A i
& UICC
global cancer control

[jC

International Journal of Cancer

The arginine metabolome in acute lymphoblastic leukemia can
be targeted by the pegylated-recombinant arginase I BCT-100

Carmela De Santo!, Sarah Booth®, Ashley Vardon®, Antony Cousins?, Vanessa Tubb®, Tracey Perry®, Boris Noyvert?,
Andrew Beggs>, Margaret Ng*, Christina Halsey?, Pamela Kearns®, Paul Cheng® and Francis Mussai (2*

*Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom

2 Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
3Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom

“Department of Anatomic Pathology, The Chinese University of Hong Kong, Hong Kong

®Bio-Cancer Treatment International Ltd, Hong Kong

Arginine is a semi-essential amino acid that plays a key role in cell survival and proliferation in normal and malignant cells. BCT-
100, a pegylated (PEG) recombinant human arginase, can deplete arginine and starve malignant cells of the amino acid. Acute lym-
phoblastic leukemia (ALL) is the most common cancer of childhood, yet for patients with high risk or relapsed disease prognosis
remains poor. We show that BCT-100 is cytotoxic to ALL blasts from patients in vitro by necrosis, and is synergistic in combination
with dexamethasone. Against ALL xenografts, BCT-100 leads to a reduction in ALL engraftment and a prolongation of survival. ALL
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blasts express the arginine transporter CAT-1, yet the majority of blasts are arginine auxotrophic due to deficiency in either
argininosuccinate synthase (ASS) or ornithine transcarbamylase (OTC). Although endogenous upregulation or retroviral
transduced increases in ASS or OTC may promote ALL survival under moderately low arginine conditions, expression of these
enzymes cannot prevent BCT-100 cytotoxicity at arginine depleting doses. RNA-sequencing of ALL blasts and supporting stromal
cells treated with BCT-100 identifies a number of candidate pathways which are altered in the presence of arginine depletion.
Therefore, BCT-100 provides a new clinically relevant therapeutic approach to target arginine metabolism in ALL.

Introduction
Acute lymphoblastic leukemia (ALL) is the most common
cancer of childhood. Significant progress has been made such
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that the majority of children will be cured of their disease
through multi-drug chemotherapy regimens. However, major
challenges remain. For children who are diagnosed with
high-risk disease, or those who relapse the prognosis remains
poor.! Fewer than 50% of adults will be cured despite suc-
cessful induction of a complete remission with chemother-
apy.” For those that are cured, the toxicities of treatment
with chemotherapy over a 2- to 3-year period remain a life-
long burden.’ Therefore, therapeutic strategies, which target
ALL blasts through new mechanisms, but do not add to the
cummulative toxicity, are urgently needed.

Arginine is a semi-essential amino acid required for pro-
tein synthesis, cell division and a number of intracellular
pathways that maintain cell survival.**> Although whole body
arginine levels are maintained through dietary intake and re-
synthesis, under conditions of high demand such as inflam-
mation, pregnancy and cancer, arginine availability is limiting
for on-going cell growth and survival. Arginine is metabo-
lized through the activity of Arginase I, II or iNOS enzymes.
The enzymes ornithine transcarbamylase (OTC) and argini-
nosuccinate synthase (ASS) provide the intracellular pathway
in which normal cells can protect themselves by re-
synthesizing arginine from citrulline. However, cancer cells
may be dependent on extracellular arginine for survival—
arginine auxotrophism, due to the loss of ASS or OTC recy-
cling enzyme expression; making them vulnerable to thera-
peutic arginine depletion.®
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While most children with acute lymphoblastic leukemia (ALL) are cured, only half of adults experience this outcome, and many
patients suffer life-long effects from the toxicities of chemotherapy. To overcome these challenges, therapies targeting novel
mechanisms in ALL blast cells are needed. In our study, PEGylated recombinant human arginase (BCT-100), which depletes
the semi-essential amino acid arginine, is shown to induce ALL cell death in vitro. In a xenograft model, BCT-100 reduced dis-
ease burden and improved survival. Expression of the enzymes argininosuccinate synthetase and ornithine transcarbamylase,
which synthesize recycle arginine intracellularly, are reduced in B-cell ALL blasts, suggesting arginine auxotrophism.

BCT-100 is a clinical-grade, PEGylated (PEG) recombinant
human arginase that catalyses the conversion of arginine to orni-
thine and urea, leading to arginine depletion.” BCT-100 has
shown significant activity against solid tumors and acute myeloid
leukemia both pre-clinically and in clinical trials.>* Here, we
investigate the role of arginine metabolism in ALL and the activity
of BCT-100 as a clinically relevant therapeutic approach for ALL.

Material and Methods

ALL patient samples

Blood samples were obtained from 21 patients with newly diag-
nosed ALL, before the start of treatment, at the Birmingham
Children’s Hospital (Supporting Table 1). Plasma was collected
from samples taken at the time of diagnosis, before any therapy.
Leukemic blasts were sorted from fresh peripheral blood mono-
nuclear cells (following lymphoprep enrichment of whole
blood) by CD19+ MACS beads, using Miltenyi LS columns.
ALL samples were investigated within 24 hrs of blood sampling
from patients. Bone marrow samples from 34 newly diagnosed
adult and paediatric ALL patients were obtained from the Chi-
nese Hospital, Hong Kong. Cerebrospinal fluid (CSF) samples
from 20 ALL patients (diagnosis and 1 year into treatment) and
23 healthy controls at diagnosis were obtained.

Cytotoxicity assay

Cell lines or sorted ALL blasts from patients were re-suspended
in RPMI-1640 (Sigma), 10% heat-inactivated arginine free fetal
bovine serum (Sigma), glutamine (1X) (Sigma), penicillin—
streptomycin (1X) (Sigma) and sodium pyruvate (1X) (Sigma).
Approximately 2 X 10° ALL blasts or 0.5 X 10 cell lines were
added to each well of 96-well plates (Corning Costar). On day
1, BCT-100 was added at final concentrations of 0, 200, 400,
600, 800, 1,000, 1,500, 2,000, 4,000 or 9,600 ng/mL to duplicate
wells. The cytotoxicity of dexamethasone (600 ng/mL) was also
tested in combination with BCT-100. Cells were incubated for a
further 72 hrs. The effect of arginine deprivation was similarly
tested by culturing ALL cell lines and patients’ blasts in SILAC
arginine free RPMI-1640 (Fisher Scientific), 10% heat-
inactivated arginine free fetal bovine serum (Fisher Scientific),
glutamine (1X) (Sigma), penicillin-streptomycin (1X) (Sigma)
and sodium pyruvate (1X) (Sigma).

ALL murine xenografts
Non-obese diabetic (NOD)/Shi-scid/interleukin (IL)-2 R severe
combined immunodeficient ynull (NOG) mice aged 10-14

weeks were injected with 5 X 10° REH-green fluorescent pro-
tein (GFP) leukemia cells (ATCC). To assess the effect of BCT-
100 on engraftment, 20 mg/kg BCT-100 was injected intrave-
nously (i.v.) twice a week or after 1 week from engraftment.
Bone marrow was harvested from the leg bones of mice killed
after 4 weeks of treatment. To investigate the activity of BCT-
100 against patient-derived ALL blasts in vivo, NOG mice were
engrafted with 1 X 10° human leukemia blasts sorted from the
blood of a newly diagnosed patient with ALL.

Bone marrow engraftment was confirmed after 12 weeks
by killing a sample population of mice and staining with
anti-human CD45 (% of CD45 on average 20%). A 20-mg/kg
BCT-100 was injected twice a week. The frequency of human
blasts (anti-human CD45) was analyzed in bone marrow at
the day of the mice were killed (15% weight lost).

For central nervous system (CNS) leukemia modeling, 6-
week-old JAX NOD.Cg-Prkdescidll2rgtm1Wijl/Sz]  (NSG)
(Charles River, Europe) mice were injected with 2 X 10° REH
cells via the tail vein. From day 14, the mice were treated with
weekly i.v. 20 mg/kg BCT-100. The mice were killed at day 33
when there was evidence of symptomatic leukemia with weight
loss and early hind-limb paralysis.

Histology and immunohistochemistry

Paraffin-embedded tissue sections of bone marrow trephines
from 34 ALL patients at diagnosis were deparaffinised and
rehydrated. Antigen retrieval was performed in 50 mM Tris/
2 mM EDTA pH 9.0 using a Philips Whirlpool Sixth Sense
microwave on a steaming program. Staining with anti-human
ASS (Abcam) and anti-human OTC (Abcam) using the
Novolink Polymer Detection System (RE7280-K, Leica). Pri-
mary antibody incubation was performed overnight in a cold
room. Sections were counterstained with Gill Nr 3 hematoxy-
lin (Sigma Aldrich) and mounted in Aquatex (Merck).

CNS histology was prepared as described previously.'”
Briefly, mouse heads were stripped of soft tissues, fixed in 10%
neutral buffered formalin, decalcified and stained with hema-
toxylin and eosin. Images were captured using Hamamatsu
NanoZoomer NDP scanner, and the area of CNS involvement
quantified using HALO v2.0.1061.3 software (Indica Labs Inc.).

RNA sequencing

RNA was derived from ALL blasts (REH cell line or human)
sorted from the bone marrow of the murine xenografts
described above, by CD19+ MACS bead selection, using
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Miltenyi columns. RNA was also derived from the CD19-
stromal fraction. Purity was checked by flow cytometry. Sam-
ples were prepared with the Illumina TruSeq RNA Sample
Preparation Kit v2. They were sequenced on the Illumina
HiSeq2000 platform using TruSeq v3 chemistry, over 76
cycles. Reads were mapped to hgl9 (human) or mml0
(murine) genomes using STAR RNA-Seq aligner software,
version 2.5.1b."> Number of reads per gene was counted by
the same software. Read counts were normalized and the reg-
ularized fold change following treatment with BCT-100 was
calculated using DESeq2 package.'* Genes were ranked by
the strength of the regularized log fold change.

Mouse CSF experiments

CSF was collected from mice under terminal anesthesia with
pentobarbital. A 25-gauge needle was percutaneously inserted
into the cisterna magna and CSF collected by gravity.
Blood was collected immediately post-mortem. Both CSF and
blood were centrifuged at 2,000¢ for 15 min at 4°C. CSF
supernatant and plasma were snap-frozen and stored at
—80°C until analysis.

Mass spectroscopy

Aliquots of 1 pl of CSF or plasma were diluted 1:50 in a 20%
water/50% methanol/30% acetonitrile solution and thoroughly
mixed. The solution was spun at 16,000¢ for 10 min at 4°C, and
the supernatant collected and analyzed by high-performance
liquid chromatography (HPLC)-mass spectrometry. HPLC sep-
aration was achieved via a ZIC-pHILIC column (SeQuant)
with a Guard column (Hichrom), and metabolite mass/charge
ratio measured with qExactive Orbitrap Mass Spectrometer
after electrospray ionization (Thermo Scientific) operating in
polarity switching mode.

Statistical analysis

A Wilcoxon rank-sum test was used to determine the statistical
significance of the difference in unpaired observations between
two groups (GraphpPad Prism). Correlations between parame-
ters were evaluated using Spearman rank correlation analyses.
p values are two-tailed and where values were <0.05, they
were considered statistically significant. For combination stud-
ies of BCT-100 with dexamethasone, the interaction effect of
the two drugs was tested in a two-way analysis of variance
(ANOVA).' Analysis of synergism was assessed according to
the Chou and Talalay method, using CompuSyn software
(ComboSyn, NJ).!' ALL blasts from patients were cultured with
BCT-100 alone (0, 200, 400, 600, 800, 1,000, 1,200 and 2,400
ng/mL), dexamethasone (0, 200, 400, 600, 800, 1,000, 1,200 and
2,400 ng/mL) or both for 72 hrs. The percentage of viable cells
relative to control after 72 hrs was measured by flow cytometry.
Using this method, a CI at ICs, for individual patient samples
is calculated, synergism is defined as CI < 1, while antagonism
is CI>1, and an additive effect is considered as CI= 1. For
CNS histology quantification and metabolite abundance, results
were analyzed by two-tailed unpaired student’s ¢-tests.

Targeting arginine metabolism in ALL

Study approval

In accordance with the Declaration of Helsinki, patient samples
were obtained after written, informed consent before inclusion
in the study. Regional Ethics Committee (REC Number 10/
H0501/39) and local hospital trust research approval for the
study was granted for United Kingdom hospitals and at the
Chinese University Hospital, Hong Kong. The Birmingham
Biomedical Ethics Review Subcommittee (BERSC) or the
University of Glasgow Animal Welfare and Ethical Review
Board (AWERB) approved all animal protocols in our study.
Procedures were carried out in accordance with UK Home
Office Guidelines and under Home Office License 60/4512.

Results

BCT-100 arginine depletion reduced disease burden

and prolongs survival in ALL murine xenografts

ALL remains the paradigm for metabolic therapies in the
treatment of cancer, through the established use of PEG-
asparaginase- and methotrexate-based chemotherapy regimens.
Although acute myeloid leukemia has been shown to be depen-
dent on arginine, the requirement of this amino acid in pre-B
ALL survival and proliferation is unclear. BCT-100 lowers argi-
nine levels in vitro and in vivo to undetectable levels.” Screening
of 3 B-ALL cell lines REH, TOM1 and NALMS6 revealed similar
cytotoxicity profiles in vitro to BCT-100 with 50% inhibitory
concentration (ICsp)s of 17.5-140 ng/mL. Less than 15% resid-
ual viable cells are present at concentrations of BCT-100 >600
ng/mL, when arginine concentrations are undetectable in the
supernatants (Supporting Information Fig. Sla). 2T-ALL cell
lines JURKAT and MOLT-4 were similarly tested in vitro,
revealing ICsq of 400 ng/mL and 150 ng/mlL, respectively.
JURKAT cells were more resistant to BCT-100 in vitro,
although at higher BCT-100 doses <10% of residual viable cells
remained (Supporting Information Fig. S1b).

The effect of BCT-100 was first tested against REH xeno-
graft models of ALL, treated either early or late in leukemic
engraftment. REH was selected as having representative in vitro
cytotoxicity to the other cell lines and established in vivo
engraftment kinetics. In both models, BCT-100 treatment led
to significant decrease in the burden of disease (early treatment
(D +1): 58.2% blasts in controls vs. 5.5% blasts in treated,
p =0.0002; Late treatment (D + 17): 80.1% blasts in controls
vs. 53.3% blasts in treated, p = 0.0013) (Figs. 1a and 1b). To
extend these findings, BCT-100 was tested in a patient-derived
xenograft model of ALL. BCT-100 led to a significant prolonga-
tion of murine survival (p = 0.017, Fig. 1¢) with an accompany-
ing reduction in bone marrow disease (92.5% blasts in controls
vs. 50.1% blasts in treated; p = 0.0145, Fig. 1d). No blasts were
identified in the blood or spleens of mice in either model during
treatment, by flow cytometry, ruling out that decreases in bone
marrow blast numbers was due to egress of these cells from the
bone marrow (Supporting Information Fig. S1c).

Consistent with the specific catabolism by Arginase I,
BCT-100 induced a significant reduction in plasma arginine
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concentration (p =0.0002) (Figs. le and 1f). Mass spectros-
copy analysis of the plasma revealed a significant increase in
ornithine (p = 0.0028), lactate (p = 0.001) and pyruvate levels
(p =0.015), with no other metabolic changes (Fig. 1le). No
evidence of toxicity or weight loss was seen in the BCT-100
treated mice (Supporting Information Fig. S1d).

At disease presentation, patients may present with blasts
in the CSF. Using a xenograft model with established CSF
ALL kinetics, we identified that BCT-100 administered i.v.
does not impact on CNS ALL disease (Figs. 2a and 2b), and
CSF arginine (and other amino acid) concentrations are
unchanged (Fig. 2¢).'> The result can be explained by the
measurement of radiolabeled drug penetration into xenografts
tissues. High concentrations of BCT-100 were found in the
blood (AUC: 64744 mUEq h/mL) with moderate levels in
the key lymphoid compartments of the lymph node, spleen
and bone marrow (Fig. 2d, total; Supporting Information Fig.
Sle). However, bioavailability of BCT-100 was significantly
lower in the spinal cord, supporting our findings above.

ALL blasts are auxotrophic for arginine due to

deficiencies in ASS or OTC expression

Arginine metabolism is based on three key cellular compo-
nents—the transport of arginine from the extracellular micro-
environment, catabolism of arginine into its products and the
re-synthesis of arginine from precursors. Arginine is trans-
ported from the microenvironment into cells principally by the
Na+-independent (System y+) family of transmembrane cat-
ionic amino acid transporters (CAT1, CAT2A and CAT2B).
ALL blasts and non-malignant B cells from healthy donors
principally expressed CAT-1, with an absence of CAT-2A or
CAT2B (Fig. 3a; Supporting Information Fig. S1f). Proliferating
blasts consumed arginine from the microenvironment (Fig. 3b)
and have a significant reduction in viability in the absence of
arginine (Supporting Information Fig. S2a).

Once inside the cell arginine, is catabolized through the
expression of Arginase I, Arginase II or NOS. Quantitative poly-
merase chain reaction (qQPCR) of sorted patients’ blasts (Fig. 3a)
and Western blot analysis of cell lines (Supporting Information
Fig. S2b) showed that Arginase I is the main enzyme expressed.
B cells from healthy donors similarly expressed Arginase I (Sup-
porting Information Fig. S2c). Unlike in acute myeloid leukemia,
where we found a significant reduction in plasma arginine, anal-
ysis of the plasma and CSF (Supporting Information Fig. S2d) of
ALL patients revealed no significant reduction in arginine com-
pared with healthy controls. There was no increase in arginase
activity in cell culture supernatants or patient plasma (data not
shown).

Cells may also source arginine from intracellular precursors
through an arginine recycling pathway. The enzyme OTC con-
verts ornithine into citrulline, which is converted to argininosuc-
cinate through ASS expression. Argininosuccinate is finally
converted back to arginine by argininosuccinate lyase (ASL).
However, in cancer cells, OTC or ASS may be downregulated or
absent, breaking the arginine biosynthesis pathway, making the
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cells dependent on extracellular arginine—arginine auxotro-
phism.® B-ALL cell lines expressed ASS and relatively lower
expression of OTC (Supporting Information Fig. S2b), sugges-
ting auxotrophism. No expression of ASS or OTC could be
detected in normal B cells (Supporting Information Fig. S2¢).

To investigate whether ALL blasts from patients have an
arginine auxotrophic signature, 34 diagnostic bone marrow
aspirates from adults and children with ALL were examined
(Fig. 3c). Of 19 adult ALL samples, 26% had no staining,
58% showed low, 11% showed moderate and 5% showed
high ASS expression; while 0% had no staining, 52% showed
low, 16% showed moderate and 32% showed high OTC
expression (Fig. 3d, upper panel). Of 13 pediatric pre-B ALL
samples, 7% had no staining, 32% had low and 54% had
moderate ASS expression and 7% had high expression; while
0% had no staining, 15% had low, 70% had moderate and
15% had high OTC expression (Fig. 3d, bottom panel). Ten
adult and one childhood sample had absent/low expression
of both enzymes. The predominance of ASS expression over
OTC expression was reconfirmed in a second cohort of 14
patients by qPCR (Fig. 3a). Two pediatric T ALL samples
were received of which ASS or OTC expression was low for
1 patient and moderate for another patient (Supporting
Information Fig. S2e). Western blots of T-ALL cell lines
JURKAT and MOLT-4 confirmed expression of ASS but an
absence of OTC (Supporting Information Fig. S2f).Therefore,
the majority of ALL blasts had absent or low expression of at
least one of the key enzyme steps in the arginine recycling
pathway, suggesting a reliance on extracellular arginine
import for survival.

Impact of ASS and OTC on ALL blast viability

To directly understand the impact of arginine recycling
enzymes on ALL blast viability under low arginine condi-
tions, human ASS and OTC genes were transfected into B-
ALL cell lines (NALM6 and REH) and a T-ALL cell line
(JURKAT). Following flow cytometric sorting Western blots
confirmed an increased expression of ASS and OTC proteins,
compared with wild-type controls (Supporting Information
Fig. S3a). Consistent with the role of these enzymes, ASS or
OTC transduced ALL blasts had increased viability compared
with wild-type cell lines under moderately low arginine con-
ditions (150 ng/mL BCT-100) Fig. 3e). However, at higher
concentrations of BCT-100 (<600 ng/mL BCT), when argi-
nine is undetectable in culture supernatants, these transduced
enzymes had no effect, with <15% viable cells remaining
(red dotted line). These findings indicate that increased ASS
and OTC can help maintain viability, when arginine avail-
ability in the microenvironment is sub-optimal. However,
under extreme depletion of arginine recycling, enzyme upre-
gulation cannot compensate. These findings support that
therapeutic doses of BCT-100 have been demonstrated to
have activity against ASS+ or OTC+ cells of solid cancers in
preclinical and human trials.
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BCT-100 has activity against patient-derived ALL blasts

and is synergistic with dexamethasone

We described above that BCT-100 can lower arginine, lead-
ing to reduced numbers of blasts in murine xenografts. To
further investigate the effects of BCT-100, ALL blasts were
sorted from 14 fresh samples from patients at diagnosis, and
treated with BCT-100 (0-9,600 ng/mL) for 72 hrs. ALL blasts
showed a range in sensitivity to BCT-100 (Fig. 4a) with IC54s
from 75 to 9,600 ng/mL (Fig. 4b). The majority of samples
were sensitive to BCT-100 with a significant reduction in
viable ALL blasts. Five samples were completely resistant. No
correlation with patients’ clinical or genetic characteristics
was seen (Supporting Information Table S1). No correlation
with CAT-1 protein expression was identified (Fig. 4c).
Indeed, blockade of CAT protein function with N-nitro 1-
arginine methyl ester (L-NAME) had no effect on cell line
viability (Supporting Information Fig. S3b).

BCT-100 induces necrotic cell death synergies
with dexamethasone
Dexamethasone remains a cornerstone of ALL chemotherapy
regimens at diagnosis and relapse.'® The combination of BCT-
100 with dexamethasone is significantly more cytotoxic than
BCT-100 alone (F(; 24y = 857.2; p < 0.0001) (Fig. 4d), and anal-
ysis of individual patient samples, showed that BCT-100 syner-
gized with dexamethasone (CI <1) for 10 of 14 samples (Fig.
4e). BCT-100 sensitivity did not correlate with sensitivity to
dexamethasone (r = 0.094, p = 0.75), suggesting the two drugs
have different mechanisms of activity and that dual treatment
could be used in blasts resistant to dexamethasone (Fig. 4f).
Arginine depletion has been shown to induce cell death
through a number of different mechanisms, dependent on the
cancer subtype.”'” Cell cycle analysis of ALL cell lines or
patients” blasts showed an increase in cells in G0/G1 (Fig. 5a)
and increases in Cyclin B1 and D, compared with untreated cells
(Fig. 5b; Supporting Information Fig. S3¢). BCT-100 also led to
an upregulation of CAT-1, ASS and OTC in treated patients’
blasts consistent with cellular attempts to compensate for low
extracellular arginine (Supporting Information Figs. S3d and
S3e). No significant differences in ASS, OTC or ARGI expres-
sion were identified between sensitive and resistant samples
(Supporting Information Fig. S3f).
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Cell cycle arrest may lead to quiescence or cell death.'®
BCT-100 did not induce any significant increase in PI+/
Annexin+ cells (Supporting Information Fig. S4a) or activa-
tion of caspases-9 and —3 or PARP cleavage (Supporting
Information Fig. S4b), confirming that apoptosis is not the
mechanism of cell death. Similarly, no evidence for increased
conversion of LC3-I to LC3-II was identified, suggesting
autophagy is not the driver of cell death (Supporting Infor-
mation Fig. S4c). Western blotting of ALL cell lines and two
patients confirms no evidence for RIP1K activation (Necrop-
tosis), ruling out any major contribution for this form of cell
death (Supporting Information Figs. S5a and S5b). Examina-
tion of ALL cells treated with BCT-100 by electron micros-
copy confirmed a complete breakdown of cellular membranes
and organelles most consistent with necrosis (Fig. 5¢), as has
been previously reported in AML.’

Arginine is central to a number of cellular processes. To
examine the global effects of arginine deprivation on ALL
blasts in vivo, sorted REH cells and patient ALL blasts from
the bone marrows of control and BCT-100 treated mice were
subjected to RNA-sequencing. The top 10 genes with the
highest fold-change in gene expression are shown in Support-
ing Information Tables S2a (REH) and S2b (Patient xeno-
graft). In REH, the top differentially expressed gene was the
hemoglobin beta subunit. Other genes of interest included
the ferritin heavy chain 1 pseudogene 16 (FTH1P16) and the
Ferritin heavy polypeptide 1 (FTHI). Arginine conversion
into nitric oxide has been shown to influence the iron signal-
ing pathway in myeloid cells.'” In blasts from patient-derived
xenografts, the top differentially expressed gene was the
immunoglobulin lambda variable chain (IGLV4-69). Changes
in cell adhesion genes CEACAM6 and ITAG6 were also
prevalent, which are known to correlate with minimal resid-
ual disease and prognosis in ALL patients.”**'

We revalidated by qPCR that CEACAM6 and ITAG6
expression is decreased in resistant blasts (Supporting Infor-
mation Fig. S4c), consistent with their known contribution to
chemotherapy resistance in ALL.

Stromal cells have been shown to protect T-ALL blasts from
arginine deprivation in vitro, although the effects of arginine
depletion on the stromal cells themselves have never been
reported. Murine bone marrow, depleted from blasts was subject

Figure 1. BCT-100 arginine depletion decreases ALL disease burden in vivo. (@) NOG mice were injected with REH-GFP ALL blasts. BCT-100
(20 mg/kg) was given by i.v. injection twice a week from D+1. Bone marrow was sampled from the femurs after 2 weeks to assess
hCD45+ cells by flow cytometry. BCT-100 leads to significantly lower ALL engraftment. (b) NOG mice were injected with REH ALL blasts.
BCT-100 (20 mg/kg) was given by i.v. injection twice a week from D+14. Bone marrow was sampled from the femurs after 2 weeks to
assess hCD45+ cells by flow cytometry. BCT-100 leads to significantly lower ALL engraftment. Data are representative of two independent
experiments. () NOG mice were injected with human ALL blasts, sorted from the blood of a newly diagnosed patient. BCT-100 (20 mg/kg)
was given by i.v. injection twice a week after engraftment was reached. Kaplan-Meier curves showing a significant prolongation of survival
in BCT-100 treated mice. (d) NOG mice were injected with human ALL blasts, sorted from the blood of a newly diagnosed patient. BCT-100
(20 mg/kg) was given by i.v. injection twice a week from D+1. Bone marrow was sampled from the femurs after 2 weeks to assess
hCD45+ cells by flow cytometry. BCT-100 leads to significantly lower ALL engraftment. (e) Levels of selected amino acids detected by
HPLC-MS in plasma of BCT-100 treated or untreated NSG mice normalized to untreated mice. Data for arginine and immediate

breakdown products are shown as individual graphs. () Plasma from control and BCT-100 treated NOG mice was collected after 14 days.
The concentration of arginine was determined by ELISA. BCT-100 significantly lowers the plasma arginine concentration in vivo.
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Figure 2. BCT-100 does not affect CNS metabolic profile or ALL disease burden in vivo. (@) NSG mice were injected i.v. with REH cells and BCT-
100 (20 mg/kg) was given by i.v. injection weekly from D+14. Histology of treated and control mice showing no change in ALL engraftment in
the CNS at the end of the experiment. Representative images from three of seven mice per group are shown. (b) Quantification of area of ALL
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manuscript. AU: arbitrary units. (b) ALL cell lines significantly deplete arginine from the microenvironment. All data are representative of
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bone marrow samples. (e) JURKAT, NALMé and REH cell lines transduced with ASS or OTC genes have increased viability compared with

wild-type cell lines, in cultures with 150 ng/mL BCT-100 (Histograms). At 600 ng/mL BCT-100 cell viability of all lines was <15% (red dot-

ted line). Representative of three experiments.
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Figure 4. BCT-100 is cytotoxic against ALL blasts from patients and synergises with dexamethasone. (a) ALL blasts from 14 newly diagnosed
patients were cultured with BCT-100 (0-9,600 ng/mL) for 72 hrs. The percentage of viable blasts relative to untreated was determined by flow
cytometry. BCT-100 leads to a dose-dependent decrease in ALL blast viability. (b) I1Csq values for the activity of BCT-100 against ALL patient blasts
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Figure 5. BCT-100-induced cell cycle arrest leads to necrotic cell death. (a) ALL cell lines were cultured with 600 ng/mL BCT-100. Cell cycle analysis
was performed after 72 hrs. BCT-100 increases the percentage of cells in GO/G1 arrest. (b) Relative expression of cyclins A, B1, D, B2 and E1 in
BCT-100-treated ALL patients’ blasts compared with untreated controls (hashed line) were investigated by qPCR. Representative data of 6 patients
are shown. (c) ALL blasts from patients were treated with BCT-100 (600 ng/mL). Analysis of cell death was performed by transmission electron
microscopy. Representative micrographs of three of six patients were shown. Upper panel: untreated cells. Lower panels: post treatment with

600 ng/mL BCT-100. Features consistent with organelle enlargement, cell membrane permeablisation and cellular fragmentation with 600 ng/mL

BCt-100. Experiments performed on six separate occasions.

to RNA-sequencing (Supporting Information Table S2¢). Argi-
nine depletion led to a downregulation of a number of genes
associated with protein synthesis including ribosomal proteins
(Rps6-psl and Rps3a3) and eukaryotic translation elongation
factor 1 alpha 1 pseudogene. The granulocytic marker Ly6G was
also upregulated consistent with previous reports of increased
immature granulocytes in the bone marrow of arginase-treated
mice.”

In summary, these results show that ALL blasts require
arginine for survival and proliferation, but their auxotrophism

makes them a target for BCT-100 arginine-depletion therapy.

Discussion

Investigation of cancer metabolism is undergoing a renais-
sance, and studies of the changes in metabolic profiles of ALL
before and after chemotherapy suggest blasts induce significant
changes in amino acids and lipids in the microenvironment.”
Although concentrations of metabolites in body compartments
can be evaluated, clinical translation of the findings has
remained limited due to a lack of available molecules which
can target these metabolic requirements. The paradigm of met-
abolic therapy in ALL is the use of Asparaginase, which takes
advantage of the failure of ALL blasts to express Asparagine
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synthetase, making blasts dependent on exogenous sources of
asparagine.”* Although methotrexate is another established
approach to target leukemic cell metabolism (through dihydro-
folate reductase inhibition), it is only recently that an alterna-
tive strategy, arginine depletion, has become viable.””

Arginine is a semi-essential amino acid that is taken in
from the diet and metabolized via tissue specific expression
of Arginase I, ASS and OTC enzymes in the liver, intestine
and kidney, respectively. At the cellular level, arginine is
catabolized by Arginase I, II or NOS enzyme expression into
molecules such as ornithine, a precursor for polyamines, and
NO.*® Under limiting conditions, intracellular arginine con-
centrations are usually maintained through the recycling of
arginine by the expression of ASS, OTC and ASL enzymes.”’
However, we have shown that in adult solid cancers and in
AML, the expression of these enzymes may be abnormal.”’
ASS expression had previously only been reported in three
ALL patient samples.”” We identify here that, in the majority
of 48 samples, pre-B ALL cells have absent or low expression
of at least one of these enzymes. Pediatric ALL blasts gener-
ally had higher expression of ASS or OTC compared with
blasts from adult patients. Expression of low-moderate ASS
and OTC in our 2T-ALL patient samples is consistent with
findings in T-ALL cell lines and suggests T-ALL could also
be a suitable target for arginase therapy.”® ASS and OTC
contribute to blast survival at moderately low arginine condi-
tions, but encouragingly for clinical development of this mol-
ecule, blast expression of ASS and OTC cannot fully protect
the cells from the cytotoxicity of BCT-100 when arginine is
depleted to undetectable levels. The regulation of ASS, OTC
and ASL expression in cancers, and the advantages it pro-
vides to the malignant cell are not well understood.”*° In
melanoma and osteosarcoma cell lines, decreased ASS expres-
sion enhanced cell proliferation through enhancement of
pyrimidine synthesis.’’ ASS expression can also influence
lipid metabolism through AMPK regulation in hepatic cells,
suggesting multiple downstream effects of this enzyme in cel-
lular metabolism.>* ASS gene expression can be modulated
by promotor hypermethylation, which correlates with aggres-
sive phenotypes of myxofibrosarcomas, although the role of
epigenetic modulation in the setting of ALL is unknown. Less
is known about OTC regulation in cancer. In normal liver,
two isoforms (OTC-t1 and OTC_t2) have been described,
suggesting a role for post-transcriptional control.” In rat-
derived hepatomas, treatment with azacitidine induced OTC
gene activation, suggesting epigenetic regulation may play a
role.** Studies of rare patients with congenital ASS and OTC
deficiencies may shed further insight into the function and
control of these enzymes.”

We have shown that PEG-recombinant human Arginase
(BCT-100) can lower arginine levels in vitro, in vivo and in
man to undetectable levels.”” We confirmed here that this
drug leads to a specific catabolism of arginine into its by
products, including ornithine, that induces cell cycle arrest
with differences in cyclin profiles, that progresses to necrosis

Targeting arginine metabolism in ALL

in both AML and ALL blasts. Differences in cell cycle regula-
tion and their abnormalities in malignant cell development
from lymphoblastic and myeloid lineages may account for
these findings or that arginine deprivation acts through dif-
ferent mechanisms in these two cell types. Ultimately, the
majority of blasts die by necrosis. It is possible that arginine
concentrations are reduced rapidly in both the extracellular
and intracellular microenvironment and the pathways which
might otherwise protect cells from death or cause a more
programmed cellular destruction, such as induction of anti-
apoptotic proteins or initiation of autophagy, are not
engaged. A previous report identified that mesenchymal stro-
mal cells can protect T-ALL cell lines from apoptosis induc-
tion by arginine depletion.”® Interestingly, we identified that
BCT-100 arginine depletion leads to significant increases in
pyruvate and lactate concentrations in the serum, suggesting
a global metabolic switch toward glucose metabolism. In the
context of leukemia, T-ALL blasts with a reduced glutamine
dependence are suggested to undergo a metabolic switch
toward glucose metabolism.”” Arginine supplementation can
also induce indirect changes in glucose regulation via insulin-
induced phosphorylation of Akt in muscle and adipose tissue
of diabetic rats.*® Thus, these glycolytic changes likely derive
from non-leukemic tissues. RNA-sequencing of leukemic
blasts after treatment with BCT-100 revealed alterations in
the iron metabolic process, including FTHIP16 and the
FTHI. These findings are consistent with reports that nitric
oxide can regulate gamma-globulin, H-ferritin and transferrin
in AML cell lines or transfected fibroblasts.”® Stromal cells
may compensate for arginine depletion by upregulating OTC,
and contributing to leukemia resistance to this therapy. We
found no evidence of significant alterations in the arginine
pathway genes in either blasts or stromal cells by RNA-
sequencing, consistent with our previous report in AML
blasts, and that of others, that pathways of resistance likely
lie outside of arginine metabolism.*’ Little is known about
how ALL blasts remain resistant to metabolic therapies, as
few are in current clinical practice.

Within the duration of our in vivo experiments, we saw
no changes in CSF arginine or other amino acids, and no
effect on CNS ALL disease. Although BCT-100 has high bio-
availability in the hematological compartments, penetration
into the CNS was low. The status of the blood-brain barrier
in leukemia patients is likely to be normal. We have previ-
ously shown that the ability of ALL blasts to enter the CSF is
a generic mechanism."”” Similar molecules such as PEG-
Asparaginase do not enter the CSF but do lead to a depletion
of asparagine from the CSF in children with ALL.*' Pegylated
gene vectors have been reported to enter the brain in CNS
tumor models, although here the blood-brain barrier may be
abnormal and the molecules are much smaller.

BCT-100 is undergoing clinical evaluation in a number of
settings. A Phase I clinical trial of BCT-100 has been com-
pleted in adults with relapsed/refractory hepatocellular carci-
noma (HCC—NCT00988195) and the data describe an
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excellent safety profile and predictable pharmacokinetics and
pharmacodynamics (PK/PDs).** The trial demonstrated that,
at 1600 U/kg BCT-100 given iv. over 1 hr at weekly inter-
vals, plasma arginine falls below 8 uM (lowest detectable
range) and is maintained for up to 166 hrs. Doses of BCT-
100 up to 2,500 U/kg were also administered with no maxi-
mum tolerated dose reached. A 1,600-U/kg was chosen as
the lowest effective dose (Optimal Biological Dose) to take
forwards in adults. Toxicities were mainly NCI-CTCAE grade
1 or 2—abdominal pain, diarrhea and transaminitis. Notably,
the relapsed HCC population has significant transaminitis/
hyperbilirubinemia due to disease location. A separate Phase
I trial is underway in other adult solid malignancies
(NCT02285101). One Phase II trial has been completed in 20
heavily pretreated adults with HCC (NCT01092091), which
showed an improvement in overall survival in patients who
achieved adequate arginine depletion.® BCT-100 was well tol-
erated, with a good toxicity profile similar to that reported in
the Phase I study. BCT-100 is currently under clinical devel-
opment for adults with acute myeloid leukemia and children
with relapsed/refractory solid and hematological cancers. The
effect of BCT-100 on CNS disease and arginine levels will be
determined in these upcoming trials. Unlike alternative
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arginine depletion strategies, no evidence of immunogenicity
or neutralizing antibodies which prevent arginine degradation
have been reported for BCT-100.*"*° Therefore, our study
provides an exciting rationale for further clinical translation
of BCT-100 arginase-based therapies for ALL and other
malignancies.
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