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Abstract

There is a strong need for computational frameworks that integrate different biological processes and data-types to unravel
cellular regulation. Current efforts to reconstruct transcriptional regulatory networks (TRNs) focus primarily on proximal data
such as gene co-expression and transcription factor (TF) binding. While such approaches enable rapid reconstruction of
TRNs, the overwhelming combinatorics of possible networks limits identification of mechanistic regulatory interactions.
Utilizing growth phenotypes and systems-level constraints to inform regulatory network reconstruction is an unmet
challenge. We present our approach Gene Expression and Metabolism Integrated for Network Inference (GEMINI) that links a
compendium of candidate regulatory interactions with the metabolic network to predict their systems-level effect on
growth phenotypes. We then compare predictions with experimental phenotype data to select phenotype-consistent
regulatory interactions. GEMINI makes use of the observation that only a small fraction of regulatory network states are
compatible with a viable metabolic network, and outputs a regulatory network that is simultaneously consistent with the
input genome-scale metabolic network model, gene expression data, and TF knockout phenotypes. GEMINI preferentially
recalls gold-standard interactions (p-value = 102172), significantly better than using gene expression alone. We applied
GEMINI to create an integrated metabolic-regulatory network model for Saccharomyces cerevisiae involving 25,000
regulatory interactions controlling 1597 metabolic reactions. The model quantitatively predicts TF knockout phenotypes in
new conditions (p-value = 10214) and revealed potential condition-specific regulatory mechanisms. Our results suggest that
a metabolic constraint-based approach can be successfully used to help reconstruct TRNs from high-throughput data, and
highlights the potential of using a biochemically-detailed mechanistic framework to integrate and reconcile inconsistencies
across different data-types. The algorithm and associated data are available at https://sourceforge.net/projects/gemini-data/
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Introduction

The inference of transcriptional regulatory networks (TRNs)

from high-throughput data is a central challenge in systems

biology. TRN models provide a mechanistic framework for

describing interactions between transcription factors and their

target genes. Cellular phenotypes are influenced by the differential

activity of these networks, and reconstructing the regulatory

network enables one to understand the underlying molecular

processes that cause phenotypic changes and better predict the

response of a cell to an external perturbation.

Current network inference algorithms enable rapid reconstruc-

tion of TRNs by utilizing high-throughput data such as protein-

DNA binding, DNA sequence or gene expression [1–12].

However, the overwhelming number of possible regulatory

interactions between thousands of genes and transcriptional

regulators in a cell—combined with the complex and dynamic

nature of these interactions—limits the success of these inference

approaches [1,13,14]. Recent analyses in Saccharomyces cerevisiae

(baker’s yeast) have shown that even though there are a multitude

of predicted interactions, very few have a functional effect on the

pathway activity or the metabolic flux distributions [13,15].

Furthermore, a large-scale comparative study of expression-based

network inference algorithms found poor performance in yeast [1].

One reason for this is that a connection to a growth or metabolic

phenotype is missing during the inference process, making it

difficult to assess the plausibility of the predicted interactions in a

systems context. Connecting TRN inference to the phenotype data

can lead to a more seamless connection between genomic

measurements and phenotype.

We hypothesized that integrating regulatory interactions with

metabolic networks would make it possible to more directly

connect the regulatory interactions with their downstream

phenotype, and thus allow us to use a broader range of data for

PLOS Computational Biology | www.ploscompbiol.org 1 December 2013 | Volume 9 | Issue 12 | e1003370



network curation. Genome-scale models of metabolic networks

have been constructed using growth phenotype data for a wide

range of organisms, and these models accurately predict the

response of the cell to environmental and genetic perturbations

[16–19]. These models explicitly represent the mechanistic

relationships between genes, proteins, and the chemical inter-

conversion of metabolites within a biological system. The success

of this integration would then allow the utilization of large-scale

phenotypic data, which are commonly used to curate metabolic

networks [16,20,21], to also refine regulatory interactions.

To enable the concurrent analysis of transcriptional regulation

and metabolism, we recently developed the Probabilistic Regula-

tion of Metabolism (PROM) approach for integrating biochemical

networks with TRNs in an automated fashion [22]. We used

PROM to demonstrate that phenotypic states can be predicted

from the combined TRN and metabolic network models. PROM

takes in a genome-scale metabolic network model, a regulatory

network structure consisting of TFs and their targets, and gene

expression data across different conditions, as inputs to predict the

phenotypic outcome of transcriptional perturbations.

PROM solves the forward problem of combining disparate

networks to predict phenotype (e.g., flux and growth rates). In the

work described herein, we iteratively use PROM to aid in solving

the more challenging inverse problem [23]—guiding TRN

structure prediction using the metabolic network and the emergent

phenotype measurements. In doing so, our new method serves as a

tool to refine the inferred TRN and improve the predictive power

of the integrated network models.

This new approach, Gene Expression and Metabolism

Integrated for Network Inference (GEMINI), discerns functional

regulatory interactions in high-throughput data by taking advan-

tage of PROM, the growing amount of information in phenotype

databases, and the observation by Barrett et al [24] that only a

fraction of functional regulatory network states are compatible

with a viable metabolic network. GEMINI produces a regulatory

network state that is simultaneously consistent with observed gene

knockout phenotypes, gene expression data, and the correspond-

ing metabolic network state. While there have been approaches to

model the constraints imposed by regulation and signaling

networks on metabolism [18,22,25,26] or to readjust manually

curated regulatory rules based on metabolism [18,27], no method

thus far have utilized metabolic constraints to refine high-

throughput interaction data as GEMINI does.

Here we describe the GEMINI approach and then test it by

building a genome-scale integrated model for yeast. We compare

the refined network model across various high-throughput data

sets, and demonstrate that GEMINI effectively recalls known

mechanistic interactions. We then iteratively expand and refine

the integrated model using published genome-wide chromatin

immunoprecipitation, TF knockout gene expression and binding-

site-motif data sets, and show the ability of our integrated

metabolic and regulatory network model to predict growth

phenotypes of transcription factor knockout strains in new

conditions. We also use GEMINI to identify potential condition-

specific interactions and post-transcriptional regulatory mecha-

nisms in S. cerevisae.

Results

Overview of the GEMINI approach for identifying
phenotype-consistent interactions

GEMINI takes in a draft regulatory network and integrates it

with the corresponding metabolic network and gene expression

data using PROM. PROM uses conditional probabilities, viz. the

probability of a given gene being ON or OFF when the regulating

transcription factor is ON or OFF, to represent gene states and

gene–transcription factor interactions. The ON/OFF state of the

TFs is then used to determine the likelihood of an ON/OFF state

of the target genes based on the probabilities estimated from

microarray data. PROM then utilizes the Gene-Protein-Reaction

(GPR) relationships present in the metabolic network models to

connect the regulatory targets to the corresponding metabolic

reactions. The GPRs take into account the presence of isozymes or

multi-gene/multi-subunit complexes that may be involved in

catalyzing each metabolic reaction. The probabilities are then

used to constrain the fluxes through the metabolic network

(detailed below), and an optimal state of the network that satisfies

topological and transcriptional constraints is determined.

Using this integrated metabolic-regulatory network, PROM can

simulate metabolic phenotypes under different conditions using

Flux Balance Analysis (FBA) [28]. FBA identifies the optimal state

of the metabolic network that would allow the system to achieve a

particular objective, typically the maximization of an organism’s

growth rate or biomass production. Mathematically, FBA is

framed as a linear programming problem:

maximize f ~cjvj the cellular objectiveð Þ ð1Þ

subject to :
X

j
Sij :vj~0 Vi stoichiometric constraintsð Þ ð2Þ

lbjƒvjƒubj Vj Reaction capacity, measured flux,ð

or thermodynamic constraintsÞ
ð3Þ

where i is the set of metabolites, j the set of reactions in the

network, Sij is the stoichiometric matrix, cj designates the objective

function (the cellular growth rate in this case) and vj is the flux

through reaction j. PROM finds a flux distribution that satisfies

Author Summary

Cellular networks, such as metabolic and transcriptional
regulatory networks (TRNs), do not operate independently
but work together in unison to determine cellular
phenotypes. Further, the phenotype and architecture of
one network constrains the topology of other networks.
Hence, it is critical to study network components and
interactions in the context of the entire cell. Typically,
efforts to reconstruct TRNs focus only on immediately
proximal data such as gene co-expression and transcrip-
tion factor (TF)-binding. Herein, we take a different
strategy by linking candidate TRNs with the metabolic
network to predict systems-level responses such as growth
phenotypes of TF knockout strains, and compare predic-
tions with experimental phenotype data to select amongst
the candidate TRNs. Our approach goes beyond traditional
data integration approaches for network inference and
refinement by using a predictive network model (metab-
olism) to refine another network model (regulation) – thus
providing an alternative avenue to this area of research.
Understanding how the networks function together in a
cell will pave the way for synthetic biology and has a wide-
range of applications in biotechnology, drug discovery and
diagnostics. Further we demonstrate how metabolic
models can integrate and reconcile inconsistencies across
different data-types.

Network Refinement Using Phenotypic Constraints
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these physico-chemical constraints plus additional constraints to

account for the transcriptional regulation [22]:

min(k:azk:b) ð4Þ

subject to constraints

lb’{aƒvƒub’zb ð5Þ

a,b§0 ð6Þ

lb’~Vmin|P or ub’~Vmax|P ð7Þ

where lb’ and ub’ are constraints based on transcriptional

regulation and are estimated based on the probabilities. Vmax

and Vmin are the systemic maximum and minimum fluxes through

a reaction and are determined using Flux Variability Analysis

(FVA) [29]. a and b represent the deviation from those constraints

(determined by the algorithm for each reaction), and k represents

the penalty for such deviations. The higher the value of k, the

greater the transcriptional regulation constraint is on the system.

The value of k is determined in a data-driven manner (See

Methods).

Once the initial PROM model is built, GEMINI then performs

in silico knockouts of each TF in the integrated model and

compares the predictions with experimental observations. GEM-

INI identifies and removes interactions that do not lead to the

measured growth phenotype, while retaining the phenotype-

consistent interactions. This is achieved by comparing the flux

state predicted by PROM for the TF knockout (v1) with the closest

flux state that represents the measured growth phenotype (v2). The

flux state v2 is obtained by forcing the model to match the

observed phenotype, while still attempting to satisfy as many of the

transcriptional constraints as possible. Mathematically, we solve

the same constraints as above with the additional constraint that

the predicted growth phenotype matches the observed phenotype

(See Methods).

Unlike mass balance or thermodynamic constraints that cannot

be violated, PROM imposes ‘‘soft’’ constraints on the system due

to transcriptional regulation, thereby enabling us to force the

model to match the measured phenotype. This procedure results

in a flux solution that is geometrically closest to the flux state v1,

based on absolute distance, while still satisfying the observed

growth phenotype. We then compare the new flux state v2 with

the original flux state v1, and prioritized reactions regulated by the

perturbed TF based on their magnitude of change. Interactions

regulating these reactions were removed consecutively and PROM

is run on each new network to predict the growth phenotype. This

process is repeated until the inconsistency is resolved (Figure 1).

Reconstructing an integrated metabolic-regulatory
network model for yeast

We demonstrate the GEMINI approach using the model

organism Saccharomyces cerevisiae. Because of the availability of a

large amount of data about regulatory interactions, a vast amount

of gene expression and phenotype data, and the existence of a

well-curated genome-scale metabolic model for yeast, this

organism makes an ideal test case for GEMINI. Most importantly,

highly accurate inference of regulatory interactions has been a

major challenge in yeast as it is a more complex system than

bacterial model organisms such as Escherichia coli [1,30]. To apply

our approach to yeast, we downloaded transcriptional regulatory

interactions from the Yeastract database [31], which were

compiled from various literature sources. These Yeastract

interactions have a high-confidence subset (direct/gold-standard

interactions) for which strong experimental evidence (supporting

the interaction of the TF with the promoter of the specified target

gene) is available [31]. This gold-standard subset is commonly

used as a benchmark for validating inference algorithms [1]. This

dataset allowed us to test our hypothesis that metabolic phenotype-

consistency can be used as a criterion for improving the

identification of functional regulatory interactions.

The effectiveness of GEMINI was evaluated by measuring its

ability to differentiate between the validated direct interactions

and the remaining low-confidence interactions (putative/potential

interactions), which were inferred using motif search algorithms

[32]. It should be noted that the gold-standard interactions are not

necessarily perfect and may contain false-positive interactions [1];

similarly, the low-confidence interactions could be either false-

positives or true interactions that have not been validated yet.

However, on average, the gold-standard interactions have stronger

supporting evidence from ChIP-binding or directed mutagene-

sis—giving them a higher probability of being true than the lower

confidence set. According to our hypothesis, gold-standard

interactions are more likely to be consistent with phenotype data

than the potential interactions. With an unlabeled list of Yeastract

interactions as input to GEMINI, what we aimed to test in the

refined output network was enrichment for the gold-standard

interactions over the potential interactions.

The initial TRN, formed by compiling the Yeastract interac-

tions, was integrated with the yeast metabolic network [33]

(composed of 1597 reactions and 901 genes) and gene expression

data [34] (consisting of 904 expression arrays in 435 conditions)

using PROM (See Methods). 14% of all the interactions in the

Yeastract database involved interactions with metabolic genes and

the integrated model contains 31,075 interactions between 179

TFs and 863 metabolic genes.

GEMINI preferentially recalls gold-standard interactions
GEMINI performed in silico knockouts of each TF in the model

and compared the predictions (i.e., lethal or viable) to data from

growth viability assays in glucose minimal media [35]. Running

GEMINI on this network eliminated over 9,000 phenotype-

inconsistent interactions and results in a final network containing

22,059 phenotype-consistent regulatory interactions. In compar-

ison to the original YEASTRACT network, we found the final

integrated network built using GEMINI to be highly enriched (p-

value = 102172, hyper-geometric test) for validated gold-standard

interactions; this result suggests that GEMINI preferentially

removed low-confidence interactions (Figure 2).

These results were robust to the chosen growth conditions –

glucose, galactose, glycerol and ethanol minimal media all led to

significant enrichment of gold-standard interactions (Table 1). We

also observed the same effect when we did the same analysis using

a different metabolic network model (iMM904; See Methods),

regulatory networks from different sources (binding, motif-based

and expression-based inference; see section below), different

subsets of the Yeastract TRN (Figure S4) and using different

metrics to prioritize interactions (Figure S9).

Comparison with gene expression-based metrics
To determine whether a similar accuracy could have been

obtained using expression data alone (i.e., without adding

constraints based on the phenotypic outcomes predicted by the

Network Refinement Using Phenotypic Constraints
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Figure 1. Process of identifying phenotype-consistent interactions using GEMINI. A. High-throughput interaction data were mapped onto
a biochemically detailed metabolic network using PROM and phenotypic consequences of these interactions were predicted. The metabolic network
is represented in silico in the form of a stoichiometric matrix, where every column corresponds to a reaction and every row corresponds to a
metabolite. The regulatory interactions are represented as probabilities, which are estimated from microarray data. By using constraint-based

Network Refinement Using Phenotypic Constraints
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metabolic network), we compared our GEMINI results to a more

commonly used approach for curating TRNs—sorting predicted

interactions based on the correlated expression of the TFs and

their putative target genes. Specifically, we measured the Mutual

Information (MI) and Pearson’s correlation among all of the

interactions in our original YEASTRACT network.

To ensure comparison was not biased towards GEMINI, we

tuned the size of the network using MI and correlation over all

possible values (over-fitting to the best outcome that could be

achieved for MI or correlation for any cutoff). The maximum

enrichment obtained by MI and correlation (even when overfit)

was lower than that obtained using GEMINI (the lowest p-value

measured over all possible network sizes for MI was 1026 and for

correlation was 1023; Figure S1 shows the enrichment obtained

over the entire range of thresholds for both MI and correlation).

The high enrichment obtained by GEMINI strongly supports our

hypothesis that additional phenotype data and integration with the

biochemical details represented through the metabolic network

can be used as an effective constraint to refine high-throughput

interaction data.

To gain further insight into the types of interactions recalled by

the different methods, we examined another subset of interactions

having ‘‘indirect evidence’’—interactions inferred based on

changes in the mRNA or protein expression of a target gene after

perturbing its putative regulator [31] (Figure 2). MI and

correlation performed significantly better at recalling indirect

interactions than direct interactions (p-value of 10219 and 1024 for

the best cutoffs of MI and correlation, respectively); this is not

surprising since the indirect relationships are defined by gene

expression changes. However, GEMINI still outperformed these

methods in recalling indirect interactions (p-value of 102104) for

any network size (Figure 2c and Figure S2). Therefore, GEMINI

analysis, it is possible to determine the possible configurations in the biochemical network that correspond to physiologically meaningful states; this
is done by applying various physico-chemical constraints, such as reaction stoichiometry and thermodynamics. The interaction probabilities were
then used to further constrain the fluxes through the metabolic network and an optimal network state that satisfied both thermodynamic and
transcriptional constraints (shaded in red) was determined using PROM. B. Interactions that lead to inconsistencies between model predictions and
experiments were identified and removed. This was achieved by comparing the flux state predicted by PROM for the TF knockout with the closest
flux state that represented the measured growth phenotype; reactions regulated by the perturbed TF were then prioritized based on the magnitude
of their deviation. Interactions regulating these reactions were then removed and PROM was run iteratively on each new network to predict the
growth phenotype. C. The final network that matched the phenotype was evaluated based on its ability to retain known interactions, and predict
growth phenotype outcomes in new conditions.
doi:10.1371/journal.pcbi.1003370.g001

Figure 2. Refining regulatory interaction data in yeast using GEMINI. A. GEMINI was evaluated for its ability to preferentially retain the gold-
standard interactions (blue edges) and the indirect interactions (green edges). The hyper-geometric p-values for enrichment with various data sets
are shown. B. Running GEMINI on the network derived using Yeastract resulted in the elimination of ,9,000 phenotype-inconsistent interactions and
produced a refined integrated network model that was more highly enriched for known interactions than the original network (p-value,102172,
hyper-geometric test). Most of the interactions eliminated by GEMINI were found to have little supporting experimental evidence (interactions that
did have strong supporting evidence were preferentially retained). C. The number of true interactions (direct and indirect) recalled was significantly
higher than could be recalled using mutual information (MI) or correlation (Corr)-based approaches, which rely on gene expression alone (estimated
from the same gene expression dataset and for networks of the same size). We also measured the best prediction obtained by MI and correlation
over all possible cut offs and this was still significantly lower than the enrichment obtained by GEMINI. The supplementary figures S1 and S2 show the
enrichment for direct interactions over the entire range of thresholds for both MI and correlation. The number of interactions recalled by random
sampling from the Yeastract database (DB) is also shown, as a reference.
doi:10.1371/journal.pcbi.1003370.g002

Network Refinement Using Phenotypic Constraints
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seems to more effectively distinguish both evidence-based direct

and indirect interactions from a background of lower-confidence

inferred interactions. Furthermore, no significant difference in the

distributions of the MI scores was observed between the

interactions retained and removed by GEMINI based on the

Kolmogorov-Smirnoff test, showing that the phenotype data and

integration with the metabolic network provides significant

independent information (Figure S3).

Refined model is consistent with gene knockout
phenotypes, gene expression data and the metabolic
network

The biological relevance of the interactions retained by

GEMINI is also supported by the enrichment for biological

processes relevant to the set of target genes for each regulator. As

compared to regulons (target genes for each regulator) in the

original network, regulons in the refined network were found to be

more specific, on average, to a given metabolic pathway (p-

value,0.01; Methods). The number of enrichments for specific

metabolic pathways increased from 165 to 184 despite the removal

of over 9000 interactions, suggesting that the phenotype-consistent

regulons identified by GEMINI are associated with a more

coherent set of molecular and metabolic functions, and most TFs

tend to regulate distinct cellular processes as has been observed

previously [3,8,36]. Through this process of refinement, we

identified new statistical associations between TF and specific

metabolic pathways (Table S1). More interestingly, GEMINI

removed an association between the TFs, Msn4 and Gis1, and the

TCA cycle. The availability of flux measurements for the knockout

strains of these two TFs enabled us to validate this prediction.

Comparison with C13 flux data [13] showed that the knockout of

these TFs did not in fact affect the flux through the TCA cycle.

Comparison with TF knockout expression data from a recent

study [15] also supported the functional significance of the

phenotype-consistent interactions. This expression set was not

part of the microarray compendium used for running GEMINI

and allowed us to assess the predictive ability of the phenotype-

consistent interactions. For 152 transcription factors in our

network, we obtained a list of genes that were differentially

expressed after the TF was knocked out (FDR,0.05; [37]). We

compared this list with the list of predicted target genes in the

original Yeastract network and the refined network. We found that

the targets of TFs in the refined network were more likely to be

differentially expressed than those in the original network when

their corresponding TF was knocked out (p-value = 1029; Meth-

ods). While we had selected interactions based on their consistency

with phenotype, their ability to match expression changes in new

conditions provided additional support for GEMINI. The

phenotype-consistent interactions also had higher TF-DNA

binding affinity than the original network (p-value = 0.01; t-test;

Methods), as measured from protein binding microarray (PBM)

data [38]. These results also provide additional evidence

supporting the validity of the potential interactions that were

predicted to be phenotype-consistent by GEMINI. This suggests

that GEMINI is effective at identifying functional interactions and

is consistent with various heterogeneous data.

Iterative approach for network refinement and
phenotype prediction

One interesting observation from our results is that GEMINI

can differentiate interactions from different sources based on their

effect on the predicted phenotype. We next checked to see if we

can use this to evaluate newly inferred interactions in the context

of available known interactions. We can subsequently reconcile

inconsistencies that arise from these interactions with metabolic

phenotypes. To simulate such a scenario, we added new

interactions onto the refined Yeastract network model and refined

the expanded network model using GEMINI.

We chose three commonly used data types:

i. Interactions inferred based on sequence motif search learned

from ChIP [39] (Network I);

ii. Interactions inferred using the expression-based reverse

engineering algorithm, CLR [4] (Network II);

iii. Validated direct and indirect interactions in the literature

measured using experiments such as large-scale TF knockout

[15,37], PBMs, and ChIP-chip [38,40] (Network III).

We found that for both the motif and CLR network, we could

refine the network further and significantly enrich once again for

direct and indirect interactions (enrichment p-value compared to

the original inferred network (direct, indirect) = (10244,10273) and

(10213,10231) for motif and CLR, respectively; Table 2). A wide

variety of reverse engineering algorithms have been developed

recently to infer potential regulatory interactions from sequence,

gene expression data [1,4,8] or through integration of various data

types [2,8]. These algorithms rely on correlated patterns of

expression or the occurrence of a sequence motif in the upstream

region of the target gene [5]. The enrichment for gold-standard

interactions suggests that GEMINI could be integrated with these

network inference and reverse engineering approaches to improve

the identification of functional regulatory interactions. This result

is consistent with the observation that an integrative network

inference approach combining heterogeneous omics data could

lead to more predictive TRN models [2]. While inference

approaches like CLR allow for predicting potentially new TF-

Table 1. Enrichment across different carbon sources.

Condition Enrichment for Direct Enrichment for Indirect Final Network Size

Glucose 102172 102104 22059

Galactose 10296 10255 22308

Glycerol 102179 102100 22134

Ethanol 102144 10286 22551

Rich/undefined Media 10242 10239 28981

Using growth viability information from different environmental conditions (rich media and minimal media with galactose, glycerol, and ethanol as the carbon source,
respectively) had a similar effect on the network refinement. Generally defined minimal media were more useful than rich media, which provided the least enrichment
for gold standard interactions. Importantly, there was considerable overlap in the interactions retained by running GEMINI in each condition.
doi:10.1371/journal.pcbi.1003370.t001

Network Refinement Using Phenotypic Constraints
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gene interactions, GEMINI is a refinement algorithm and it is not

an alternative to these de novo inference approaches, but may be

used in conjunction with such approaches to enhance their

prediction by combining orthogonal data types. Overall, this result

provides additional validation that GEMINI works across multiple

data sets from different sources.

In contrast to the inferred interactions, very few interactions

(,66) from the validated interaction data set (Network III) were

removed by GEMINI. This interaction set is similar to the gold-

standard set in the Yeastract database and was thus retained in the

network. While these interactions were consistent with the simple

lethal/non-lethal constraint we used in glucose minimal media, we

predicted that by adding more constraints, we could narrow down

the solution space further, and remove more phenotype-inconsis-

tent interactions. With this aim, we employed PROM to

quantitatively predict the growth rate (as opposed to just lethal/

non-lethal outcomes). Doing so allowed us to partition the non-

lethal predictions into two categories: suboptimal and optimal

(Methods). Using this strategy for the 118 TFs in our network for

which experimental measurements of this kind were available for

comparison [13], we were able to eliminate 4874 more interac-

tions, while still improving the enrichment for the validated

interaction set (p-value of 10227; Table 2; Figure 3).

Importantly, we observed that the refined network had a greater

consistency with growth phenotype data in new conditions than

the original network. Thus, by learning only on glucose minimal

medium, the network model had greater correlation with growth

rate measurements in galactose minimal medium (correlation of

0.47, p-value = 1027 vs. a correlation of 0.2, p-value = 0.04 for the

original unrefined Yeastract model) and in urea minimal medium

(correlation of 0.62, p-value = 10214 vs. a correlation of 0.22, p-

value = 0.02; data from Fendt et al. [13]). This is not unexpected

because we were removing inconsistencies in one condition, which

may have produced the same discrepancy in the other conditions

as well. Nevertheless, the result suggests that GEMINI improves

the overall predictive ability of the integrated regulatory-metabolic

network model under new environmental conditions (Figure 3).

We were also able to expand our integrated network model from

22,059 to 25,000 interactions through the addition of this

validated interaction set.

Discussion

In this study, we developed a novel way to connect regulatory

interactions with phenotype data using a metabolic network.

Currently, accurate regulatory network reconstruction is ham-

pered by the lack of methods to directly connect inferred potential

interactions to observable phenotypes such as growth rate to guide

the inference of these networks in a high-throughput fashion.

Using GEMINI, we demonstrated that we can identify functional

regulatory interactions and refine high-throughput interaction

data using phenotype-consistency as a constraint. We showed that

by integrating with a predictive metabolic network model, we can

improve the quality and predictive ability of the generated high-

throughput data significantly better than using gene expression

alone.

Resolving phenotype inconsistencies
By applying the GEMINI approach to our yeast model, we

identified phenotype inconsistencies for 80 TF knockout

predictions. The majority of the inconsistencies (85%) were of

the type NGG (No Growth – Growth), for which the model

predicts lethality (or suboptimality), while the actual phenotype

was non-lethal (or optimal). Because this scenario was the most

commonly identified inconsistency type, we concentrated on

reconciling this set alone. Also, this case is more tractable to

resolve than the opposite case (GNG), which involves adding

interactions from a very large multi-optimal solution space.

Further, a TF knockout may be lethal or suboptimal due to a

non-metabolic reason, meaning that even an optimal metabolic

Table 2. Network sizes and the number of interactions retained after running GEMINI for each network type.

Data Set Enrichment for Direct Enrichment for Indirect Network Size (Initial/Final)

I. Motif data 10244 10273 38105/28807

II. Expression (CLR) 10213 10231 24111/21954

III. Validated interactions NA 29874/29808

Validated interactions (Quantitative
Iteration)

10227 29874/25000

The hyper-geometric enrichment p-value compared to the original inferred network is shown. Note that for Network III with validated interactions, a single p-value was
obtained because we were unable to differentiate between direct and indirect interactions in some of the new interactions that were added. So a single p-value for
validated interactions was obtained.
doi:10.1371/journal.pcbi.1003370.t002

Figure 3. Iterative approach for network refinement and
phenotype prediction. By using an iterative approach, we increased
the comprehensiveness of the integrated network model by adding
new interactions (Network III) and iteratively refining the model using
GEMINI. This process enriched the fraction of validated interactions in
the network (shown in red) and improved the predictive ability of the
integrated network model.
doi:10.1371/journal.pcbi.1003370.g003
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model would not be expected to resolve all GNG inconsisten-

cies; in contrast, if a knockout is non-lethal and the model

predicts it to be lethal, then that implies there is an inconsistency

with the integrated model.

GEMINI integrates two different network models (metabolic

and regulatory) and inconsistencies could arise due to either

network. In this work, we assumed that the metabolic network,

being better curated and having a biochemical basis, could be used

to identify inconsistencies in the regulatory network. Additional

evidence from the distribution of inconsistencies also supports our

assumption (Figures S4 and Figure S10; discussed below).

Furthermore, NGG inconsistencies arising due to the metabolic

model were circumvented by using a metabolic model in which the

GrowMatch algorithm [21] was run to resolve the NGG

inconsistencies (Zommorodi and Maranas model [33]). To test

the sensitivity of our approach to the metabolic model used, we

repeated our analysis with an older version of the metabolic model

(iMM904 [41]), which has a lower predictive accuracy than the

Zommorodi and Maranas model. We found that even with

iMM904, GEMINI was able to strongly enrich for direct

interactions (p-value = 102104), but not as strongly as when using

the more predictive model by Zommorodi and Maranas. This

suggests that as the predictive ability of the metabolic models

improves, we should be able to refine these interactions further. In

theory, a trivial solution for resolving NGG inconsistencies is to

remove all of the interactions for the respective TF. However,

interestingly, GEMINI resolved all 80 NGG inconsistencies

without reverting to the trivial solution.

Furthermore, the elimination of phenotype inconsistent inter-

actions by GEMINI based on one condition might lead to

inconsistent predictions in a different condition. We found that this

was the case for a small fraction (4%) of the interactions that were

phenotype-inconsistent in glucose minimal media, but were

predicted to be consistent with growth phenotype data in galactose

minimal media. Analyzing inconsistencies over different set of

conditions would help us avoid over fitting the model to the

growth phenotype data. Further analysis across conditions would

help uncover interactions that are condition-specific and post-

transcriptionally regulated (discussed below).

The role of network size and topology
In the present analysis, we used the predicted growth rate as the

only phenotype to constrain the regulatory network. If the

interactions regulating biomass-related metabolic reactions were

enriched for potential interactions, this would lead to an apparent

enrichment for direct gold standard interactions on running

GEMINI as an artifact. We tested this by evaluating the metabolic

genes for which their knockout affected the maximum growth rate

of the model. No difference was observed in the number of gold-

standard interactions regulating this set of genes versus the rest

(both the sets had the same fraction (14%) of gold-standard

interactions; Methods). A similar distribution of gold-standard

interactions was also found for interactions regulating dead-end

reactions that do not contribute to the biomass and the rest of the

metabolic network. Hence, there were no apparent underlying

biases in the metabolic network architecture that led to the

enrichment of gold-standard interactions.

We predicted that the effectiveness of GEMINI would also

depend on the scale of the regulatory network model used.

GEMINI evaluates interactions in the context of other interactions

in the network and so its effectiveness will depend on the size and

degree of completeness of the entire network. To test this, we ran

GEMINI using different fractions of the entire TRN and looked at

the enrichment for gold-standard interactions. As expected, we

found that GEMINI’s effectiveness to refine the network increased

with the size of the input network. To control for size bias on the

enrichment p-value, we also looked at the fraction of gold-standard

interactions in the initial and final refined network and observed

the same effect (Figure S4).

Inconsistencies highlight incomplete biochemical
knowledge

GEMINI utilizes the mechanistic information in biochemical

networks to refine high-throughput interaction data. We next

sought to determine which parts of the yeast transcriptional

regulatory network were prone to inconsistencies across different

growth conditions (Table 1). We analyzed the distribution of

inconsistencies among the 41 TFs that led to inconsistencies using

the qualitative phenotype data across the four carbon sources. The

distribution was approximately exponential suggesting that a few

TFs led to most of the inconsistencies (Figure 4). By identifying key

regions that lead to the most inconsistencies, we can prioritize

experiments to refine the regulatory network. Further, it highlights

regions that are prone to inconsistent predictions while analyzing

integrated network models. The top three TFs with most

inconsistencies were Ash1, Fkh1 and Fkh2; Ash1 encodes a

transcription factor that is involved in mating type switching and

while the genes Fkh1/2 are involved in cell cycle regulation.

Interestingly, all these TFs have important roles outside metab-

olism suggesting that the interactions with metabolic enzymes

might be false positives due to sequence-based inference.

In contrast to the regulatory network, analysis of the distribution

of inconsistencies across the metabolic network did not reveal any

strong trend towards specific metabolic pathways. The distribution

was linear rather than exponential across the metabolic genes

(Figure 4). This suggests that relative to the regulatory network

there were no specific genes in the metabolic network that were

much more prone to inconsistencies. This is consistent with our

previous observation that no underlying biases in the metabolic

network architecture led to the enrichment of gold-standard

interactions. Among the metabolic pathways highlighted in Table

S1, the pentose phosphate (PP) pathway had the most number of

inconsistencies. Being a well-studied pathway in yeast and other

organisms, it’s more likely that the inconsistency arose due to the

regulatory interactions rather than due to the PP pathway.

Among the carbon sources, galactose led to the least enrichment

for both validated gold standard interactions and indirect

interactions. Both glucose and galactose enter central metabolism

at the level of glucose-6-P, but they lead to primarily fermentative

or respiro-fermentative metabolism, respectively [13,42] This

suggests that we have perhaps incomplete knowledge about the

regulatory network changes that happen during growth in

galactose, though extensively studied [13,43,44], and despite

being similar at the metabolic level to glucose. GEMINI also

performed poorly on rich media, which is primarily due to the

limitations in the representation of the media constituents in rich

media within a constraint-based modeling framework.

Inferring post-transcriptional regulatory mechanisms
Analysis of phenotype-consistent interactions inferred using

GEMINI under different environmental conditions (Table 1)

revealed potential post-transcriptional regulatory mechanisms.

Although there was considerable overlap between the pheno-

type-consistent interactions predicted from different minimal

media conditions, we identified 1170 interactions that were

phenotype-inconsistent in only one condition, but were retained

in all the other three conditions (Table S2). The fraction of direct

and indirect interactions among the 1170 interactions was quite
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similar to those interactions that were retained in all conditions.

We predicted that these interactions might be true interactions

that are conditionally-inactive, and the phenotype inconsistency

might have arose due to post transcriptional regulatory mecha-

nisms inactivating these interactions in these conditions. While the

static information from the gene regulatory network and gene

expression predicted the interactions to be active, combining this

information with phenotypic data resulted in identifying post-

transcriptional regulatory mechanisms that may have turned off

these interactions.

Glucose repression is one of the most well-studied processes in

yeast and we focused on a subset (408) of these 1170 interactions

that were predicted to be inactive only in glucose minimal media.

The top 3 TFs with most interactions in this list—Rph1, Hsf1 and

Adr1, were all activated during glucose starvation and are

regulated via signaling and phosphorylation [45] [46] [47]. For

example, the TF Hsf1 is constitutively phosphorylated, but under

glucose starvation, it becomes hyper-phosphorylated and adopts

an activated conformation resulting in the transcription of target

genes [45]. The other TFs are activated through similar

mechanisms in the absence of glucose. This is consistent with

our prediction that the interactions that lead to inconsistencies

only in glucose media were true interactions that are conditionally-

inactive in the presence of glucose. Thus, we can potentially infer

interactions that are not transcriptionally mediated through this

approach. The condition-specific predictions also agreed well with

a list of manually curated TF-environment interactions from the

regulatory network model of Herrgard et al. [19] for 6 of the 7

predicted glucose-repressed TFs that were present in both the

models.

This strategy shows the utility of looking across multiple

conditions to identify discrepancies in the data, which might be

due to additional biological regulation. This also highlights the

importance of incorporating signaling networks as they become

available into these integrated network models.

Expansion and applicability of GEMINI to other systems
Given the large amount of data required to run GEMINI, we

are currently restricted to a few well-studied systems with adequate

expression, knockout phenotype and network data. However, with

the development of automated methods for reconstructing

metabolic networks [48], GEMINI could be used as part of a

network inference pipeline to identify functional regulatory

interactions that are inferred from omics data, and reconcile the

interactions with metabolic phenotypes for a large number of

sequenced organisms. Another limiting factor in this study was the

phenotype data used for analysis. The use of gene deletion growth

phenotype data in the current study might restrict GEMINI’s

application only for microbes for which such a knock-out library

exists and has been measured in great enough detail across

different conditions. This approach might not be feasible for use in

higher organisms like humans and mice. Yet, in theory, phenotype

data other than that from growth assays such as metabolite uptake

or secretion could be used to limit the space of possible functional

states of the TRN and could be applied to higher organisms.

The regulatory network model used in this study, despite being

genome-scale and much more comprehensive than the current

integrated model for yeast [19], does not comprise the entire

TRN. We have focused only on a subset (14%) of the TRN that

regulate metabolism. Nevertheless, this subset of the TRN is very

well studied and has important applications in metabolic

engineering and synthetic biology. Further, the scale of the TRN

is primarily limited by the size of the biochemical model with

which it interfaces. Although we have restricted our analysis to

interactions involving metabolic reactions in the present work, the

GEMINI approach is generally applicable to other cellular

network types [25,49], such as signaling networks, as they become

available. By integrating other network types, one might account

for additional regulatory-phenotype relationships and thus im-

prove predictions even further.

Conclusion
Regulatory network inference is a significant challenge today as

the system is underdetermined and often results in multiple models

that could explain the same data with equal efficacy. Thus, it is

important to incorporate diverse heterogeneous data types like

expression, binding and growth phenotype to constrain the

solution space. GEMINI exploits this principle to refine high-

throughput regulatory interaction data and identifies interactions

that are consistent with various data types. Importantly, this is the

first such approach that ties the inference of a transcriptional

regulatory network from high-throughput data with a biochem-

ically detailed metabolic network.

We believe this to be an important first step towards

mechanistically refining a network model of one type (gene

regulatory) using data from another network type (metabolic).

Further, our approach highlights the potential of using a

biochemically-detailed mechanistic framework to interpret high-

throughput data and identify and reconcile inconsistencies across

different data types. We find that the data types that are more

consistent with each other also have greater evidence supporting

their existence. While there are still several challenges ahead for

Figure 4. Distribution of inconsistencies across the regulatory and metabolic network. The distribution of phenotype inconsistencies was
exponential across the TRN, suggesting that a few TFs led to most of the inconsistencies. In contrast, the distribution of inconsistencies across the
metabolic network was linear and did not reveal any strong trend towards specific metabolic genes.
doi:10.1371/journal.pcbi.1003370.g004
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regulatory network inference, the methods presented here lay the

foundation for the rapid refinement of omics data using a

mechanistic framework, which will advance the study of metabolic

regulation and lead to better predictive models of the cell.

Methods

Comparison with experimental phenotype data
Using PROM, we predicted the growth outcome of knocking

out each TF in the network under a specific condition. By

comparing our simulations with experimental growth viability

data, we identified and reconciled inconsistent predictions. TF

knockouts were predicted to be lethal if the respective maximal

growth rate prediction of the mutated organism was less than 5%

of the wild-type growth rate [22,50]. Any knockout that resulted in

a growth-rate lower than 95% of the wild-type was considered

suboptimal, as has been used previously in other analyses [22,26].

These results were robust to the choice of the growth thresholds

(Figure S5). While we used the values commonly used in the

literature, tuning these thresholds indicated that higher enrich-

ments could be achieved by varying this parameter. However, we

recommend using the default values to avoid over-fitting.

Inferring the closest flux state to the measured
phenotype

The closest flux state that represents the measured growth

phenotype (v2) was obtained by solving the same optimization

problem for PROM with the additional constraint that the

predicted model growth rate matches the observed growth

phenotype:

min(k:azk:b) ð8Þ

subject to constraints

lb’{aƒvƒub’zb ð9Þ

a,b§0 ð10Þ

Additional constraint –

f w0:05|Max: Growth rate ð11Þ

or

f w0:95|Max: Growth rate for suboptimal inconsistencyð Þ ð12Þ

f is the predicted growth rate by the model, and 0.05 and 0.95 are

the growth rate thresholds for determining viability and sub-

optimality as mentioned above. The solution obtained by solving

this above problem gives flux state v2.

The entire steps in GEMINI are described in the pseudo code

below:

N Build PROM model

For each TF {

1) Run PROM for the TF knockout

2) Find inconsistent predictions i.e predicted growth rate/phenotype?mea-

sured growth rate/phenotype

3) IF NGG (No Growth (Predicted Phenotype) – Growth (Measured

Phenotype))

a. Note the flux vector (v1)

b. Force the model to match the measured phenotype (section above)

c. Note the new flux vector (v2)

d. Sort reactions (R) regulated by the TF based on magnitude of flux

change between v1 & v2

e. Find the reaction (R) regulated by the TF whose fluxes change the

most between v1 & v2

f. For this reaction (R) find the corresponding gene(s)

g. The interaction between the TF and the corresponding gene(s) is

removed

h. Get a new regulatory network

4) Run PROM for the TF knockout and IF phenotype matches experiment,

Output the final regulatory network

ELSE REPEAT from 3e till it matches actual phenotype

}

Alternate optima for flux state v2
The flux solutions in FBA have multiple possible states, while

the growth rate or the objective function is unique. Since we relied

only on the growth rate and the transcriptionally constrained

reactions (part of the objective function in PROM) as the metric to

refine the network, the final network structure was identical across

different runs of GEMINI. To further investigate how alternate

optimal solutions alter the effectiveness of GEMINI we generated

new flux solutions by introducing small changes to the growth

threshold (step 3b in pseudo code and equation 11). We compared

five different networks across different combinations generated by

changing the growth threshold. This generated new flux solutions

with approximately the same growth rates. We found that the

networks were 99.9% similar across these small perturbations that

led to alternate flux solutions (Table S3). We can infer that the

same subset of phenotype-inconsistent interactions is removed

across various growth thresholds and flux optima. The use of

regulatory-constrained reactions in the objective function in

PROM ensures that there is no variability between runs and we

get the same solution each time while running GEMINI.

Furthermore as mentioned earlier, strong enrichment for validated

interactions were obtained over a wide range of these growth

thresholds (Figure S5).

Alternate optimal solutions for the refined regulatory
network

The above analysis of inferring regulatory networks across

alternate metabolic flux solutions also resolves the possibility of

multiple alternate optima with respect to the regulatory network.

We found that the same core set of interactions was removed

across different runs. In addition, we also compared network

generated using much larger changes in growth rate threshold

used for inferring the flux state v2. We once again found that while

the refined network sizes changed across different thresholds, they

were .95% similar to each other among the interactions that were

retained. These results indicate that that there is a strong global

optimal state for the regulatory network and by perturbing the

model and constraints we still converge close to the global optima.

In terms of network refinement, all these results suggest that there

is a core set of regulatory interactions that are removed across

different constraints and conditions (Table S3). While its still

certainly possible that there are multiple other optimal flux and
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regulatory network solutions, the use of regulatory-constrained

reactions in the objective function in PROM ensures that there is

no variability between runs and we get the same solution each time

while running GEMINI.

Estimating the penalty factor k
The value of k, which determines the strength of the

transcriptional regulatory constraint, was determined in a data-

driven manner by tuning across a range of values. We set k to be

the lowest value above which there was no increase in the number

of interactions removed (Figure S6). We obtained a k value of 10

for all of our simulations based on this strategy. The results were

robust to the value of k chosen this way for a wide range of values

above 10 (Figure S7).

Alternative approaches to prioritize interactions
We have used a metabolic network-based approach for

prioritizing regulatory interactions for pruning. One can envision

other approaches and metrics to prioritize these interactions. As an

alternative metric, we sorted interactions based on probabilities

instead of predicted flux difference (see step 3 in the pseudo-code).

While this seems to be a straightforward metric, this ignores the

system-level effect of these interactions on the biochemical network

for prioritizing the interactions. Using this approach on the

yeastract data, we obtained an enrichment of 10220 for direct

interactions. Note that even though we only use transcriptomic

data to prioritize interactions, this approach yields higher

enrichment than MI or correlation. This is because we prune

interactions till the predicted systems-level growth phenotype

matches the experimental measurement; thus the systems level

constraint is unchanged while only transcriptomic data is used for

prioritizing interactions.

As a second alternative approach for prioritizing interactions,

instead of sorting interactions based on the flux difference

between the predicted (v1) and expected (v2) flux state, we

assigned the reactions into two groups – the first group of

reactions change significantly based on a z-score threshold

between v1 and v2 and the rest that did not change significantly.

Interactions that regulate these reactions were then pruned

randomly from the first group and then from the second group.

The rationale being that this strategy doesn’t rely significantly

on the absolute difference between reactions and allows for

alternate flux solutions. We once again found strong enrichment

for gold standard interactions through this approach across

different thresholds (p-value = 102143). This method is further

discussed in Figure S9. The strong enrichments using different

metrics and thresholds suggest that the systems level constraints

are relatively more important than the order in which the

different inconsistencies are solved.

Robustness to various inputs
Both expression randomization and phenotype swapping

removed the enrichment for gold-standard interactions (p-

value = 1). We also performed bootstrapping of expression data

to determine sensitivity to the gene expression data used. This was

done by running GEMINI using random subsets comprising 80%

of the expression data. We found strong enrichment in all of the

runs (p-value,1E-90; Figure S8), suggesting that the data were

sufficiently powered for this analysis.

All parameters were left at the default value as recommended

for running PROM (binarization threshold – 0.33 i.e. the 33rd

percentile of gene expression data (Figure S10); lethal/non-lethal

growth threshold – 0.05 (Figure S5)). The parameter Kappa is

determined in a data driven manner by the GEMINI algorithm as

mentioned above. We found that much higher enrichment could

be achieved by changing the binarization threshold (upto 102220;

Figure S10); nevertheless, we recommend using the default

parameter values while running GEMINI to avoid over fitting.

Biases in the metabolic network architecture
For the analysis to identify potential biases in the network

architecture, we identified genes affecting maximal growth rate

by doing a systematic single gene deletion of all the metabolic

genes in the model in glucose minimal media. We identified

interactions that regulate this set of genes and compared it with

the rest of the interactions in the network. We found the fraction

of gold standard interactions to be the same in both sets of

interactions. Dead end reactions used for this analysis were

identified using the removeDeadends algorithm in the COBRA

toolbox in MATLAB.

Metabolic network and growth conditions
We used the reconstructed yeast metabolic network by

Zommorodi and Maranas because it had the highest predictive

ability among the available yeast models [33]. In our simulations,

the carbon source and oxygen uptake were constrained to

10 mmol/h/gDW and 2 mmol/h/gDW, respectively. Ammonia,

phosphate, and sulfate were assumed to be non-limiting. Trace

amounts of essential nutrients that were present in the experi-

mental minimal media formulation (4-aminobenzoate, biotin,

inositol, nicotinate, panthothenate, and thiamin) were also

supplied in the simulations. Flux variability analysis for PROM

was performed using the FastFVA algorithm [51].

Gene expression data
Robust multi-array averaged (RMA)-normalized gene expres-

sion data consisting of 904 arrays in 435 conditions were obtained

from the Many-Microbes Microarray Database [34]. This

microarray compendium was chosen with the aim of maximizing

the number of conditions under which gene expression is

measured, while reducing array platform-induced variations

[22,52].

Regulatory network data
All the regulatory interaction data were obtained from the

supplementary material of the respective publications [37] or from

the author’s website [38,40] and from the YEASTRACT database

[31]. Among these interactions, only those involving metabolic

genes, and those that had corresponding expression data in the

Many Microbes Database were retained.

Growth phenotype data
Growth phenotype data for yeast TF knockout strains grown in

glucose, galactose, glycerol and ethanol minimal media were

obtained from Kuepfer et al [35]. These data provided a list of

lethal/non-lethal predictions under different conditions. Quanti-

tative growth data were obtained from Fendt et al [13] in glucose,

galactose and urea minimal media. TFs with missing values in the

Kuepfer et al or Fendt et al phenotype data were not refined using

GEMINI.

Estimating biological and functional significance
Metabolic pathway enrichment analysis was done by overlap-

ping genes in each regulon with genes in each pathway (like TCA

cycle or glutamate metabolism) as defined in the metabolic

network model. The p-value for overlap between the regulons and

pathway genes was calculated using the hyper-geometric test.
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In the analysis to determine the functional significance of the

interactions, the differentially expressed genes (FDR,0.05) were

obtained from Reimand et al. [37] based on their analysis of a

comprehensive TF knockout experiment by Hu et al. [15].

For the comparison with PBM data [38], we compared the

distribution of interaction ranks for the original and refined

network. We used a t-test to test the hypothesis that the mean rank

for the refined network was lower than the mean rank of

interaction for the original network (p-value = 0.001).

Networks for iterative refinement
The sequence motif data were obtained from the supplement of

MacIsaac et al. [39]. A TRN model was inferred using the

algorithm CLR [4] with default parameters (number of bins = 10

and spline degree = 3), and using the expression data from the

Many Microbes Database. Predicted interactions with z-scores

greater than two (mutual information greater than two standard

deviations above than background) were chosen in the final

network. Interactions involving metabolic genes were then

identified and used for the analysis. For the TF knockout data

described previously, the top 100 genes with the lowest p-value

(below a FDR threshold of 0.05) were considered to be targets for

each TF. This was done to limit the size of the TRN. Table 2 gives

the network sizes and the number of interactions retained in each

case.

Statistical analysis
Mutual Information between interactions was measured using

the algorithm ARACNE [7] with default parameters. The p-value

for overlaps and enrichments with different interaction sets was

calculated using the hyper-geometric test. We calculated a p-value

for each comparison by summing over probabilities for all values

of overlap. = L, the length of the overlap. The obtained p-values

were rounded off to the closest power of 10 for clarity.

All the simulations and statistical analyses were performed in

MATLAB. The COBRA toolbox [53] was used to load and

optimize the metabolic model. The optimization problem was

solved using the GNU Linear Programming Kit (GLPK) solver.

The GEMINI algorithm along with a faster version of PROM,

and the integrated metabolic-regulatory network models for yeast,

are available for download at https://sourceforge.net/projects/

gemini-data/.

Supporting Information

Figure S1 Mutual Information (blue) and correlation (red)

tuning across various network sizes. Plots show enrichment (shown

as the negative log to the base 10 of the hypergeometric p-value)

for direct interactions. The same gene expression data set used for

GEMINI (904 arrays in 435 conditions) from the Many-Microbes

Microarray Database were used for estimating MI and correlation.

Interestingly, we observed that redoing the same analysis using

interactions with positive pearson’s correlation alone yielded

higher enrichments (minimum p-value = 10210), while interactions

with negative pearson’s correlation did not lead to any enrichment

for direct interactions (minimum p-value = 0.99).

(TIF)

Figure S2 MI (blue) and correlation (red) tuning across various

network sizes for indirect interactions. Plots show enrichment

(shown as the negative log to the base 10 of the hypergeometric p-

value) for indirect interactions. Interestingly, similar to direct

interactions, looking at interactions with positive pearson’s

correlation alone yielded higher enrichments (minimum p-

value = 10216), while interactions with negative pearson’s correla-

tion did not lead to any enrichment for indirect interactions

(minimum p-value = 0.96).

(TIF)

Figure S3 Comparison of the distributions of the MI scores for

the original and refined yeastract networks. We found that the

interactions retained by GEMINI do not consist only of the lower

part of the total MI distribution, except for extremely low MI

values close to zero. The pruning of the network by GEMINI is

less trivial than simply raising the threshold to select for significant

MI scores. The Kolmogorov-Smirnoff test also revealed no

significant difference (p-value = 1) between the two MI distribu-

tions.

(TIF)

Figure S4 Effect of the size of the input TRN

% Enrichment ~

Fraction of gold standard in final network �Fraction of gold standard in initial network

Fraction of gold standard in intital network
|100

We observed strong enrichment for gold standard interactions

using different random subsets of the yeastract TRN with different

sizes. The two plots show the hypergeometric p-value and

percentage enrichment of gold standard interactions after running

GEMINI. The plots show that the effectiveness of GEMINI

depends on the scale of the regulatory network. GEMINI

evaluates interactions in the context of other interactions in the

network and so its effectiveness will depend on the size and degree

of completeness of the entire network.

(TIF)

Figure S5 Assessment of the algorithm’s sensitivity to the choice

of the growth threshold used to determine lethal/non-lethal

predictions. TF knockouts were predicted to be lethal if the

respective maximal growth rate prediction of the mutated

organism was less than 5% of the wild-type growth rate. The

plot shows that the enrichment for gold standard interactions is

robust to the choice of the growth thresholds over a reasonable

range of values. While we used the values commonly used in the

literature (5%), tuning this threshold indicated that higher

enrichments could be achieved by varying this parameter. 10%

gave the highest enrichment implying that a 10% cut off might be

a better threshold for identifying lethal interactions in yeast. In

general, we recommend using the default values to avoid over-

fitting.

(TIF)

Figure S6 Estimating the value of k in a data-driven manner by

tuning across a range of values. We set k to be the lowest value

above which there is no increase in the number of interactions

removed. We obtained a k= 10 using this strategy.

(TIF)

Figure S7 Assessment of the algorithm’s sensitivity to the choice

of the kappa parameter. The enrichment for gold standard

interactions is robust to the value of kappa chosen for a wide range

of values above 10. Note that higher kappa implies greater

constraint due to transcriptional regulation.

(TIF)

Figure S8 Bootstrapping of expression data to determine

sensitivity of the algorithm’s performance (enrichment for gold

standard interactions) to gene expression data size and variance.

GEMINI was run using random subsets comprising 80% of the

expression data. We found strong enrichment in all of the runs,

while complete randomization of gene expression removed

enrichment. These results suggest that GEMINI is robust to small
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changes in gene expression data and the array conditions were

quite diverse and were sufficiently powered for this analysis.

(TIF)

Figure S9 Alternative approaches to prioritize interactions. The

normalized flux approach works as follows: We first estimated the

flux difference between the predicted (v1) and expected (v2) flux

state. We then normalized the flux differences to have zero mean

and unit variance (z-scores). Reactions were then pooled into two

groups based on a threshold z, which represents the deviation from

the mean flux difference. Interactions that regulate these reactions

were then pruned randomly from the first group (higher than the

threshold) and then from the second group. The advantage of this

approach is that it doesn’t rely significantly on the absolute

difference between reactions. However this approach introduces a

new parameter – the z-score threshold. The plot shows the

enrichment for gold standard interactions over a range of z-score

thresholds. The fact that we observe strong enrichments using

different metrics and thresholds suggest that the systems level

constraints are more important than the order in which the

different inconsistencies are solved. As mentioned earlier, the flux

solutions in FBA have multiple possible states, while the objective

function (the growth rate and the transcriptionally constrained

reactions) is usually unique.

(TIF)

Figure S10 Changing the threshold for binarizing gene expression

data. The binarization threshold is used to binarize the gene

expression data for estimating probabilities using PROM. We used

the default value used for running PROM (0.33); i.e. genes less than

33rd percentile of the overall expression distribution are considered

to be OFF. If the binarization threshold is lowered, only genes with

very low expression would be considered as OFF, and we would be

unable to quantify interactions accurately. In addition, we may be

unable to quantify interactions because some of the genes could be

predicted to be ON in all conditions as a result of the low threshold

(i.e., lost interactions). Decreasing the threshold to very low values

(,0.1) decreases the accuracy of PROM, which leads to less

comprehensive prediction. Increasing the threshold above 0.5

decreased the accuracy as well, as it would result in considering

genes that are ON as OFF. The ideal region is around 0.3 to 0.4 for

running PROM. We performed additional analysis for GEMINI

where we tuned our predictions over a range of binarization

threshold values. Our accuracy changes with the ability of PROM to

accurately predict growth phenotype (Figure S10). We recommend

using the default parameter values while running GEMINI.

(TIF)

Table S1 Enriched metabolic pathways in the refined Yeastract

network. Table S1a shows the new associations that were obtained

by running GEMINI and Supplementary Table S1b shows

associations that were removed by running GEMINI. The

associations are shown alphabetically (ordered by pathways).

(DOCX)

Table S2 List of 1170 interactions that were predicted by

GEMINI to be phenotype-inconsistent in only one of the four

conditions (glucose, galactose, glycerol and ethanol). We

predicted that these interactions might be true interactions that

are conditionally-inactive, and the phenotype inconsistency

might have arose due to post transcriptional regulatory

mechanisms inactivating these interactions in these conditions.

We found that for the top TFs with most interactions in this list

were inactivated through phosphorylation, consistent with our

predictions.

(DOCX)

Table S3 Analysis of alternate optimal solutions. We compared

networks inferred from different flux states by introducing small

changes to the expected growth rate. The similarity matrix below

shows the network sizes for different growth thresholds (described

in the methods section) and their similarity to each other (Table

S3a). We also compared refined networks using larger changes in

the growth threshold used to find v2. We once again found that

while the refined network sizes changed across different thresholds,

they were .95% similar to each other. These results indicate that

that there is a strong global optimal state for the regulatory

network and by perturbing the model and the constraints we still

reach very close to the global optima. In terms of network

refinement, all these results suggest that there is a core set of

regulatory interactions that are removed across different con-

straints and conditions. (Table S3b).

(DOCX)
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