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In Positron Emission Tomography (PET), spectral analysis (SA) allows the quantification of dynamic data by relating the
radioactivity measured by the scanner in time to the underlying physiological processes of the system under investigation. Among
the different approaches for the quantification of PET data, SA is based on the linear solution of the Laplace transform inversion
whereas themeasured arterial and tissue time-activity curves of a radiotracer are used to calculate the input response function of the
tissue. In the recent years SA has been used with a large number of PET tracers in brain and nonbrain applications, demonstrating
that it is a very flexible and robust method for PET data analysis. Differently from themost common PET quantification approaches
that adopt standard nonlinear estimation of compartmental models or some linear simplifications, SA can be applied without
defining any specificmodel configuration and has demonstrated very good sensitivity to the underlying kinetics.This characteristic
makes it useful as an investigative tool especially for the analysis of novel PET tracers.Thepurpose of this work is to offer an overview
of SA, to discuss advantages and limitations of the methodology, and to inform about its applications in the PET field.

1. Introduction

Positron Emission Tomography (PET) is a nuclear medicine
technique for in vivo functional imaging. The system detects
pairs of gamma rays emitted at 511 keV after annihilation
of a positron-emitting radionuclide (tracer), which is intro-
duced into the body on a biologically active molecule. Thus,
depending on the characteristics of the injected tracer, it is
possible to derive a large variety of physiological parameters
such as blood flow, protein density, enzymatic activity, and
metabolism. In order to relate the time-evolving tracer
biodistribution to the underlying functional process of inter-
est, the application of mathematical models is necessary.This
process is called quantification (from Latin: quantus “how
much” + facere “to make”) and it can be seen as an input/
output transformation, where the inputs are represented by
the PET measurements acquired during the study (i.e., the
concentration of the tracer in the tissues) and the ancillary
measurements of radioactive concentration in plasma (e.g.,
the plasma input function), while the output is represented
by a set of parameter estimates describing the tracer kinetics.

For the numerical quantification of PET data several
solutions are available [1]; methods range from the calcula-
tion of the simple concentration of the tracer in a region of
interest up to the complete description of the exchange of the
radioactive molecules in the tissue of interest through a com-
partmental model.The choice of the quantificationmethod is
strictly dependent on the purpose of the PET study and on the
experimental settings. For example, in PET clinical routine
the experimental protocol is generally static, that is, made
by a single-frame acquisition at a given time after the tracer
administration. This allows easier logistics and maximizes
patient throughput. In this setting PET quantification is
routinely performed by using standardized uptake value
(SUV) [2], a semiquantitative index that is simply computed
as the raw image counts normalized by the injected dose and
some anthropometric characteristics of the subject (generally
the body weight or the body surface area) [3, 4]. SUV is char-
acterized by general applicability but its simplicity may be a
limitation if the normalized counts are not associatedwith the
underlying kinetic of interest [5–7].
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Figure 1: Quantification in Positron Emission Tomography. The
figure shows a schematic summary of the major PET quantification
methods organized by considering for each approach the informa-
tion returned as function of the application requirements. Clinical
and research PET imaging studies are separately reported. Within
the diagram a diagonal distribution of the methodologies is clearly
evident, indicating that more information is obtainable only at the
cost of more modelling assumptions.

Differently from the clinic, PET experiments in the re-
search setting may require the full dynamic acquisition of
multiple volumes over time. This dynamic experimental
procedure is necessary to characterize the generally unknown
kinetics of the radiotracer in the tissue. Depending on the
setting, different analysis approaches are available (Figure 1).
The simplest quantification approach for dynamic PET quan-
tification is represented by Logan [8] and Patlak plot [9]
graphical methods. Both of them have been widely used for
PET quantification, because of their simplicity and the min-
imal assumptions required for their application. Graphical
methods exploit the status of equilibrium that is reached
in the system after a certain amount of time from tracer
injection, requiring only the information on the reversibil-
ity or irreversibility of the tracer kinetics; this leads to a
graphical transformation of the data where the parameter
of interest is obtained by some form of linear regression.
They are easy to implement and, given their linearity, they
have been routinely used also for the generation of voxel-
by-voxel parametric maps as they are computationally fast
and warrant convergence to solution. Nevertheless, graphical
plots are affected by several limitations. Both methods allow
the estimation of a unique macroparameter (i.e., the tracer
net trapping uptake for Patlak and the tracer distribution
volume for Logan) but they cannot characterize the whole
kinetic profile as they rely on assumptions on the time the
equilibrium is reached. In addition they do not account for
additional kinetic components such as the vascular signal,
for example, the signal generated by the tracer radioactivity

in blood cells or plasma or by the radiotracer bound to the
vascular walls. Moreover, the linearity of these methods is
achieved by transformation of the data that may distort their
noise properties and introduce biases, particularly at the large
noise levels typical of small resolutions (e.g., small anatomical
regions or pixels) [10].

The standard approach for the quantification of dynamic
PET studies is represented by compartmental modelling [11,
12]. This approach is based on a first-order differential de-
scription of the main physiological processes in which the
tracer is involved. Compartmental modelling (CM) requires
the full mathematical description of the system under inves-
tigation and a complete definition of the model structure,
including the type and direction of the tracer exchanges
between compartments. CM is the only method that can
provide a detailed understanding of the physiological system:
hence it is usually adopted as a tool for the investigation
of novel tracers only when the compartmental structure de-
scribing the underlying system has been characterized.
Notably, compartmental models for dynamic PET studies are
generally based on a linear time-invariant (LTI) description
of the system [13]. Therefore the output of these models can
always be represented as the convolution product between the
input of the system and its impulse response function (IRF).
This condition is always true, irrespective of any nonlinearity
between the model output and its parameters.

An alternative approach for the quantification of dynamic
PET data is the so-called “spectral analysis” (SA) [14]. The
name SA comes from the fact that the IRF of the compart-
mental models used in PET can be resolved as the analytical
sum of exponentials. Hence, the numerical solution of the
SA requires the use of the tissue data and the input data
to deconvolve the IRF. From the perspective of the theory
of signal processing, this equates to finding the poles of
the Laplace transform of the IRF. These poles can then be
represented as a spectrum of kinetic components that can be
attributed to the tracer exchanges between blood and tissues
as well as within the tissues. Compared to graphical methods
and compartmental modelling approaches, SA represents a
good trade-off between the two (Figure 1). For its practical
use SA requires the fulfilment of some assumptions about the
underlying biological system as it is applicable only to single-
input, noncyclic systems [15]; however the large majority of
compartmental models used in PET fit these assumptions.

Since its original introduction in 1993, many method-
ological developments have been proposed to improve the
method precision and robustness to the noise. To date, SA
along with its filtered versions has been widely used in a
large variety of testing conditions, resulting in more than 300
peer-review publications with both preclinical and human
data (the literature review included all the papers citing
SA original work [14] found in SCOPUS database plus all
the papers returned by PUBMED using the research query
“Spectral Analysis” AND “PET”; from an initial amount of
393 peer-review papers only 305 effectively referred to SA as
quantification method for PET data (date of analysis: 4th
August 2016)). This review aims to offer a complete overview
of the SA method in PET, from its original formulation
up to the subsequent filtered solutions. Applications of SA
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for kinetic modelling, parametric imaging, tracer model
development, and analysis of tissue heterogeneity will be also
described, including a summary of the available software for
SA implementation.

2. Modelling Dynamic PET Data

2.1. Compartmental Modelling. CM is the standard approach
to quantify tracer kinetic experiments applied to biological
systems [16, 17]. At the basis of CM there are (1) the concept
of compartment (“compartment is an amount of material that
acts as though it is well-mixed and kinetically homogeneous”
[17]) and (2) the mass-balance equation describing the
exchanges of tracer between compartments.

CM can be generally described as follows:

𝑑𝑋 (𝑡)
𝑑𝑡 = 𝐴 (𝑝) ⋅ 𝑋 (𝑡) + 𝐵 (𝑝) ⋅ 𝑈 (𝑡) ,
𝑌 (𝑡) = 𝐶 (𝑝) ⋅ 𝑋 (𝑡) ,

with 𝑍 (𝑡𝑖) = 𝑌 (𝑡𝑖) + 𝑒 (𝑡𝑖) , 𝑖 = 1, 2, . . . , 𝑁,
(1)

where 𝑝 is the vector of unknown parameters, 𝑋(𝑡) is the
matrix of system state variables, 𝑈(𝑡) is the input of the
system,𝑌(𝑡) is the output of the system,𝐴(𝑝), 𝐵(𝑝), and𝐶(𝑝)
are the multiplicative matrixes dependent on 𝑝 parameters,
𝑍(𝑡𝑖) is the measured output sampled at the time 𝑡𝑖, 𝑁 is the
number of measures, and 𝑒(𝑡𝑖) is the measurement error.

Since (1) provides LTI description of the system it can be
always be translated into

𝑌 (𝑡) = 𝑈 (𝑡) ⊗ IRF (𝑡) , (2)

where IRF(𝑡) is the impulse response function of the system,
that is, the output of the system in case of unitary impulse
input.

CM in PET does notmake any exception from the general
theory, preserving the propriety of LTI models [13]. Specifi-
cally, in dynamic PET𝑈(𝑡) corresponds to the arterial plasma
tracer radioactivity (indicated as 𝐶𝑝(𝑡)), 𝑌(𝑡) corresponds
to the tissue model-predicted radioactivity (indicated as
𝐶tiss(𝑡)), 𝑍(𝑡) corresponds to the PET scan measures, and
𝑋(𝑡) represents the concentration of the radioligand in tissue
compartments. For further information about PET compart-
mental modelling the interested reader is referred to the
following works [18, 19].

2.2. Spectral Analysis. In SA the tissue tracer activity in a
given volume of observation at time 𝑡, 𝐶tiss(𝑡), is modelled as
a convolution of the plasma time-activity curve, 𝐶𝑝(𝑡), with
the sum of𝑀 + 1 distinct decreasing exponential terms as

𝐶tiss (𝑡) =
𝑀

∑
𝑗=0

𝐶𝑝 (𝑡) ⊗ 𝛼𝑗 ⋅ 𝑒−𝛽𝑗𝑡, (3)

where 𝛼𝑗 and 𝛽𝑗 (𝛽1 < 𝛽2 < ⋅ ⋅ ⋅ < 𝛽𝑀) are assumed to
be real-valued and nonnegative. This is equivalent to assume
IRF(𝑡) equal to ∑𝑀𝑗=0 𝛼𝑗𝑒−𝛽𝑗𝑡. 𝑀 + 1 represents the maximum

number of terms to be included in the model and this is, in
general, set to a large set (generally between 100 and 1000).
The values of 𝛽𝑗 are predetermined and fixed in order to
cover an appropriate spectral range from the slowest possible
event of the tracer in the tissue up to a value appropriate to
transient phenomena (e.g., the passage of activity through
the tissue vasculature). The values of 𝛼𝑗 are estimated from
the blood and tissue time-activity curves by a nonnegative
least squares (NNLS) procedure. In practice, only a few
components with 𝛼𝑗 > 0 are detected, originating what is
called the kinetic spectrum of the tracer in the tissues
(Figure 2). Notably, the nonnegativity constraint of spectral
coefficients and components derives from the assumption
that SA is modelling a first-order compartmental systemwith
a single arterial input [14].

The estimated spectral components assume different
meanings depending on the position of the beta grid in which
they are located. For example, the terms for lim𝛽𝑗 → ∞ (i.e.,
componentswith𝛽𝑗 very large) become proportional to𝐶𝑝(𝑡)
and can be considered as “high-frequency” components. In
the same way the corresponding term with 𝛽𝑗 = 0, or near
zero, becomes proportional to ∫𝐶𝑝(𝑡) and can be viewed
as the “low-frequency” component, that is, accounting for
slower kinetics and limiting to its irreversible trapping in the
tissue. Components with intermediate values of 𝛽𝑗 (“equi-
librating components”) reflect tissue compartments that
exchange material directly or indirectly with the plasma with
their number corresponding to the number of identifiable
tissue compartments within the volume of interest. In light of
these particular features, it is very common to define the SA
model equation explicitly showing trapping in the following
way:

𝐶tiss (𝑡) = 𝛼0 ⋅ ∫
𝑡

0
𝐶𝑝 (𝜏) 𝑑𝜏 +

𝑀

∑
𝑗=1

𝐶𝑝 (𝑡) ⊗ 𝛼𝑗 ⋅ 𝑒−𝛽𝑗𝑡, (4)

where 𝛽𝑗 > 0, 𝑗 = 1, 2, . . . ,𝑀.

2.3. Derivation of the Major Parameters of Interest. Themain
purpose of SA application to dynamic PET data is the
quantitative characterization of the tracer kinetics within the
target tissues. This is possible by linking the estimated spec-
tral components, that is, the estimated 𝛼𝑗 and 𝛽𝑗, with
macroparameters of interest that do not depend on a spe-
cific model representation. As demonstrated by Gunn and
colleagues [13], when a particular system meets the condi-
tions to be modelled with spectral analysis (the SA appli-
cability is limited to those systems in which the state tran-
sition matrix is negative semidefinite; this condition is met
by all single-input/single-output noncyclic systems (for full
mathematical derivation please refer to Schmidt [15])) the
unique identifiability of some macroparameters of interest
is guaranteed. These parameters are the influx rate constant
(𝐾1, mL/cm3/min), the net uptake of the tracer in the
tissues (𝐾𝑖, mL/cm3/min), and the volume of distribution
(𝑉𝑇, mL/cm3) (the measurement units here reported for
𝐾𝑖, 𝐾1, and 𝑉𝑇 follow the guidelines of PET modeller
consensus [20]). The last two elements cannot be estimated



4 Computational and Mathematical Methods in Medicine

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.10

0.15

0.20

0.25

𝛼

𝛽

(a) Kinetic spectrum

0

5

10

15

20

25

Ac
tiv

ity
 (k

Bq
/m

L)

10 20 30 40 50 60 70 80 90 0 
Time (mins)

C1

C0 C2

C0 + C1 + C2

(b) SA data description

Figure 2: Example of spectral analysis quantification. (a) Representative kinetic spectrum: out of the three spectral components reported,
one corresponds to the tracer trapping (red) while the remaining ones refer to two equilibrating components at different frequencies (green
and blue). (b) In this example the measured tracer activity (open circles) is described by the sum of the time-activity curves of each individual
component of the spectrum (red, green, and blue dashed lines) resulting in the SA data model prediction (grey line). It is important to note
that different positions of the components in the spectrum correspond to different shapes of time-activity curves, with the wash-out being
slower for low-frequency spectral components and faster for the high-frequency ones.

simultaneously, because they depend on the irreversibility or
reversibility of the tracer kinetic, respectively. In addition to
these parameters of interest, the estimated spectrum provides
information also on the number of the system components
necessary to describe the data and on their type (i.e.,
reversible/equilibrating or irreversible).This characteristic of
SA can be very useful when new PET tracers are investigated
for the first time. The relationship between the parameter
values and estimated spectrum is as follows. The transport of
tracer from plasma to tissue, 𝐾1, coincides with the sum of
components’ amplitudes; that is,

𝐾1 =
𝑀

∑
𝑗=0

𝛼𝑗. (5)

In case of irreversible tracers,𝐾𝑖 can be derived by the limit of
the SA IRF(𝑡) for 𝑡 → ∞, which is also equal to the amplitude
of the estimated component corresponding to 𝛽𝑗 = 0:

𝐾𝑖 = lim
𝑡→∞

IRF (𝑡) = lim
𝑡→∞

𝑀

∑
𝑗=0

[𝛼𝑗 ⋅ 𝑒−𝛽𝑗𝑡] = 𝛼0. (6)

In case of reversible tracers, instead, 𝑉𝑇 can be computed
from the integral of IRF(𝑡) as

𝑉𝑇 = ∫
∞

0
IRF (𝜏) 𝑑𝜏 =

𝑀

∑
𝑗=1

𝛼𝑗
𝛽𝑗 . (7)

In addition to these parameters, if themeasurement equa-
tion for the total radioactivity measured by the PET scanner

takes into account the tracer contribution in both blood and
tissues, it is also possible to derive the blood volume (𝑉𝑏,
unitless). Generally, this corresponds to the case in which

𝐶measured (𝑡) = (1 − 𝑉𝑏) ⋅ 𝐶tiss (𝑡) + 𝑉𝑏 ⋅ 𝐶𝑏 (𝑡) , (8)

where 𝐶measured(𝑡) represents the total activity measured by
the scanner within a specified volume of observation, 𝐶tiss(𝑡)
represents the tissue kinetic activity, and 𝐶𝑏(𝑡) represents the
whole blood tracer activity.

From the analysis of the SA estimated spectrum, however,
it is not possible to compute the microparameters of the
system, unless a full characterization of the compartmental
model describing the system is known in advance. In fact,
from the indistinguishability theorem “any two plasma input
models, either reversible or irreversible, with a total of N
tissue compartments are indistinguishable” one can discern
that different compartmental arrangements may return the
same kinetic spectrum [13].The lack of a unique bidirectional
relationship between SA spectra and compartmental models
prevents the identification of a unique compartmental model
given a specific spectrum and thus a unique set of system
microparameters. Note however that this limitation pertains
to CM per se and not to SA. On the contrary, given a
compartmental model which fulfils the SA requirements (i.e.,
noncyclic and with single arterial input), there is a fully
described relationship between the spectral components and
the model configuration (Figure 3). In summary, SA returns
multiple kinetic parameters (not only𝐾𝑖 or 𝑉𝑇), accounts for
all tissue components including the vascular tracer presence,
and returns the model fit to the data.
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Figure 3: Compartmental models and correspondent kinetic spectra. Two-tissue model with trapping (a) and standard two-tissue compart-
mental model (b) are reported as example of models for tracers with irreversible and reversible kinetics, respectively.

Table 1: Overview of Spectral Analysis methods.

Full Name Exponential Spectral
Analysis

Rank-shaping spectral
analysis

Spectral analysis with
iterative filter

Nonlinear spectral
analysis

Description
Short name ESA RS SAIF NLSA
Type of tracer kinetics Any Reversible tracers only Irreversible tracers only Any
Main parameters of interest 𝑉𝑇/𝐾𝑖, 𝑉𝑏, 𝐾1 𝑉𝑇 𝐾𝑖, 𝑉𝑏, 𝐾1 𝑉𝑇/𝐾𝑖, 𝑉𝑏, 𝐾1
Required settings Grid of components Grid of components SNR Grid of components Filter

passband None

Outputs
Data fit ✓ ✓ ✓ ✓
Kinetic spectrum ✓ — ✓ ✓
ROI analysis ✓ — ✓ ✓
VOXEL analysis — ✓ ✓ —
𝑉𝑇: distribution volume;𝐾𝑖: trapping rate constant; 𝑉𝑏: blood volume;𝐾1: weighted average influx rate constant; SNR: signal-to-noise ratio.

3. Method Implementation

3.1. Exponential Spectral Analysis (ESA). In the first publica-
tion on SA, Cunningham and Jones proposed a linear estima-
tor to solve (1), defining what is also known as Exponential
Spectral Analysis (ESA, Table 1) [14]. The idea is to fix the
possible values of 𝛽𝑗 covering a biological plausible spectral
range of 𝑀 + 1 elements, making in this way the problem
linear in the parameters. For the studies involving short lived
positron-emitting isotopes this range needs to extend to the
slowest possible event of the tracer in the tissue up to a
value appropriate to transient phenomena (e.g., the passage of

activity through the tissue vasculature) [15]. In order to obtain
a sparse and unique solution, that is, only a few components
with 𝛼𝑗 > 0 detected, the values of 𝛼𝑗 are estimated from the
blood and tissue time-activity curves by NNLS procedure,
originating what is called the kinetic spectrum of the tracer
in the tissues.

The factors determining which components are identified
are mainly the distribution of betas and the weighting ap-
proach implemented in the estimator [21]. The grid of 𝛽𝑗 is
generally defined as a logarithmic distribution [21, 22] (see
also [23] for some interesting considerations about the spac-
ing of the grid). As general rule (derived from the control
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theory for linear systems) the lower limit of the distribution is
defined as 𝛽1 = 1/(3 ⋅𝑇end), where 𝑇end is the end time of PET
study, and the upper limit is defined as 𝛽𝑀 = 3/𝑇in, where 𝑇in
is the duration of the first PET frame of the study. However,
due to the discrete nature of the component grid, the optimal
�̂�𝑗 solutions leading to the best data fitting might not neces-
sarily be available. When an adequate approximation of the
optimal �̂�𝑗 is not on the grid, the algorithm chooses instead
two consecutive values of betas that bracket the optimal value.
This effect is called “doubling” and can be solved by replacing
each estimated pair of components with the average of the
two components weighted by their spectral coefficients [24].

Consistently with other PET quantification methods, SA
weights are defined as the inverse of the variance of the PET
measurement error, which is assumed to be additive and
uncorrelated from a Gaussian distribution with zero mean.

The spectral analysis model has general applicability;
however its functional components 𝐶𝑝(𝑡)⊗(−𝛽𝑗𝑡) represent an
overcomplete basis of the space of interest (in functional anal-
ysis a common way to represent real-valued signals is with a
linear superposition of basis functions; when the number of
basis vectors is greater than the dimensionality of the signals
to be represented, the basis is said to be overcomplete; under
an overcomplete basis, the decomposition of a signal is not
unique [25]) [26]. This results in two main problems: first of
all the error properties of the estimates as well as the influence
of the error on the estimated components are difficult to
estimate and control [27]; secondly to identify a unique and
sparse solution the coefficients 𝛼𝑗 must be constrained to be
positive. All the compartmental models with plasma or blood
input functions and noncyclic structures result in positive
𝛼𝑗 values [15], allowing the applicability of ESA to most of
the kinetic models used with PET; however this nonnegative
constrain does not apply necessarily when the input used is
not plasma but, for example, the TAC of a reference region
with no or negligible amount of tracer specific binding.When
a reference region is present in the PET field of view, it
can be used as proxy of arterial input function to represent
tracer delivery to the tissues [28]. Unfortunately, IRF(𝑡) for
reference region models may result in both positive and
negative 𝛼𝑗 and therefore SA is no longer applicable [13].
Thus alternative regularization strategies need to be used to
identify a unique solution. Examples of these approaches
are represented by the Monte Carlo optimization proposed
by Maltz [29] or by the rank-shaping regularization by
Turkheimer et al. [30].

3.2. Filtered SA Solutions. ESA is well known to be sensitive
to the noise in the data [21, 23, 27, 31], with the bias being
highly dependent on the level of noise present, making its
application in general preferable for high SNR data like in
region level analysis. To improve its robustness to the noise,
over the years different alternatives have been proposed.

The first attempt to regularize the solution of (1) was done
by including penalty functions on the NNLS algorithm [14].
However, the definition of an adequate penalty function to
use in practice has proved to be difficult. This concept was
further developed by Gunn and colleagues in 2002 and it

originated what are now called basis pursuit methods [31,
32]. In 1994, Turkheimer and colleagues proposed a high-
pass filter for equilibrating components, with the aim of
improving estimates of 𝛼0 and thus determining a more
accurate and precise estimate of regional cerebral metabolic
rate for glucose in PET studies [21]. Even though the use of
this filter has been shown to produce better estimates of 𝛼0
compared to the standard ESA, it represents an incomplete
solution. In particular this method does not account for
the noise-derived components (also known as “phantom”
components) at intermediate and high frequency [24], which,
as well as the low-frequency components, contribute to the
description of tissue tracer kinetics.

In 1993 and 1997, Takodoro et al. [33, 34] proposed using
the SA impulse response function as an alternative quantita-
tive metric; IRF(𝑡) is indeed more robust to the noise in the
data but its use is limited by the lack of a clear relationship
with the underlying biology. In 1998 two different alternatives
were proposed to account for SA noise properties. First of
all, a bootstrap approach based on residual resampling was
implemented to simulate the effect of the noise on the SA
spectrum and to correct for possible bias [27]. The resulting
bootstrapped spectrum was shown to be a good estimator
of the average spectrum that would have been obtained if
repeated samples of the measured data were available. How-
ever, because the procedure is computationally intensive, it
may be inapplicable in the case of very large datasets such as
in voxel-wise PET analysis. In the same year, a new procedure
for the suppression of noise artefacts on the estimated SA
spectrumwas proposed by Cunningham and colleagues [23]:
standard statistical tests and information criteriawere applied
to subselect the true estimated components from a given SA
spectrum, removing those related to the noise in the data.

Parallel to the developing of new SA improved versions,
some efforts were done to denoise the PET images, exploiting
the idea that quantification can be improved by increasing
the SNR of the analysed data. Several solutions have been
proposed in literature, but, specific to SA methodology, the
most significant attempts were represented by the use of
wavelets [35, 36] and by the functional smoothing approach
[37]. Despite their great potential, both of these approaches
have had limited impact in the PET modelling community.

At the present time, the most successful filtered versions
of the SA method are represented by rank shaping (RS)
[30] and spectral analysis with iterative filtering (SAIF) [24],
available for the parameter estimation of low SNR data
(Table 1). RS is a Bayesian development of standard SA,
optimized for the estimation of the volume of distribution for
reversible tracers, which is based on the same principles of
SA but without requiring the nonnegative constraint of the
spectral components. To overcome the high sensitivity of the
unconstrained SA to the noise in the data, RS implements
a Kalman filter of the estimated kinetic spectrum providing
reliable estimates of 𝑉𝑇 (for the derivation of this method,
the interested reader is referred to the original reference
by Turkheimer and colleagues [30]). Unlike other SA-based
methods, RS can be applied with an arterial input function as
well as with a reference region. As for ESA, RS requires the
definition of the grid of components. In addition, RS requires
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Figure 4: Sensitivity of SA filter methods to filter setting.The figure shows the performance of SAIF when different passband bounds are used
to fit a particular dataset, corresponding to a simulated spectrum with two equilibrating components and one trapping. Both fit performance
(indicated by weighted residual sum of squares, WRSS) and parameter estimates bias (tracer trapping, 𝐾𝑖) can be heavily affected by filter
setting. It is important to note that the filter bounds returning the lowest bias do not match those returning the best data fit (black arrows).
This indicates that the filter setting cannot be determined only on the basis of data fit quality.

the SNR interval bound values of the Kalman filter to be set,
which is based on a signal-to-noise (SNR) estimate of the data
to be processed.

SAIF is the complementary approach for low SNR PET
data quantification of irreversible tracers optimized for the
estimation of 𝐾𝑖 and 𝐾1 [24]. SAIF implements a passband
filter [𝛽𝐿, 𝛽𝑈] to separate trapping and blood components
from the equilibrating ones: all 𝛽𝑗 estimates within the filter
passband are preserved, while those outside the filter are
removed from the spectrum. Because the removal of these
components affects the blood and trapping estimates, both
estimation and filtering steps are repeated until stabilization
of the weighted residual sum of squares (for the derivation
of the method the interested reader is refer to the original
reference by Veronese and colleagues [24]). As ESA, in
addition to the estimated macroparameters 𝐾𝑖, 𝑉𝑏 and 𝐾1,
SAIF returns also the model fit and the kinetic spectrum.
As RS, the method can be applied both at the region and at
the voxel level and it requires the definition of the grid of
components as well as the filter setting.This last choice is not
trivial, since themethod performances are heavily affected by
its definition (Figure 4).

4. Applications

4.1. Parametric Imaging. Parametric mapping with PET is
possible only when the quantification is performed for each
voxel of the image. However, due to the low SNR of the voxel
kinetics and the very high number of voxels to be analysed,
PET parametric imaging can be very challenging. Voxel-wise
analysis requires large computational time and convergence
to a unique solution is not always guaranteed for all the voxels.

Among the different alternatives that have been intro-
duced in literature (for an overview see [38–41]), spectral-
based methods have shown to be efficient and precise solu-
tions for parametric imaging both in brain and in nonbrain

tissue (Figure 5). In general better performance can be
achieved with SA filtered solutions (RS or SAIF), which have
shown superior robustness to the measurement noise typical
of voxel-wise analysis [42–44]. Notably, SAmodel can be em-
bedded in the PET image reconstruction allowing tracer ki-
netic quantification directly from the PET sinogram [45, 46].

4.2. Model Development. In addition to tissue kinetic quan-
tification, SA has been used as an investigative tool to model
newly introduced PET tracers or when biological systems
have been explored for the first time [47–50]. In this context,
SA spectra offer the possibility of determining the num-
ber of compartments present in a system as well as their
types, distinguishing between equilibrating components and
irreversible tracer uptake. However, it remains impossible
to determine an unequivocal correspondence between the
spectrum and its equivalent model (indistinguishability the-
orem, [13]). Thus, for a particular estimated spectrum it is
only possible to associate a class of equivalent compartmental
representations which have in common the same number of
compartments [1]. Then, using the physiological knowledge
of the system, it is possible to choose from these alternatives
the optimal compartmental configuration for the description
of the kinetics of the tracer under study. This procedure
is theoretically always applicable but may not be advisable
for real practice. Often the presence of noise in the data
(especially for data with low SNR) leads to a biased number
of SA estimated components (generally overestimated) and
hence to an erroneous class of model configurations [49].

A better approach to follow is simply to estimate the num-
ber of exponentials necessary to fit the data by defining a
set of model alternatives of increasing order, identifying each
of them and selecting the one that best describes the data.
The standard model parsimony criteria techniques (Akaike
or Bayesian information criterion) can be used as deci-
sion indexes. This approach, also called nonlinear spectral
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Figure 5: Parametric imaging with SA. (a) 𝐾𝑖 parametric maps
obtained with ESA and SAIF applied to [18F]FDG PET data. Results
refer to the midcalf area in one representative subject, reported in
both axial and coronal views. (b)𝑉𝑇 parametric maps obtained with
ESA and a modified version of SAIF applied to [11C]SCH442416
brain PET data. Results refer to a representative transaxial slice
of a healthy volunteer. 𝑉𝑇 map obtained from compartmental
quantification is also reported for comparative purposes. (c) Rate
of cerebral protein synthesis (rCPS) parametric map obtained with
SAIF applied to L[1-11C]Leucine brain PET data. Results refer to a
representative transaxial slice of a healthy volunteer. T1-weighted
structuralMRI and the fraction of blood-derived leucine (𝜆) are also
reported for comparative purposes.

analysis (NLSA, Table 1), offers several advantages compared
to standard SA [49]: (1) the precision of both 𝛼 and 𝛽
estimates is provided.This information can be combinedwith
the parsimony indexes formodel selection; (2) the estimation
of 𝛽 within a prefixed compartmental structure avoids the
problem of the extra components as in the standard SA.

NLSA has been used in different contexts, including
brain, heart, and lung PET imaging [49, 51]. Notably, given
the general applicability of NLSA, its use has been extended
to other fields as magnetic resonance imaging [52, 53] or for
characterizing the catabolic plasma concentration decay in
dialysis [54].

4.3. Tissue Kinetic HeterogeneityMeasurement. When a phys-
iological process is investigated in vivo, it is reasonable to
expect a variability of the response. This variability is not

a priori predictable as it is the result of a combination
of different uncontrolled factors. Intuitively, the higher the
complexity of a system of interest, the higher the vari-
ability observed. This concept is based on the idea that
heterogeneous systems are characterized by higher variability
compared to correspondent homogeneous ones, as similar
elements tend to have similar behaviour. Theoretically, it
is possible to assume that heterogeneity becomes negligible
only when the system can be broken up in homogeneous
subsets of elements. This condition is very difficult to be
reached with any biomedical imaging modality (including
PET) because of the limited spatial resolution (Figure 6).
Given that the intrinsic resolution of standard scanners is
∼5mm, it is easy to see that a resolution element will contain
at least portions of different tissues; in brain, for example,
cortical thickness never exceeds 3mm [55]; hence every voxel
will contain tissue elements from grey and white matter that
are characterized by different perfusion and metabolic rates.

Application of kinetic models designed for homogeneous
tissues to heterogeneous tissues has been shown to lead to
errors in estimated rates of cerebral blood flow and glucose
metabolism, as well as to errors in estimates of receptor
binding parameters [56–58]. Because SA does not require the
number of compartments to be fixed a priori, it applies to
heterogeneous as well as the homogeneous tissues without
any additional assumptions. In fact, whenever a homo-
geneous tissue model can be appropriately analysed with
SA, its heterogeneous counterpart can be modelled as well
without introducing any bias [26]. Moreover, by evaluating
the number of estimated kinetic spectra, SA can identify
the number of subregions composing the system of interest,
returning a measure of heterogeneity degree of a particular
volume of interest (Figure 7).This information is linked to the
complexity of the tissues and can provide useful insight when
applied to pathology [51, 59, 60].

5. Clinical and Preclinical Use

The first application of the SA model [14] (as ESA) was
done with brain PET datasets, specifically for the evaluation
of cerebral blood flow and cerebral glucose utilization and
for opiate receptor ligand binding. H2

15O, [18F]FDG, and
[11C]DPN dynamic PET data were considered for this pur-
pose. After these initial applications, the SA model has been
widely used in a large variety of testing conditions, both
in preclinical and in clinical studies, considering different
tracers and receptor systems, both in its original and in
filtered formulations.

ESA has been applied to animal (i.e., mice, rats, rabbits,
and nonhuman primates) [61–64] as well as to clinical
data. Most of its applications are related to the investigation
of brain tissues, counting more than 100 different studies.
Somemeaningful examples are the applications with [11C]di-
prenorphine [65], [11C]PIB [66], [11C]flumazenil [67],
[11C]RO15-4513 [50], [11C]befloxatone [68], and [18F]FIMX
[69] in many different conditions including psychiatric con-
ditions, neurodegeneration, and epilepsy.Theflexibility of the
algorithm allowed the extension of the method also to the
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(a)

(b)

Figure 6: Tissue kinetic heterogeneity in PET domain. (a) The
Sunday Afternoon on the Island of La Grande Jatte (1886). This
painting from George Seurat is one of the most famous examples
of pointillism, but it can be also used as a schematic representation
of kinetic heterogeneity concept. From a visual analysis, it appears
clear that the whole picture is the result of several graphics elements
which all contribute to the final effect of the painting. If we zoom
in a particular area of the painting we can now visualize the single
constitutive elements of colour. It is following this hierarchical
organization, based on the combination of small points of colour,
that the famous painting is obtained. Unfortunately the same
concept cannot be applied directly to PET imaging (b). Due to the
finite spatial resolution of the modality, it is not possible to zoom
in until the constitutive elements of the tissues are individually
reported. The best analysis is limited at the voxel level, where
each voxel represents the mean activity measured in the tissues
within its volume.This assumption can be acceptable only when the
tissue within the voxel volume is a homogeneous mix and therefore
identifiable through the mean operator. On the contrary, when the
voxel contains a mixture of different tissues, like when it is located at
the border between grey and white matter, the heterogeneity of the
tissues must be taken into account for a correct quantification.

analysis of nonbrain tissues, such as heart [70, 71], skeletal leg
muscle [47, 72, 73], bone [74, 75], liver [76, 77], and kidney
[78]. Of particular importance are the applications in the
oncology field to breast, lung, and gastrointestinal cancer,
to identify abnormal tissue kinetics and to characterize the
pharmacodynamics proprieties of anticancer drugs [79–84].

RS has been shown to be a precise and accurate quan-
tification method [30, 65, 85–88], demonstrating that it is
a reliable tool for parametric imaging, even in high-noise
conditions [30]. It is of particular interest since it allows
model-free quantification using reference region; however it
is always important to check the validity of such reference to
avoid the introduction of systematic bias [89].

SAIF was originally developed for quantifying rates of
cerebral protein synthesis with L-[1-11C]Leucine [24, 42], but
it has also been applied also to measure cancer proliferation
and lung inflammation after injury [51, 59]. In all cases, it has
been shown to be a robust and accurate estimator for region
level analysis and parametric mapping of PET tracers with
irreversible uptake.

6. Software Support

Despite the great potential offered by standard and filtered
spectral analysis algorithms, the use of this methodology
in the PET community is limited to few research centres.
The main reason for this poor diffusion coincides with the
lack of a unified and complete software environment for SA
application. Generally, SA routines are realized with in-house
code (e.g., Clickfit, from Imperial College, or MICK from
Manchester University) which are rigidly linked to specific
data format. This narrows the application of SA only to a
restricted number of people that represent a very small subset
of researchers workingwith PETwho could take advantage of
SA usage.

In the last few years, SA methods have been implement-
ed in software packages available for a comprehensive elab-
oration of dynamic PET data such as SAKE (Spectral
Analysis Kinetic Estimation, http://bio.dei.unipd.it/sake/cgi-
bin/index.cgi, [44]) and PMOD (since Release 3.4 in 2012,
https://www.pmod.com/web/). Among these software pro-
grammes, SAKE is the only one that implements also the
filtered RS and SAIF version, working both for brain and for
nonbrain tissues. All the software programs listed work
through a Graphical User Interface (GUI); thus no program-
ming knowledge is required, in order to facilitate its use also
by nonexpert IT users.

7. Discussion

7.1. Advantages of SA Quantification Methods. The main
strength of SA methods is related to the flexibility of the
implemented model: due to its additive formulation, SA
can be applied to reversible/irreversible kinetics, single com-
partment or multicompartment models, and homogeneous
as well as heterogeneous systems. This characteristic makes
SA adaptable to different tracers and different physiological
systems without any a priori assumption concerning tracer
exchanges within or across the tissues of interest.

SA represents a complete quantification tool for dynamic
PET analysis returning a valuable set of macroparameters
estimates (like trapping or tracer transport) and a full model
description of the entire data time-course, without requiring
a fixed model structure. SA can be also used for model
development for the identification of the number and type

http://bio.dei.unipd.it/sake/cgi-bin/index.cgi
http://bio.dei.unipd.it/sake/cgi-bin/index.cgi
https://www.pmod.com/web/
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Figure 7: Kinetic inhomogeneity analysis in L-[1-11C]Leucine.The figure shows T1-weightedMRI image (a) and the same anatomical picture
fused with the spatial distribution of voxels estimated as heterogeneous (b).The blue points correspond to those voxels where SAIF algorithm
detects the presence of at least two equilibrating components from the voxel time-activity curves analysis. The red area, instead, highlights
the grey matter tissue as well as its border with white matter.

of compartments necessary to describe a given system. In
presence of heterogeneous systems, SA can be used as robust
tool to investigate the spatial distribution of tissue complexity.

Within its applicability domain, SA has demonstrated to
be easily modifiable to the specific characteristics of the sys-
temunder study as in the case of tracers such as [11C]PK11195,
[11C]SCH442416, and [11C]PBR28 [85, 90, 91] or with the
double input SA [92]. In the first cases the structure of SA
model was changed to account for the endothelial binding
of the tracers; in the second case, instead, the SA model
incorporated the presence of metabolites within the tissues
under study. In both situations the structure of SAmodel was
enrichedwith additional components whose amplitudeswere
then estimated from the data as the others already present in
its functional basis.

7.2. Limitations of SA-Based Quantification Methods. For its
definition SA requires the assessment of the tracer concen-
tration over time in arterial plasma. This information is
obtained by arterial blood sampling, which could be per-
formed manually by an operator or automatically by an
appropriate device. Arterial line, however, represents a risk
of the patient (e.g., infections or strokes) and a risk for the
personnel (e.g., risk of handling the blood of the patient
or exposure to extra radiation), characteristics that limit its
use in common practice. With the development of nonin-
vasive input function techniques, some alternatives to the
arterial sampling are present including image-derived input
functions [93], population-based input functions [94], or
venous input function [95]. However their use with SA is

still limited as the estimated spectrum is strictly dependent
on the shape of the arterial input, and small variations on its
time-course can lead to high biased estimates, both formicro-
and for macroparameters [96]. Moreover, the application
of noninvasive methods results tends to increase estimate
uncertainty, which becomes a problem when groups of sub-
jects have to be statistically compared. At the moment,
arterial blood sampling remains the standard for SA-based
method applications.

SA method is characterized by well-defined applicability
limits, which derive from the nonnegative constraint used
to estimate the coefficients of its basis functions. The main
drawback of this assumption is the restriction of SA appli-
cability only to models with a unique input function and
without cycling connection [15]. Most of the models used
in PET met these conditions, but unfortunately reference
regions models do not belong to this category. It is important
to stress the concept that SA cannot be applied to reference
regions, not because reference region models are inadequate
to be described by sum of convolution terms but because it
is not possible to estimate their kinetic spectra imposing the
nonnegative constraint of the spectral coefficients.

Filtered versions are characterized by different (generally
smaller) application domains. SAIF and RS, for example,
require the irreversibility/reversibility of the tracer kinetics,
respectively.This characteristic of the tracer has to be verified
prior to their applications. RS, however, can be applied to ref-
erence region models for the distribution volume estimation.
The larger applicability domain of RS is offered at the cost of
a decreased number of outcomes.
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7.3. Sensitivity of the Methods to the Algorithm Setting. One
of the main difficulties in using SA-based methods is related
to the choice of the algorithm settings. This step could be
particularly critical, especially for nonmodeller users. The
problem is even worsened by the lack of a theoretically based
criterion generally valid for all conditions and all the tracers.
Empirical rules have been presented in literature, although
their validity is case-dependent.

All the SA methods, standard and filtered versions, re-
quire the a priori definition of the basis function for the
spectral components. The beta grid has to be designed to
appropriately cover the distribution of all the kinetic compo-
nents detectable from the PET data, making it denser where
the probability ofmeasuring a component is higher.Thus, the
choice of beta grid can be seen as a way of applying a priori
information on the quantification: the more accurate this
information is, the better the quantification results are. It has
to be noticed that the relationship between basis function and
final results is not well-formulated as the Bayesian methods.
In practice, logarithmic distributions represent the most
common solutions, although it has been shown that other
choices of 𝛽 distribution, like equiangular or orthogonal
basis, might improve the performance of SA methods, both
standard and filtered versions [23, 30].

The number of grid components appears to be less critical
than the choice of their distributions. Different attempts have
been done comparing SA results with a different number of
𝛽’s [24, 97]: the advantages of a more populated grid, espe-
cially in terms of accuracy and precision of spectral estimates,
do not counterbalance the relevant increase of computation
time required by the algorithm. On the contrary, a smaller
number of components could be critical if not optimally
distributed around the true kinetic components. As suggested
by Rizzo and colleagues [38], 20/30 elements are adequate
only when accurate prior information is available. If this
condition is not verified the final estimates can be strongly
biased. Since the results obtained in the literature confirmed
that a grid consisting of 100 𝛽s represents a good trade-
off between estimate precision and algorithm efficiency, we
recommend it for both filtered and standard SA applications.

In respect to the standard SA, filtered SAmethods require
also the filtering definition. Spectral filtering heavily impacts
on the final performance of the methods and thus it has
to be carefully managed, depending on the peculiarities of
SA algorithm used. For SAIF, for example, the choice of the
filter passband coincides with the assumption of the kinetic
interval within which the investigation processes can be
detected. Outside this interval, all the kinetic components
are considered as a mix of noise, random SA effects, and
true kinetic components (like blood volume or trapping) and
thus removed from the estimated spectrum. For SA filtering
definition, different strategies are available depending on the
particular dataset and tracer under analysis. The most com-
mon approach consists in the use ofmodel-based simulations
to generate a mixture of tissue TACs representing the tracer
kinetics in the tissues of interest.Then, the best filter setting is
defined as the one that minimizes the bias of the parameters
of interest [21, 24]. Hierarchical approaches, from ROI level
to voxel level, are also applied to set filtering parameters

for parametric mapping [98, 99]. Independently from the
strategy used for filter definition, it is always recommended
to verify a posteriori the assumption correctness by assessing
whether the distribution of estimated spectral components
falls within the filter interval rather than accumulating at its
extremes.

8. Conclusions

Quantification of dynamic PET studies can be performed in
several different ways, whichmainly differ in the assumptions
about the system of interest and in the analysis outcomes.
In this review we focused on spectral analysis, a general and
flexible quantification method based on minimal model
assumptions. Considering the trade-off between outcomes
and requirements, spectral analysis can be located in an
intermediate position between graphical methods and com-
partmental modelling.

In its original formulation, the main limitation of ESA
is related to its sensitivity to the noise in the data. For this
reason, filtered solutions have been proposed, with the most
prominent nowadays being RS and SAIF. Literature results
have shown that SA-based approaches are robust and reliable
quantificationmethods, applicable for both region and voxel-
wise analysis (especially as regards filtered versions), in dif-
ferent tracers, anatomical systems (brain and nonbrain), and
physiological conditions.
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