, we perform disease-
gene association under an “indirect” association framework (that is
depending on LD between the markers and the causal variant), which
is quite similar to the simulation scheme of Durrant et al. [19].

We set the main parameters under the coalescent model for
generating haplotype data as follows: (1) the effective diploid
population size n, being 1 X 10% (2) the scaled recomblnatlon rate
for the whole rcglon of interest, p = 4n.y/bp, set to be 4 X 10~ and
where parameter v is the probability of cross-over per generation
between the ends of the haplotype locus being simulated; (3) the
scaled mutation Jrate for the simulated haplotype region, 0 = 4n.u/bp,
set to be 8 X 107*, and where parameter | is the neutral mutation rate
for the region of 51mulated haplotypes; and (4) the length of sequence
within the region of simulated haplotypes, n sites, being 10 kb. These
parameter values are often used in earlier analyses [13,30].

Based on these parameter settings, we ran the MS program to
generate the SNP sequences of the haplotype sample and set the
number of SNP sequences in the simulated sample at 100. We
discarded rare SNPs with minor allele frequencies lower than 0.05.
We also defined a haplotype as a segment including seven contiguous
SNPs within the simulated SNP sequence region, where we fixed the
fourth SNP as the liability locus affecting a complex disease. Liability
alleles were determined according to DAF ¢ (¢ = 0.1 and 0.3). We
considered two types of haplotypes with different structures within
the region of simulated sequences in our studies, i.e., haplotypes with
low diversity (the number of distinct haplotypes ranges between five
and nine) and those with high diversity (the number of distinct
haplotypes ranges between 11 and 15).

With the assumption of a single liability allele with a moderate
effect underlying a complex disease, we generated samples of cases
and controls based on the following settings. Denote f; as the
penetrance function, which is the probability of being affected
conditionally by carrying ¢ copies of the risk allele (i =0, 1, or 2). We
defined the ratio of f;lfy as heterozygote GRR and set the disease
prevalence K = 0.01. We let r = f;lfy. Given parameters r, K, and ¢, we
obtained f, = KI(1 — 2¢ + 2qr). Then we obtained f; and fo under
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different genetic models. When an additive model was considered, we
had f, = rfy and fo = 2rfy — fo; if a dominant model was considered, we
had f; =rf; and f5 = f;. After determining the values of f, f, and fo, we
randomly drew two haplotypes from the simulated sample containing
100 7-SNP haplotypes and paired them to form an individual. Thus
the probability of the individual being a case was f;, which was only
determined by i, the number of copies of risk alleles at the liability
locus. We repeated this process till n/2 cases and n/2 controls were
formed. In our study, n = 800. Finally, we removed the fourth SNP
from simulated 7-SNP haplotypes to form “observed” 6-SNP
haplotypes for all case and control individuals. These 6-SNP
haplotypes were used to conduct disease-gene association analysis
in the simulation studies.

Program availability. We employed SAS 9.1 to code our proposed
method in the Windows XP environment. The program is available
upon request.

Supporting Information

Protocol S1. LLR Test Method under the Logistic Regression Model
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