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Abstract 

Background:  Clustering of observations is a common phenomenon in epidemiological and clinical research. Previ-
ous studies have highlighted the importance of using multilevel analysis to account for such clustering, but in prac-
tice, methods ignoring clustering are often employed. We used simulated data to explore the circumstances in which 
failure to account for clustering in linear regression could lead to importantly erroneous conclusions.

Methods:  We simulated data following the random-intercept model specification under different scenarios of clus-
tering of a continuous outcome and a single continuous or binary explanatory variable. We fitted random-intercept 
(RI) and ordinary least squares (OLS) models and compared effect estimates with the “true” value that had been used 
in simulation. We also assessed the relative precision of effect estimates, and explored the extent to which coverage 
by 95% confidence intervals and Type I error rates were appropriate.

Results:  We found that effect estimates from both types of regression model were on average unbiased. However, 
deviations from the “true” value were greater when the outcome variable was more clustered. For a continuous 
explanatory variable, they tended also to be greater for the OLS than the RI model, and when the explanatory variable 
was less clustered. The precision of effect estimates from the OLS model was overestimated when the explanatory 
variable varied more between than within clusters, and was somewhat underestimated when the explanatory vari-
able was less clustered. The cluster-unadjusted model gave poor coverage rates by 95% confidence intervals and high 
Type I error rates when the explanatory variable was continuous. With a binary explanatory variable, coverage rates by 
95% confidence intervals and Type I error rates deviated from nominal values when the outcome variable was more 
clustered, but the direction of the deviation varied according to the overall prevalence of the explanatory variable, 
and the extent to which it was clustered.

Conclusions:  In this study we identified circumstances in which application of an OLS regression model to clustered 
data is more likely to mislead statistical inference. The potential for error is greatest when the explanatory variable is 
continuous, and the outcome variable more clustered (intraclass correlation coefficient is ≥ 0.01).
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Introduction
Clinical and epidemiological research often uses some 
form of regression analysis to explore the relationship 
of an outcome variable to one or more explanatory 

variables. In many cases, the study design is such that 
participants can be grouped into discrete, non-overlap-
ping subsets (clusters), such that the outcome and/or 
explanatory variables vary less within clusters than in 
the dataset as a whole. This might occur, for example, 
in cluster-randomised controlled trials (with the units 
of randomisation defining clusters), or in a multi-centre 
observational study (the participants from each centre 
constituting a cluster). The extent to which a variable is 
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“clustered” can be quantified by the intra-class correla-
tion coefficient (ICC), which is defined as the ratio of 
its variance between clusters to its total variance (both 
between and within clusters) [1].

Clustering has implications for statistical inference 
from regression analysis if the outcome variable is clus-
tered after the effects of all measured explanatory vari-
ables are taken into account. If allowance is not made 
for such clustering as part of the analysis, parameter 
estimates and/or their precision may be biased. This 
possibility can be demonstrated by a hypothetical study 
of hearing impairment and noise exposure, in which 
observations are made in four different cities (clus-
ters), as illustrated in Fig. 1. In this example, the effect 
of cumulative noise exposure on hearing impairment is 
the same within each city (i.e. the regression coefficient 
for hearing impairment on noise exposure is the same 
in each cluster), but the distribution of the exposure 
differs across cities (Fig. 1A). After allowance for noise 
exposure, hearing impairment differs by city, such that 
it varies more between the clusters than within them. 
An analysis that ignored this clustering would give a 
misleading estimate for the regression coefficient of 
hearing loss on noise exposure (Fig.  1B with cluster-
unadjusted and cluster-adjusted effect estimates super-
imposed on Fig. 1A). Moreover, even if the distribution 
of noise exposures in each city were similar, so that the 
regression coefficient was unbiased, its precision (the 
inverse of its variance) would be underestimated, since 

variance would be inflated by failure to allow for the 
differences between clusters (at the intercept) (Fig. 1C).

Where, as in the example above, the number of clus-
ters is small relative to the total number of participants in 
the study sample, a categorical variable that distinguishes 
clusters can be treated as an additional explanatory varia-
ble in the regression model [2]. However, when the num-
ber of clusters is larger (again relative to the total number 
of participants), use of the cluster variable as an addi-
tional explanatory variable in the regression model can 
seriously reduce the precision with which effects are esti-
mated (because more degrees of freedom are used). In 
such circumstances, an alternative approach is to assume 
that cluster effects are randomly distributed with a mean 
and variance that can be estimated from the data in the 
study sample. Random intercept models assume that the 
effects of explanatory variables are the same across all 
clusters, but that the intercepts of regression lines differ 
with a mean and variance which can be estimated from 
the study data, along with the effect estimates of primary 
interest. Random slope models assume that the effects of 
explanatory variables also differ between clusters, with a 
mean and variance that can be estimated.

In recognition of the potential implications of clus-
tering for statistical inference, there has been a growth 
over recent years in the use of statistical techniques that 
allow for clustering [3–5]. Nevertheless, many studies 
still ignore clustering of observations [6–10]. Recent sys-
tematic reviews have reported that clustering was taken 
into account in only 21.5% of multicentre trials [11] and 

Fig. 1  Two hypothetical relationships of hearing impairment to cumulative noise exposure in four cities. Units for noise exposure and hearing 
impairment have been specified arbitrarily for ease of presentation. Data for each city are distinguished by the shading of data points. A and B 
Depict the same hypothetical dataset. In A, only cluster-specific regression lines are indicated, while in B summary regression lines have been 
added for the full dataset a) when clustering is ignored (dotted red line), and b) after adjustment for clustering (solid blue line). C Shows a second 
dataset in which the relationship of hearing impairment to cumulative noise exposure in each city is as in A and B, but distribution of noise 
exposures is the same in each city. Again, the dotted red line represents the summary regression line when clustering is ignored, and the solid blue 
line, that after adjustment for clustering
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47% of cluster randomised trials [12]. This may in part 
reflect computational challenges and statistical complexi-
ties [13], but, perhaps because of a lack of clarity about 
the effects of ignoring clustering, authors have omit-
ted to discuss the limitations of their chosen analytical 
techniques.

Several studies have investigated implications of ignor-
ing clustering in statistical inference, most being based 
on analysis of real data [14–21]. To date, no study has 
systematically investigated the extent to which bias can 
occur in effect estimates when clustering is ignored, the 
determinants of that bias, or the exact consequences 
for the precision of estimates according to different dis-
tributions of the explanatory variable and, in particu-
lar, the extent to which the explanatory variable varies 
within as compared with between clusters. Such vari-
ation can be more nuanced in observational studies (in 
which researchers have less control over the distribution 
of explanatory variables), than in clinical trials where the 
main explanatory variable either varies only between 
clusters (as in cluster randomised trials), or exhibits min-
imal variation between as compared with within clusters 
(as when individual randomisation produces balanced 
prevalence of the explanatory variable across clusters).

The first aim of the research described in this paper was 
to assess in detail the implications for effect estimates 
(regression coefficients), and their precision (character-
ised by standard errors (SEs)), when a linear regression 
analysis exploring the relation of a continuous outcome 
variable to an explanatory variable fails to account for 
clustering. The second aim was to describe coverage by 
95% confidence intervals and rates of Type I error in the 
same setting. These research questions were explored 
through simulation studies, which were designed to cover 
a range of scenarios that might occur in observational 
research, including variable degrees of clustering in the 
explanatory variable.

Methods
In the simplest case, in which there is a single explana-
tory variable, the ordinary least squares (OLS) linear 
regression is specified by a model of the form:

For a continuous outcome and a single explanatory var-
iable, the random intercept (RI) multi-level model can be 
viewed as an extension of the OLS model, and is specified 
as:

(1)yi = β0 + β1xi + ei

(2)
yij = β0j + β1xij + eij
= β0 + β1xij + eij + uj

where the index i refers to the individual and the 
index j to the cluster, and β0j = β0 + uj , the estimate 
of the intercept for cluster j . The term uj represents 
the error for cluster j around the fixed intercept value 
of β0 , and is assumed to be normally distributed with 
uj|xij ∼ N

(

0, SD2
u

)

 . The term eij represents the addi-
tional error within the cluster, also referred to as the 
individual level error term, with eij|xij ,uj ∼ N

(

0, SD2
e

)

.
As described in the introduction, ICC is a measure 

which characterises the extent to which the outcome 
variable yij is similar within clusters, given the distribu-
tion of the explanatory variable xij [4]. For a continuous 
outcome variable, and with the nomenclature used 
above, the ICC is defined as ICC =

SD2
u

SD2
u+SD2

e
 [1].

To explore the study questions, simulated datasets 
were generated according to the assumptions of the RI 
model (as specified in Eq. 2). For each simulation, both 
the number of clusters and the number of observations 
per cluster were set to 100. For simplicity, the size of 
the effect of xij on yij was arbitrarily set to 1 ( β1 = 1) , 
and the average value of yij when xij = 0 was arbitrarily 
set to 0 ( β0 = 0).

Separate simulations were generated for a continu-
ous and a binary explanatory variable xij . To set values 
for a continuous explanatory variable, xij , in a cluster 
j , an individual level variable generated as x0ij ∼ N (0, 1) 
was added to a cluster-specific variable generated as 
shiftj ∼ N

(

0, SDshift
2
)

 , so that xij = x0ij + shiftj . A total 
of 1,000 values for SDshift , derived as ∼ U [0, 20] , were 
each used to generate 100 simulated samples, giving a 
total of 100,000 samples.

For a binary explanatory variable xij , we set the 
prevalence in each of the 100 clusters within a sam-
ple to be the sum of a constant “target prevalence” 
(the same in all clusters) and a cluster-specific variable 
shiftj ∼ N

(

0, SDshift
2
)

 . In this case, 500 values of SDshift , 
derived as ∼ U [0, 0.05] , were each used to generate 
cluster prevalence rates for 100 simulated samples, 
giving a total of 50,000 samples for each of four values 
for target prevalence (0.05, 0.1, 0.2 and 0.4). Where a 
negative value was generated for a cluster prevalence, 
it was set to zero. Values for xij within a cluster were 
then set to achieve the designated prevalence for that 
cluster (with rounding as necessary). For example, if 
the prevalence assigned to a cluster was 0.223, then the 
first 22 values for xij in the cluster were set to 1, and the 
remaining 78 to 0.

For both continuous and binary xij , corresponding 
values for the outcome variable yij were generated 
according to Eq.  2. For this purpose, the individual-
level error terms were drawn from a random standard 
normal distribution (N (0, 1)) , and the cluster-level 
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error terms were drawn from a random normal distri-
bution with mean zero and variance SD2

uj
 . We aimed to 

explore outcomes according to the degree of clustering 
within study samples, and to this end, we specified six 
target ranges for sample ICC (0.0005–0.00149, 0.0025–
0.00349, 0.005–0.0149, 0.025–0.0349, 0.05–0.149 and 
0.25–0.349). Simulated data were therefore generated 
for six different values for SDuj (0.0316, 0.05485, 0.1005, 
0.1759, 0.3333 and 0.6547) chosen to give expected val-
ues for the sample ICC at the mid-points of the target 
ranges (0.001, 0.003, 0.01, 0.03, 0.1 and 0.3 respec-
tively). Throughout the remainder of this report, the six 
target ranges are labelled by these midpoint values. 
Where, by chance, the ICC for a sample fell outside its 
target range, the sample was discarded, and replaced by 
a new sample generated using the same value for sdshift . 
This process continued until the ICC fell inside the tar-
get range.

Further details of the algorithms used to generate 
simulated samples are presented in supplementary files 
(Appendices A and B for continuous and binary explana-
tory variable respectively).

For each simulated sample, two linear regression mod-
els were fitted; an OLS model which ignored the clus-
tering (Eq. 1), and a RI multi-level model which allowed 
for clustering effects (Eq. 2). For each of the models, the 
regression coefficient and its standard error (SE) were 
estimated. To assess bias in effect estimates from the 
two models, we calculated differences between regres-
sion coefficients estimated by the two methods ( βRI

1  
and βOLS

1  ) and the “true” value of 1 (i.e. the value used 
in the algorithm to generate simulated samples), as has 
been done previously [22]. To explore how deviations 
from the “true” value were affected by the clustering of 
the explanatory variable, they were plotted against the 
dispersion (expressed as standard deviation (SD)) of the 
cluster mean values of continuous xij ( 

−
xj ) across the clus-

ters of each sample, and against the dispersion (again 
expressed as SD) of cluster prevalence rates of binary xij 
across the clusters of each sample. For both continuous 
and binary xij , lower dispersion indicated less variation 
of the explanatory variable across clusters and there-
fore lower clustering of the explanatory variable (since 
within-cluster variance of xij remained constant). In 
addition, descriptive statistics were produced for the dis-
tributions of deviations from the “true” value across sam-
ples, according to ICC (ICC referring to the pattern of 
variation in the outcome variable after allowance for the 
explanatory variable), and for a binary explanatory vari-
able, also according to the target prevalence of xij.

To compare the precision of effect estimates derived 
from the two models, the ratios of their SEs ( SERI/SEOLS ) 
were calculated. Again we explored how findings varied 

according to ICC, clustering of the explanatory variable, 
and, where the explanatory variable was binary, its target 
prevalence.

The coverage of the 95% confidence intervals for the 
regression coefficient β1 from the two methods was 
assessed by calculating the percentage of the estimated 
confidence intervals that included the” true” value that 
had been used in the simulations. A method was consid-
ered to have appropriate coverage if 95% of the 95% con-
fidence intervals included the “true” value of the effect β1 
(i.e. 1). Deviations from nominal coverage could reflect 
bias in estimates of effect, unsatisfactory standard errors 
[23], or both.

To assess impacts on Type I error, simulations were 
repeated using the same numbers of simulated sam-
ples (i.e. 100,000 simulations for each ICC target range 
for continuous xij , and 50,000 simulations for each tar-
get prevalence and ICC target range for binary xij ), this 
time assuming no association between xij and yij (i.e. we 
set β1 = 0).The percentage of datasets for which the null 
hypothesis was rejected at a 5% significance level in OLS 
and RI modelling were compared according to ICC.

All simulations and analyses were conducted using 
Stata software v12.1.

Results
Bias in regression coefficients
Figure 2 illustrates how regression coefficients estimated 
from the two linear models differed from the “true” value 
of 1. The two subplots of the figure (A and B) correspond 
to the two types of explanatory variable (continuous and 
binary respectively), and the different shades of grey 
represent different ICC levels with darker shades corre-
sponding to simulated results for higher ICCs.

In all cases, differences from the “true” value of 1 were 
on average zero, indicating that both models produced 
unbiased estimates of the regression coefficient. How-
ever, with a continuous explanatory variable, divergence 
from the “true” value tended to be greater for the OLS 
than for the RI model, especially for higher ICC and for 
lower dispersion of the mean value of xij across the clus-
ters within a sample (Supplementary Table  1). With a 
binary explanatory variable, divergence from the nominal 
value was again greatest for high ICCs (see also Supple-
mentary Table 2), but there was no strong relationship to 
dispersion of the mean prevalence of xij across clusters, 
and average divergence differed less between the two 
models.

Ratio of standard errors
The ratios of SEs derived from the RI and OLS models 
( SEβRI

1
/SEβOLS

1
 ) were examined in relation to the disper-

sion of the mean value/prevalence of the continuous/
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binary explanatory variable xij across the clusters within 
the sample, and are presented in Fig. 3. As in Fig. 2, levels 
of ICC are represented by different shades of grey, with 
lighter shades corresponding to lower ICCs and darker 
shades to higher ICCs. Subplots A and B illustrate the 
ratios of SEs when xij was continuous and binary, 
respectively.

For a continuous variable xij , the ratio took its mini-
mum value for the smallest dispersion of cluster mean 
values of xij ( 

−
xj ) and increased towards a plateau as that 

dispersion increased. The minimum and maximum val-
ues of the ratio of the SEs (the latter corresponding to the 
plateau value) were ICC-dependent, higher ICCs result-
ing in lower minimum and higher maximum values for 
the ratio. The dispersion of 

−
xj at which the ratio of SEs 

approached its plateau was also ICC-dependent, being 
higher for larger ICCs. For very small values of disper-
sion of 

−
xj , the minimum value of the ratio of the SEs was 

approximately one for small levels of ICC and was less 
than one for higher ICCs. Particularly for small values 

Fig. 2  Difference from “true” value of 1 of regression coefficients estimated from RI and OLS models ( βRI
1

 and βOLS
1

 ) plotted against dispersion 
(expressed as SD) of the mean value/prevalence of xij across the clusters within each sample. Results for different levels of intraclass correlation 
coefficient are distinguished by shades of grey as indicated in the legend. A Continuous xij . B Binary xij
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of the dispersion of 
−
xj and ICC ∼= 0.10 or 0.30, the ratio 

of SEs was < 1, meaning that SEs from RI models were 
smaller than from OLS models.

When xij was binary, the ratios of the SEs were below 
one for most of the situations examined, indicating that 
the SEs of the regression coefficients estimated from the 
RI model were smaller than those from the OLS model 
in most circumstances. The ratio of the SEs achieved its 
minimum value for the smallest dispersion of the prev-
alence of xij across the clusters within a sample, and 
increased progressively as that dispersion increased. For 
small ICCs (< 0.1), the SEs from the two models were 
very similar. However, as ICC increased to 0.1 or higher 
the ratio of the SEs decreased to values much lower than 

1. For constant ICC, comparison of subplots of Fig.  3B, 
shows that the rate of increase of the ratio of the SEs was 
higher for lower target prevalence rates of the xij.

Coverage of 95% confidence intervals
Table 1 shows the extent to which 95% confidence inter-
vals covered the “true” effect of a continuous explanatory 
variable on the outcome ( β1=1), when derived from the 
two statistical models. Results are presented separately 
for different levels of ICC, and for fifths of the distribu-
tion of the dispersion of cluster means of the explanatory 
variable across the clusters of the sample.

Irrespective of ICC and type of explanatory variable, 
coverage with the RI model was approximately 95% (for 

Fig. 3  Ratios of standard errors estimated from RI and OLS models ( SEβRI
1

/SEβOLS
1

 ) plotted against dispersion (expressed as SD) of the mean value/
prevalence of xij across the clusters within each sample. Results for different levels of intraclass correlation coefficient are distinguished by shades of 
grey as indicated in the legend. A Continuous xij . B Binary xij

Table 1  Coverage (%) of “true” effect β1 = 1 by 95% confidence intervals derived from the RI and OLS models according to fifths of the 
distribution of dispersion (expressed as SD) of the cluster means of a continuous xij within samples

Lowest fifth of 
distribution

2nd fifth of 
distribution

3rd fifth of 
distribution

4th fifth of 
distribution

Highest fifth of 
distribution

Total

RI OLS RI OLS RI OLS RI OLS RI OLS RI OLS

0.001 95.04 94.37 95.00 94.09 95.33 94.10 95.15 93.99 94.92 93.84 95.08 94.08

0.003 95.14 93.14 95.37 92.33 95.20 91.83 95.53 92.25 95.42 91.99 95.33 92.30

0.01 94.99 88.47 94.64 83.95 94.75 83.65 94.74 83.72 94.90 84.07 94.80 84.75

0.03 94.59 76.21 95.11 68.79 94.80 67.62 95.06 67.57 94.74 67.15 94.87 69.39

0.1 94.68 59.58 94.80 45.45 94.86 44.83 94.39 44.73 95.04 44.37 94.76 47.80

0.3 94.84 41.32 94.53 28.06 94.95 28.24 94.64 26.98 94.79 27.41 94.75 30.36



Page 7 of 13Ntani et al. BMC Med Res Methodol          (2021) 21:139 	

continuous xij : range across ICC levels 94.75–95.33%; for 
binary xij : range across ICC levels and prevalence rates 
of xij 94.72–95.15%). For a continuous xij , coverage for 
the OLS model was close to 95% for very low ICC but 
decreased with increasing levels of ICC. For the high-
est ICC level examined (ICC = 0.3), OLS gave a notably 
poor coverage of 30%. For a given ICC, coverage of 95% 
confidence intervals did not vary much according to dis-
persion of the mean value of xij across clusters, although 
it was somewhat higher in the bottom fifth as compared 
with the rest of the distribution of dispersions.

For a binary xij , coverage from the OLS model was 
close to 95% (range 94.7 to 95.2%) for ICC ≤ 0.03. How-
ever, as ICC increased, coverage from the OLS model 
deviated from the nominal value of 95%. As shown in 
Fig.  4, when ICC was 0.1 or 0.3, coverage was on aver-
age lower for lower target prevalence of xij ; it fell below 
the nominal value of 95% for 0.05 target prevalence of xij 
and it increased to values higher than 95% for 0.40 target 
prevalence of xij (comparison of the four sub-plots of the 
figure). Also, for any given target prevalence of xij , cov-
erage was lower for increasing dispersion of prevalence 
of xij across clusters. Variation of the average coverage 
by target prevalence of xij and dispersion of prevalence 
of xij across clusters was higher when ICC was higher 
(ICC = 0.3) than when it was lower (ICC = 0.1). The 
smallest and the largest values of coverage were 87 and 
98% and they were observed when the target prevalence 
of xij was 0.05, ICC = 0.3, and in the lowest and high-
est thirds respectively of the distribution of dispersion 
of prevalence of xij across clusters. Coverage as high as 

98% was also seen in the lowest third of the distribution 
of dispersion of prevalence of xij across clusters for the 
other prevalence rates (0.10, 0.20, and 0.40) explored 
when ICC was high (ICC = 0.3).

Type I error
To assess the frequency of Type I error, defined as incor-
rect rejection of a true null hypothesis, under the OLS 
and the RI multi-level models, simulations were repeated 
assuming no association between the explanatory vari-
able xij and the outcome variable yij ( β1 = 0).

Figure  5 shows the percentage of simulated samples 
for which the null hypothesis was rejected at a 5% sig-
nificance level for varying levels of ICC, when xij was 
continuous. Using the RI multi-level model, the asso-
ciation between xij and yij was statistically significant in 
approximately 5% of the datasets for all ICCs. However, 
with the OLS models, Type I error rose with ICC. For 
a very small ICC, Type I error was close to the nomi-
nal value of 5%, but it increased rapidly as the ICC 
increased, reaching ∼ 70% for ICC ∼= 0.30. Type I error 
did not vary much by dispersion of the cluster mean 
values of xij within samples, but was lowest in the low-
est fifth of the distribution of dispersion (Supplemen-
tary Table 3).

When the explanatory variable xij was binary, Type 
I error rates from the OLS model varied very little 
around the nominal level of 5% when ICC values were 
less than 0.1; the average value was 5% and varied 
from 4.8 to 5.3% for different ICC values (< 0.1), target 
prevalence rates of xij , and dispersion of prevalence of 

Fig. 4  Coverage (%) by 95% confidence intervals from the OLS model for ICC = 0.1 and 0.3, according to target prevalence of x (A) 0.05, B) 0.10, C) 
0.20, and D) 0.40), and thirds of the distribution of the dispersion (expressed as SD) of the prevalence of xij across the clusters within each sample
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xij across clusters. However, for ICC values of 0.1 and 
0.3, Type I error rates diverged from 5%. This is illus-
trated in Fig. 6 for the four target prevalence rates of xij 
(subplots A, B, C, and D of the figure), and for thirds of 
the distribution of dispersion of prevalence of xij across 
clusters. For small dispersion of prevalence rates of 
xij (bottom third of the distribution), Type I error was 
lower than 5%, and it increased as dispersion increased. 
This trend was more prominent for lower values of 

target prevalence of xij , and for ICC = 0.3 compared to 
ICC = 0.1. The smallest and the largest values of Type I 
error were 2 and 13% and they were observed when the 
prevalence of xij was 0.05 and in the lowest and highest 
thirds respectively of the distribution of dispersion of 
prevalence of xij across clusters.

Fig. 5  Percentage (%) of simulated samples for which the null hypothesis was rejected according to level of ICC when xij was continuous and no 
association was assumed between outcome and explanatory variable

Fig. 6  Type I error rates (%) from the OLS model for ICC = 0.1 and 0.3, by target prevalence rates of xij (A 0.05, B 0.10, C 0.20, and D 0.40), and thirds 
of the distribution of the dispersion (expressed as SD) of prevalence of xij across the clusters within each sample
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Discussion
In this study we focused on the implications of ignoring 
clustering in statistical inference regarding the relation-
ship between a continuous outcome and a single explana-
tory variable xij . For each of two types of xij (continuous 
and binary), we fitted RI and OLS models and explored: 
the deviation of effect estimates from the “true” value 
that was used in generating the samples; their relative 
precision; the extent to which their 95% confidence inter-
vals covered the “true” value; and the frequency of Type I 
error when simulations assumed that there was no asso-
ciation between the outcome and explanatory variable. 
Our interest was principally in implications for analysis 
of data from observational studies, and we specified the 
generation of simulated samples to encompass a range 
of scenarios that might be encountered in real observa-
tional data. In particular, we considered varying degrees 
of clustering not only in the outcome variable (measured 
by ICC), but also in the explanatory variable. The latter 
was quantified in terms of the SD across clusters of the 
mean or prevalence of the explanatory variable within 
each cluster (its variance within clusters being fixed).

With both continuous and binary xij , where the “true” 
effect was non-zero, we found that irrespective of ICC, 
both RI and cluster-unadjusted OLS models on aver-
age gave estimates of effect close to the “true” value (i.e. 
they were unbiased). However, deviations from the “true” 
value were greater for higher ICC. For continuous xij , 
they tended also to be greater for the OLS than the RI 
model, and when the explanatory variable was less clus-
tered. However, with a binary explanatory variable, devia-
tions from the “true” value showed no strong relationship 
to the level of clustering of the explanatory variable, and 
average divergence from the “true value" differed less 
between the two models.

SEs for effect estimates from cluster-unadjusted OLS 
differed from those derived from RI models, the differ-
ences being driven mainly by ICC levels and the extent to 
which the explanatory variable was clustered. For higher 
clustering of the explanatory variable, the SEs of regres-
sion coefficients from the RI model were generally larger 
than from the cluster-unadjusted OLS model. When xij 
was continuous, the ratio of SEs ( SEβRI

1
/SEβOLS

1
 ) was high-

est (> 4) for a high ICC (0.3). However, the apparently 
greater precision of OLS method was not universal. For 
low clustering of the explanatory variable, OLS regres-
sion gave larger SEs than RI modelling, particularly for 
higher ICCs (> 0.03). With both continuous and binary 
xij , SEs from RI modelling were more than 15% lower 
than those from OLS regression for the highest ICC value 
(ICC = 0.3) and the lowest clustering of the explanatory 
variable.

The rates of coverage of 95% confidence intervals for 
estimates of effect, whether of a continuous or a binary 
xij , when derived from a RI model were at the nominal 
level of 95%, irrespective of other parameters. When 
xij was binary, the cluster-unadjusted OLS model also 
resulted in an appropriate coverage of 95% confidence 
intervals provided ICC was low ( ≤ 0.01 ). However, for 
higher values of ICC, coverage varied around the nomi-
nal value of 95% (range: 87–98%) depending on the over-
all prevalence and the dispersion of the cluster-specific 
prevalence rates of xij . In contrast, when xij was con-
tinuous, the model that failed to account for clustering 
resulted in much poorer coverage rates, especially as ICC 
increased, and they were as low as 30% for ICC = 0.3.

Setting the effect of xij on the outcome variable to zero 
allowed exploration of the frequency of Type I error. 
With the RI model, Type I error was close to 5% in all 
of the scenarios explored. When xij was continuous, we 
found that failure to allow for clustering increased rates 
of Type I error, and that the inflation of Type I error was 
particularly pronounced (up to 70%) when the degree of 
clustering was high (ICC = 0.3). In contrast, when xij was 
binary, Type I error under the OLS model was close to 
the expected value of 5% for low ICC (< 0.1). However, 
when ICC was high (0.1 or 0.3), Type I error rates varied 
more widely around 5%, with values as low as 2% (for low 
target prevalence of xij and small dispersion of its preva-
lence across clusters) and as high as 13% (for low target 
prevalence of xij and large dispersion of its prevalence 
across clusters).

The analysis for each specification of parameters 
(expected ICC, dispersion of mean or prevalence of xij 
across clusters, and (for binary xij ) overall prevalence of 
xij ) was based on a large number of simulated samples 
(100,000 for each of six target ranges of ICC for contin-
uous xij , and 50,000 for each of 24 combinations of tar-
get ICC and target prevalence of xij for binary xij ), each 
of which comprised 10,000 observations grouped in 100 
equally sized clusters. By using such a large sample size 
(larger than in many epidemiological investigations), we 
reduced random sampling variation, making it easier to 
characterise any systematic differences between the two 
methods of analysis. However, the approach may have led 
to underestimation of the maximum errors in effect esti-
mates that could arise from OLS as compared with multi-
level modelling. Moreover, the number of observations 
per cluster was the same in all simulations, making it 
impossible to draw conclusions about effects of ignoring 
clustering where cluster sizes vary (including situations 
where cluster size is informative [24]). Also, data were 
simulated following the specification of the RI regression 
model (as described in Eq. 2) rather than that of the ran-
dom-effects model. That was done because the RI model 
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is more frequently used, especially when there is no prior 
expectation of differential effects of the explanatory on 
the outcome variable across different clusters. Simulat-
ing data following the specification of the random effects 
model would have added to the complexity of the algo-
rithm used for simulation, and to the computational time 
required.

Given the method by which the simulated samples 
were generated, it was to be expected that when multi-
level RI modelling was applied, irrespective of whether 
the explanatory variable was continuous or binary, the 
rate of Type I error would be 5%, and the coverage by 
95% CIs would be at the nominal level of 95%. In compar-
ison, when cluster-unadjusted OLS models were fitted to 
clustered data with a continuous xij , rates of Type I error 
were higher, particularly when the ICC was high. For the 
highest level of ICC examined (0.3), Type I errors were 
as frequent as 70%. However, even with an ICC of only 
0.01, rates of Type I error were more than 10%. Consist-
ent with this, coverage by 95% confidence intervals was 
much lower than the nominal value (rates down to 30%) 
when ICC levels were high. In contrast to these results 
Huang et  al. [25] have reported coverage close to 95% 
from the OLS model when it was applied to clustered 
data with a continuous explanatory variable. Differences 
between our findings and those of Huang et al. [25] may 
be explained by lack of clustering in the explanatory vari-
able in Huang’s investigation. Sensitivity analysis restrict-
ing our simulated datasets to those in which clustering of 
explanatory variable was minimal showed that interval 
coverage rates were close to 95%, independent of cluster-
ing in the outcome variable (Supplementary Table 4).

When xij was binary and OLS regression was applied, 
interval coverage and rates of Type I error varied little 
around the nominal values of 95 and 5%, and only for 
ICC values higher than 0.01. Overall coverage rates were 
above the nominal rate for higher ICCs and decreased 
with greater dispersion of the prevalence of xij across 
clusters, and with lower overall prevalence of the xij . A 
similar observation of small variation of interval cover-
age around 95% for higher ICC values has been reported 
previously [26]. Type I error when xij was binary and its 
overall prevalence low, varied around 5% with values 
below 5% for small dispersion of prevalence of xij across 
clusters, and above 5% for large dispersion. For high 
overall prevalence of xij (up to 0.4), Type I error rates fell 
below 5%. In accordance with these findings, Galbraith 
et  al. [27] have shown that cluster-unadjusted models 
resulted in relatively conservative Type I error. Also, in 
a context of individually randomised trials, Kahan et  al. 
[28] have shown that Type I error increased with increas-
ing ICC and increasing difference in the probability of 
assignment of patients to treatment arms.

It has been widely stated that when data are clustered, 
effects estimated by OLS regression are unbiased [22, 
26, 29–31], at least where cluster size is uninformative, 
and there is no confounding by cluster [32]. Our results 
confirm that for data of the type simulated (in which the 
clusters were all of equal size and effect sizes did not vary 
by cluster), coefficients from both OLS and RI regres-
sion were on average very similar to the “true” value that 
had been used in generating simulated samples. Previ-
ous studies based on simulated data have shown similar 
results [22, 25, 26, 33]. However, for individual simulated 
samples, effect estimates often differed from the “true” 
value, with larger deviations for a continuous explanatory 
variable when the OLS model was fitted. For continuous 
xij , the potential magnitude of deviations from the “true” 
value depended on the extent to which the outcome 
variable was clustered. For an ICC of 0.3, OLS estimates 
of effect differed by up to 10% from the “true” value 
(Fig. 2A). In addition, when xij was continuous, the error 
in OLS estimates of the regression coefficient was larg-
est when the between-cluster dispersion of xij was similar 
to that within-clusters (the within-cluster SD of xij hav-
ing been arbitrarily set to 1 in the simulation algorithm). 
When xij was binary, the deviation of OLS estimates from 
the “true” value increased as the dispersion of preva-
lence rates across clusters increased, and when the tar-
get prevalence rate across all clusters was lower (< 10%) 
(Supplementary Table 2). These errors in effect estimates 
indicate that in an individual study, failure of regression 
analysis to account for clustering of observations could 
result in substantially higher or lower estimates of effect 
than those derived from multilevel analysis. This has 
been illustrated in numerous published papers of real 
data, which have shown that estimates from the two ana-
lytical methods can differ to a lesser or greater extent [10, 
15, 18, 20, 34]. However, in those publications, little or no 
information was provided to establish how the observed 
error related to clustering of the explanatory variable.

The ratio of the SE of a regression coefficient esti-
mated from the RI model to that derived when an 
OLS model is applied to the same sample, provides an 
inverse measure of their relative precision. Given that 
effects estimated from both RI and OLS models were 
unbiased, and that coverage of confidence intervals 
derived from RI models was consistently close to the 
nominal value of 95%, deviation of the measure from 
unity is likely to reflect bias in SEs estimated by OLS 
regression. It is widely stated that regression coef-
ficients are spuriously precise when clustering is not 
taken into account in regression models, although 
authors have often failed to specify the conditions 
under which this applies [20, 33, 35–38]. Other authors 
have pointed out that when xij is identical within each 
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cluster (as, for example, in a cluster-randomised trial), 
and a cluster-unadjusted approach is followed, SEs tend 
to be spuriously low, and that the opposite occurs when 
xij varies within clusters [25, 28, 39, 40]. Higher SEs 
from OLS models for effects of explanatory variables 
that varied within clusters have been demonstrated in 
analyses of both real and simulated data [34, 41]. Oth-
ers, however, have reported contradictory results in 
which SEs of effect estimates from OLS regression 
where xij varied within clusters were very similar to, or 
lower than, those from a multi-level model [15–18, 42]. 
It should be noted that the dichotomy between cluster- 
and individual-level variables is not clear-cut. There 
can be varying degrees of clustering in xij , the extremes 
occurring where its mean value is the same for all clus-
ters (i.e. it is completely unclustered), and where it does 
not vary at all within clusters (i.e. it is a cluster-specific 
or cluster-constant variable). However, in observa-
tional studies, an explanatory variable can lie anywhere 
between these extremes. In recognition of this, an early 
paper focused on the level of clustering in xij as a driver 
for the expected bias in the precision of effect estimates 
[29], rather than making a dichotomous distinction 
between cluster-constant and cluster-varying xij . The 
authors reported that as clustering in xij decreases, the 
bias in SEs from a cluster-unadjusted model is expected 
to increase, and vice versa. Taking into consideration 
clustering in xij as well as in the outcome variable, a 
later study using simulated data showed that for a given 
level of clustering in the outcome variable, increasing 
the clustering of the explanatory variable caused the 
ratio of estimated SEs ( SERI

β /SEOLS
β  ) to increase from 

values < 1 to values ≈ 1 [43]. Our results for continu-
ous explanatory variables differ slightly from this, with 
ratios of SEs ( SERI

β /SEOLS
β  ) moving from values < 1 to 

values > 1, as clustering of the explanatory variable, 
expressed as dispersion of 

−
xj across clusters, increased. 

This accords with the finding that OLS regression will 
have spuriously high precision when it is used to ana-
lyse cluster-randomised trials, and spuriously low 
precision when it is applied to data from individually 
randomised trials [28, 39, 40].

Bias in the precision of effect estimates for binary xij 
when clustering is ignored has received only limited 
attention in the published literature. Several reported 
studies have compared standard and multi-level mod-
els, using real data with continuous and binary xij that 
varied within clusters [15, 18]. Where xij was binary, 
SEs derived from the OLS model were mostly larger 
than those from the multi-level model. The same con-
clusion was drawn from a study using simulated data 
[26]. However, neither of the studies using real data has 
explored the level of bias in relation to variation in the 

prevalence of the binary xij , and the study of simulated 
data assumed constant prevalence of xij in all clusters.

In our analyses, SEs from the multi-level model were 
generally lower than those from the OLS model, irre-
spective of the dispersion of prevalence of xij across 
clusters and its overall prevalence. This contrasted with 
findings when xij was continuous, where ratios of SEs 
( SERI

β /SEOLS
β  ) increased from < 1 to > 1, as the disper-

sion of 
−
xj across clusters increased. The explanation 

for the discrepancy may lie in the ranges of disper-
sion of 

−
xj across clusters that were explored for con-

tinuous as compared with binary xij . For a continuous 
explanatory variable xij , we allowed wide dispersion 
of 

−
xj across clusters, while for binary xij the disper-

sion of 
−
xj across clusters was constrained to low levels 

in order to achieve overall prevalence rates for xij that 
were close to the target values (this applied particularly 
where the target prevalence was 5%). The ratio of SEs 
( SERI

β /SEOLS
β  ) for continuous xij only clearly exceeded 

one for dispersions of 
−
xj across clusters greater than 

those that were examined for binary xij.
The focus of this paper was on the association between 

a continuous outcome and an explanatory variable xij 
that varied within clusters. We showed that when xij was 
continuous, and most of its variation was within rather 
than between clusters, the cluster-unadjusted OLS model 
gave larger SEs for the regression coefficient than multi-
level modelling. This accords with reports that ignoring 
clustering can lead to spuriously high SEs when xij varies 
within clusters. The reverse occurred when most of the 
dispersion of xij was between rather than within clusters, 
a situation approaching that of a cluster-specific explana-
tory variable. We additionally showed that when xij was 
binary, ignoring clustering in statistical modelling in 
most cases resulted in higher SEs for the estimated effect 
than those derived from the random-intercept model, 
possibly reflecting low simulated dispersion of the prev-
alence of xij across clusters. The SEs differed more for 
higher ICCs but not with the overall prevalence of xij , 
nor with the dispersion of its prevalence across clusters 
(Fig. 3B). Unlike SEs, the point estimates were unbiased 
for both continuous or binary xij (Fig. 2A and B).

Thus, our results support the use of multi-level model-
ling to account for clustering effects in linear regression 
analyses of data that are hierarchically structured with 
characteristics similar to those that we explored (large 
sample size, similarly sized clusters, and no variation in 
the effects of explanatory variables by cluster), especially 
where ICCs might exceed 0.01. Failure to do so is likely 
to result in incorrect estimates of effect (either too high 
or too low) with spuriously high or low precision accord-
ing to the level of clustering of explanatory variables, 
and thus may lead to incorrect inferences. The errors 
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in estimates of effect of a continuous xij will be smaller 
when most of its dispersion is between rather than within 
clusters – i.e. the variable comes closer to being cluster-
specific. When xij is binary, smaller errors in the effect 
estimates occur when its overall prevalence p across clus-
ters is closer to 50%, i.e. when the variance of the binary 
variable is at its maximum ( p(1− p) = 25%).

Additionally, we have identified circumstances in 
which a simpler analytical approach that does not 
adjust for clustering is more likely to mislead statistical 
inference, i.e. in which rates of Type I error and inter-
val coverage deviate materially from the nominal values 
of 5 and 95% respectively. These occur when xij is con-
tinuous, and ICC levels are greater than 0.01. It is then 
that Type I error rates are higher than 10% and interval 
coverage rates are lower than 80%. Statistical inference 
when a standard regression model is fitted is less likely 
to be problematic when xij is binary, but again Type 
I error rates can sometimes be greater than 10%, and 
corresponding interval coverage rates lower than 90%. 
This occurs when ICC is high, the overall prevalence of 
xij is low (approximately 5%), and the dispersion of the 
cluster-specific prevalence of xij is large. In all circum-
stances in which the ICC is small, clustering is mini-
mal and there is little difference between RI and OLS 
regression.
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