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Abstract

The identification of communities, or modules, is a common operation in the
analysis of large biological networks. The Disease Module Identification
DREAM challenge established a framework to evaluate clustering approaches
in a biomedical context, by testing the association of communities with
GWAS-derived common trait and disease genes. We implemented here
several extensions of the MolTi software that detects communities by
optimizing multiplex (and monoplex) network modularity. In particular, MolTi
now runs a randomized version of the Louvain algorithm, can consider edge
and layer weights, and performs recursive clustering.

On simulated networks, the randomization procedure clearly improves the
detection of communities. On the DREAM challenge benchmark, the results
strongly depend on the selected GWAS dataset and enrichment p-value
threshold. However, the randomization procedure, as well as the consideration
of weighted edges and layers generally increases the number of trait and
disease community detected.

The new version of MolTi and the scripts used for the DMI DREAM challenge
are available at: https://github.com/gilles-didier/MolITi-DREAM.
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m Amendments from Version 1

In the revised version, we further described the dream challenge
data and evaluation procedure. Concerning our approach, we
detailed the description of the SBM protocol to generate random
networks with a community structure, and added the resolution
parameter to the modularity formula.

Several additional experiments were performed, and additional
data, displayed as figures and tables, are provided in the
response to reviewers, for size constraint reasons. In particular,
we now provide the results of the Dream challenge on
communities obtained by varying the modularity parameter (as
compared to the recursion procedure), simulations including
standard deviation, Rand index comparisons of the monoplex
networks communities, as well as many discussions around the
points suggested by the referees.

We finally want to emphasize the fact that, as a companion paper
of the Dream challenge channel, our manuscript is included in

a set of papers strongly linked to the main consortium paper,
available in BioRxiv. Some of the results and experiments can

be fully understood only in light of the consortium paper, since
we are required not to duplicate the information. This concerns

in particular the data and evaluation protocol of the Dream
challenge, which are fully described in the consortium paper.

See referee reports

Introduction

Biological macromolecules do not act isolated in cells, but
interact with each other to perform their functions, in signaling or
metabolic pathways, molecular complexes, or, more generally,
biological processes. Thanks to the development of experimen-
tal techniques and to the extraction of knowledge accumulated
in the literature, biological networks are nowadays assembled
on a large scale. A common feature of biological networks is
their modularity, i.e., their organization around communities
- or functional modules - of tightly connected genes/proteins
implicated in the same biological processes'.

The Disease Module Identification (DMI) DREAM challenge
aims at developing a benchmark to investigate different
algorithms dedicated to the identification of communities from
biological networks’. The challenge has been divided into two
sub-challenges, to identify communities either i) from six
biological networks independently, or ii) from all these networks
jointly. The second sub-challenge, in particular, intend to test
if some approaches can leverage complementary information
from multiple networks jointly to define integrated communi-
ties. The clustering approaches proposed by the participants are
assessed regarding their capacity to reveal disease communities,
defined as communities significantly associated with genes
implicated in diseases in GWAS studies™*.

The challengers proposed various strategies and clustering
approaches, including kernel clustering, random walks or modu-
larity optimization. We competed with an enhanced version of
MolTi, a modularity-based software that we recently developed”.
We focused on the subchallenge dedicated to the identification
of communities from multiple networks as MolTi was initially
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developed to cluster multiplex networks, i.e., networks composed
of different layers of interactions. Molti extended the modu-
larity measure to multiplex networks and adapted the Louvain
algorithm to optimize this multiplex-modularity. We have
demonstrated that this multiplex approach better identifies the
communities than approaches merging the networks, or perform-
ing consensus clusterings, both on simulated and real biological
datasets’.

Grounded on these initial results, we here extended and tested
our MolTi software, both on simulated data and on the DMI
challenge framework. We improved MolTi with the implemen-
tation of a randomization procedure, the consideration of edge
and layer weights, and a recursive clustering of the classes larger
than a given size.

With simulated data, we observed that considering more than
one network layer improves the detection of communities, as
already noted in Didier et al., 2015°, but also that communities are
better detected with the randomization procedure. With the DMI
benchmark, we pointed to a great dependence on the GWAS
dataset used for the evaluation and on the FDR threshold defined,
but, overall, randomizations and edge and layer weights increase
the number of disease communities detected.

Methods

MolTi-DREAM: communities from multiplex networks

We detected communities with an extended version of MolTi’,
a modularity-based software. Although MolTi was specifically
designed for multiplex networks, (i.e., networks composed of
different layers of interactions), it deals with monoplex
networks (i.e. single-layer network) by considering them as
multiplex networks composed of a single layer. All the
networks are here considered undirected. The new version
of MolTi, MolTi-DREAM, and the scripts used for the DMI
DREAM challenge are available at https:/github.com/gilles-
didier/MolTi-DREAM.

Modularity. Network modularity was initially designed to measure
the quality of a partition into communities’, and subsequently
used to find such communities. Since finding the partition
optimizing the modularity is NP-complete, we applied the
meta-heuristic Louvain algorithm’. This algorithm starts from
the community structure that separates all vertices. Next, it tries
to move each vertex from its community to another, picks the
move that increases modularity the most, and iterates until no
change increases the modularity any more. It then replaces the
vertices by the detected communities and performs the same
operations on the newly obtained graph, until the modularity
cannot be increased any more. In order to handle multiplex
networks, we use a multiplex-adapted modularity and an
adaptation of the Louvain algorithm for optimizing this
multiplex-modularity.

Edge and layer weights Modularity approaches can deal
with weighted networks®, and we modified MolTi to handle
weighted networks. We also added the possibility to weight each
layer of the multiplex network: the contribution of each layer
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in Equation (1) is multiplied by its weight when computing the
multiplex modularity.

Multiplex modularity The modularity measure to detect
communities in a multiplex network (X(g))g can be written as

W(g) S_(g)S(g)
X©®—y——15 ey
gzm(g)“}d; ij 14 Zm(g) €
i#]

where X denotes the (monoplex) network of the layer g, w'® is
the user-defined weight associated to the network g, m® is the
sum of the weights of all the edges of X©, Xl.(j'.) is the weight
of the edge {i, j} in X©, Sl.“” is the sum of the weights of all
the edges involving vertex i in X®, ¢, . is equal to 1 if / and j
belong to a same community and to 0 otherwise, and 7 is the
resolution parameter modulating the size of the communities

detected.

Randomization. We implemented a randomized version of the
Louvain algorithm, similar to the one in GenLouvain’. Rather
than updating the current partition by picking the move lead-
ing to the greatest increase of the modularity, we randomly pick
a move among those leading to an increase of the modularity.
Different runs of the randomized Louvain generally return
different partitions, even if the results are often close.
MolTi-DREAM runs the randomized Louvain algorithm a user-
defined number of times, and returns the partition with the highest
modularity.

Simulations of Multiplex Networks with a known community
structure

We simulated random multiplex networks with a fixed known
community structure and various topological properties by using
Stochastic Block Models (SBMs) as in Didier et al., 2015°. SBMs
model networks with a given community structure under the
key assumption that all edges are drawn independently condi-
tionally on the communities to which their nodes belong. In our
simulations, we considered multiplex networks with 1,000
vertices split into 20 balanced communities. Each individual
network of these multiplex networks is then simulated by
independently drawing edges with fixed intra and inter com-
munity edge probabilities: 0.1 and 0.01 for sparse networks
and 0.5 and 0.2 for dense ones. Dense (resp. sparse) multiplex
networks contain only dense (resp. sparse) networks, while mixed
networks contain both sparse and dense networks. Multiplex
networks with missing data are obtained by randomly remov-
ing half of the vertices (and the edges involving them) of the
multiplex networks simulated from SBMs.

The relevance of a community structure is assessed by comput-
ing the adjusted Rand index'’ between the detected communities
and the ones used to simulate the multiplex networks.

The Disease Module Identification challenge benchmark
Biological Networks. The DMI challenge provided six human
biological networks: two protein-protein interactions, one
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literature-curated signaling, one co-expression, one network
linking genes essential for the same cancer types, and one network
connecting evolutionary-related genes. These six networks have
various sizes and edge densities (Table 1). All networks have
weighted edges, and all networks but the signaling network
are undirected. However, we considered the signaling
network as undirected.

Evaluations with GWAS data. The communities identified by the
different challengers were evaluated according to the associations
of their member genes with GWAS data, using the PASCAL tool
described in Lamparter et al., 2016*. The procedure leverages the
SNP-based p-value statistics obtained from 180 GWAS datasets,
covering common diseases and traits. The communities are
associated with p-values, then corrected for multiple test-
ing, and an FDR threshold is used to determine the number of
significant disease communities in a given partition®*. We used
three datasets: the “Leaderboard” (76 GWASs) and “Final” (104
GWAS:s), which were used during the challenge, and their union
in a “Total” dataset (180 GWAS:s).

Obtaining modules in a given size range. The DMI challenge
set up two constraints on the submitted communities: no overlap
and a size ranging from 3 to 100 nodes. We here post-filtered all
partitions to keep only classes containing from 7 to 100 nodes.

Resolution parameter Modularity-based clustering approaches
are often associated to a resolution parameter Y to tune the size
of the obtained communities. We tested different values of this
parameters (y = 1, y =5, y = 10, vy = 100), but the leaderboard
tests showed clearly better results for the recursive approach.
We chose to keep the default y = 1 and focused on this recursive
procedure.

Recursion procedure We re-clustered all the communities
above a certain size (here 100 vertices) by extracting the corre-
sponding subgraphs from the networks and applying recursively
the MolTi algorithm. We iterated the process until obtaining
only communities with less than 100 vertices, if possible (some
communities with more than 100 vertices cannot be split by
considering modularity).

Table 1. Number of vertices, of (non-zero-
weighted) edges and density of the biological
networks used in the DMI challenge.

Network glfu ::l%irs :;l;l 2::;‘:"3 Density
1-ppi 17,397 2,232,405 1.48 x 1072
2-ppi 12,420 397,309 5.15 x 107
3-signal 5,254 21,826 1.34 x 107
4-coexpr 12,588 1,000,000 1.26 x 102
5-cancer 14,679 1,000,000 9.28 x 102
6-homology 10,405 4,223,606 7.80 x 102
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Results

Randomization improves community detection on
simulated multiplex networks

To evaluate the accuracy of the community structures detected
from the initial MolTi and its improved version that includes
the randomization procedure, we simulated random multiplex
networks with a fixed, known community structure, and various
features (Methods). We observed that considering a greater
number of layers always improves the inference of com-
munities, as already observed” (Figure 1). In addition,
communities are better detected from sparse multiplex
networks than from dense ones. We also observed that the
randomizations improve the accuracy of the detected
communities, in particular for dense multiplex networks, with or
without missing data. Increasing the number of randomizations
improves the results up to four randomization runs.

Finding disease modules with MolTi

We applied the improved MolTi to the networks provided
by the DMI challenge (Methods). We focused on the
sub-challenge 2, which was dedicated to the identification of
communities from multiple networks. We considered the six
DMI biological networks as layers of a multiplex network, and
applied the recursion procedure to obtain communities in the
required size range. The significant disease communities were
selected regarding their enrichments in GWAS-associated
genes (Methods). We observed first that the number of detected
disease communities is strongly dependent on the GWAS
dataset and FDR threshold used (Figure 2). For the FDR
threshold used during the challenge, i.e., FDR lower than 0.05,
the number of significant disease modules detected slightly
increases after randomization (Figure 2).

Multiplex versus monoplex. We next evaluated the added value
of the multiplex approach as compared to the identification of
modules from the individual networks. When analyzing the
significant disease modules obtained for an FDR threshold of
0.1, we observed that combining biological networks in a
multiplex generally increases the number of significant modules
(Figure 3). However, this does not stand for the cancer and/or
homology networks, which lower the number of significant
modules retrieved when added as layers of the multiplex. We
hypothesize that the community structures of these networks
(if they exist) are so unrelated that it is pointless to seek for a
common structure by integrating them.

These observations are consistent with the DMI challenge obser-
vations, in which the top-scoring team in the sub-challenge
2 handled only the two protein-protein interaction networks.
Our algorithm also performs well with the two protein-protein
interaction networks, but the highest number of disease modules
is retrieved by considering network combinations that exclude
the cancer and homology network layers (Figure 3).

Evaluation of the edge and layer weighting. All the six
biological networks used in the DMI challenge have weighted
edges. We compared the number of disease modules obtained
by considering or not considering these weights in the MolTi
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partitioning, for different FDR thresholds (Table 2). We
observed that intra-layer edge weights only has a slight effect on
the number of significant disease modules identified, except for the
very low significance threshold of 0.01, where it seems pertinent to
use these weights.

MolTi-DREAM allows assigning weights to each layer of the
multiplex network, for instance to emphasize the layers known
to contain more relevant biological information. Given the
results obtained on individual networks, we decided to test a
combination of weights that would lower the importance of the
S-cancer and 6-homology network layers. We observed that this
led to detecting more disease modules (Figure 4). Conversely, less
disease modules are detected when higher weights are given to
these networks (Figure 4).

Discussion and conclusion

We applied here the MolTi software and various extensions to
identify disease-associated communities following the DMI
challenge benchmark. The new version of MolTi, MolTi-DREAM,
runs a randomization procedure, takes into account edge and
layer weights, and performs a recursive clustering of the classes
that are larger than a given size. We finished tied for second in
the challenge. However, even if we obtained higher scores than
monoplex approaches, the difference was not significant and the
organizers of the DREAM challenge declared the sub-challenge
2 vacant.

In the simulations, all the networks are randomly generated from
the same community structure. These networks can thereby
be seen as different and partial views of the same underlying
community structure. Combining their information in a suitable
way is thereby expected to recover the original structure more
accurately. In contrast, combining networks with unrelated
community structures (or no structure at all) is rather likely to
blur the signal carried by each network. The DMI biological
networks are constructed from different biological sources
that might correspond to unrelated community structures. This
may explain the results of the sub-challenge 2, in which the
top-performer used only the two protein-protein interaction
networks. With MolTi, we tried to leverage information from the
6 networks together. However, we do not obtain the highest
number of disease modules from a multiplex containing all the
six networks, but rather from a subset of these networks.

From a biological perspective, the protein-protein networks
and the pathway networks are expected to contain mainly
physical or  signaling interactions between  proteins.
It has been shown that interacting proteins tend to be co-
expressed'!, which could explain why the co-expression network
also provides complementary information. In contrast, the
cancer network is determined from processes operating at a
very different level. Overall, these results show that the sources
of biological information that are added as layers of a
multiplex need to be evaluated thoroughly.

Evaluating the relevance of the community structure detected
from real-life datasets is a very complicated problem since the
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Sparse multiplex networks with missing data

MolTi standard ———
MolTi rand. 1 run -
MolTi rand. 2 runs --
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Figure 1. Adjusted Rand indexes between the reference community structure used to generate the random multiplex networks, and
the communities detected by standard and randomized MolTi with 1 to 5 randomization runs. Multiplex networks contain from 1 to 9
graph layers. The indexes are averaged over 2,000 random multiplex networks of 1,000 vertices and 20 balanced communities. Each layer
of sparse (resp. dense) multiplex networks is simulated with 0.1/0.01 (resp. 0.5/0.2) internal/external edge probabilities. Mixed multiplex
networks are simulated by uniformly sampling each layer among these two pairs of edge probabilities. Multiplex networks with missing data

(right column) are generated by removing vertices from each layer with probability 0.5.
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Figure 2. Number of significant disease modules identified from the multiplex network for different GWAS datasets and FDR
thresholds. “Leaderboard” and “Final” datasets were used during the training and final evaluation of the challenge, respectively, whereas
the “Total” dataset is the union of the two previous ones. The total number of considered communities is 605 in the absence of randomization,
584 for 5 randomizations, 585 for 10 randomizations and 582 for 15 randomizations.
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Figure 3. Number of significant disease modules identified for different combinations of multiplex network layers. Ten randomizations
have been applied, and the FDR threshold is set to 0.1. The total number of considered communities for each multiplex network is displayed
in parenthesis.
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Table 2. Number of significant
disease modules detected. over
615 and 585 considered modules
in the unweighted and weighted
contexts, respectively

FDR Unweighted

0.01
0.025
0.05
0.1

FDR 0.05

40 L Leaderboard
Final ===
Total oosm

Weighted

5 10
13 12
20 19
30 32

FDR 0.1

Figure 4. Number of significant disease modules identified with FDR thresholds 0.05 and 0.1, and from three different inter-layer
weightings: No Weights, i.e., equal weights for all layers (585 modules in total), Confidence Weights, i.e., weights proportional to the
expected biological relevance: 1-ppi=1, 2-ppi=1, 3-path=1, 4-coexpr=0.5, 5-cancer=0.1, 6-homology=0.1 (555 modules in total), and
Inverse Confidence Weights, i.e., weights inversely proportional to the expected biological relevance: 1-ppi=0.1, 2-ppi=0.1, 3-path=0.1,

4-coexpr=0.5, 5-cancer=1, 6-homology=1 (648 modules in total).

actual structure is hidden and generally unknown. In this context,
the only possibility for assessing the detected communities is to
consider indirect evidence provided by some independent biologi-
cal information. Different teams are thereby developing proxies
to evaluate the communities, mainly based on testing the enrich-
ment of genes contained in each community in Pathways or
Gene Ontology annotations. The approach followed by the DMI
DREAM challenge is based on GWAS data. This GWAS-based
evaluation is specific in the sense that it considers p-value-weighted
annotations rather than usual binary ones, i.e., “annotated/not
annotated”. This probably contributed to the volatility of the
results observed with the DMI DREAM challenge framework.

Data availability
MolTi-DREAM and the scripts used for the DMI DREAM
challenge: https://github.com/gilles-didier/MolTi-DREAM

Archived scripts and source code for MolTi-DREAM as at time
of publication: http://doi.org/10.5281/zenodo.1468950"

License for MolTi-DREAM: GNU 3
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? Arda Halu
Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital
(BWH), Harvard Medical School, Boston, MA, USA

In their manuscript entitled “Identifying communities from multiplex biological networks by
randomized optimization of modularity,” Didier et al. apply a network clustering method to identify
communities that are significantly enriched in disease signatures. They build on their previously published
community detection method, which is based on the greedy optimization (following the algorithm by
Louvain et al.) of multiplex modularity. The study is submitted as part of the DMI DREAM Challenge,
which aims to evaluate different clustering algorithms by how well the resulting clusters are associated
with GWAS-implicated disease genes. The authors test their approach on simulated datasets as well as
DMI benchmark datasets. They have three improvements on their original method: randomization, edge
and layer weights, and recursive clustering for large clusters.

The DMI DREAM Challenge itself is an important exercise addressing the non-trivial task of identifying
biologically meaningful communities in molecular networks. This paper by Didier et al. takes on this
challenge by treating the benchmark datasets as a multiplex network. While limited by the constraints of
the challenge, | think the paper is an important contribution that offers an insight as to how multiplex
methods fare on real-world biological networks of diverse and not necessarily related sources.

The paper is well written, but it has room for improvement, especially in the concise way information is
presented in the Methods and Results section. Most of my major comments relate to the clarification of
details | thought to be missing from Methods and Results. In various places in the manuscript, the reader
is assumed to be familiar with the DREAM Challenge and the previous paper [5] on which this paper is
based. The Methods section should thus be expanded to render the study more accessible and
self-contained. In some places, the results could be interpreted better. Below are my suggestions meant
to help the authors improve the presentation of their study:

Major comments:

1) Randomly generated synthetic networks: Even if previously published in [5], it would be helpful if this
were described a little more in detail. Providing details about how the community structure is defined or
what exactly balanced communities means would be helpful to the reader.

2) More information is needed for the network types, even if they’re described elsewhere under the
umbrella of the DMI challenge. What were the sources for each network? Which organism are the PPI
networks derived from? Are the co-expression networks tissue-specific or not? Details like these would
be informative when interpreting the results of Figure 3 from a biological standpoint.

3) Itis important to clarify how the multiplex network was constructed out of the six networks. For it to be a
multiplex network, the same set of nodes should be represented on each layer, which likely requires the
pruning of the six benchmark networks. How many nodes did the final multiplex consist of? How many
edges were on each layer? Is there any specific inter-layer link structure?

4) The authors use PASCAL to determine the disease-associated genes from GWAS, which are in turn
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used to determine the communities that are significantly enriched in disease signals. It is crucial at this
point to convey to the reader very clearly what PASCAL does and how it’s translated to “significant
disease modules.” The authors should, with a couple of sentences, describe how PASCAL does the
SNP-to-gene mapping, and then, more importantly, how the p-value weighted gene annotations from
PASCAL are used in the enrichment to determine the significant disease modules. A good description of
this would facilitate the interpretations of Figure 2-4.

5) The Methods section on controlling the size of modules could be more informative. “We tested different
pre-filters (pruning leaves), parameters (resolution parameter, recursions, combination of graph weights
for multiplexes) and post-filters (density, size, pruning leaves) in each leaderboard round.” This sentence
contains a lot of information without really getting into details. The authors could elaborate on each item.
For instance, the resolution parameter does not really seem to come into play (it is even omitted from the
definition of multiplex modularity since it is set to 1). Recursion was used to limit the size of the clusters,
and while the authors mention tests conducted in leaderboard rounds, no data here is shown as to how
varying the resolution parameter changes the results. Perhaps the authors could either omit the section
about the resolution parameter altogether or provide some supplementary figures on it.

6) The 100 cutoff is set by the challenge, but in other settings, is there a way to set this ad hoc limit more
concretely? Could the authors comment on this?

7) In Figure 1, the authors note that the randomizations improve the accuracy of the detected
communities, in particular for dense multiplex networks. This is interesting. May that suggest that dense
networks have more possibilities whereby local maxima in the modularity landscape can lead to better
results than the best solution? Can the authors comment on possible reasons why this could be the case?

8) What Figure 2 tells me is that if we simply relax the association criterion (FDR cutoff), we’ll simply get
more enriched communities, which is not entirely surprising. Here | think the distinction between the
different GWAS datasets is important to discuss, if the authors are saying the results are sensitive to the
datasets. What is it that makes the “Leaderboard” and “Final” datasets different? What are the diseases
and traits included in the GWAS datasets? Perhaps the authors could comment on this.

9) Also for Figure 2 (I may be missing something obvious here) — are these results based on multiplex or
monoplex?

10) “We hypothesize that the community structures of these networks (if they exist) are so unrelated that it
is pointless to seek for a common structure by integrating them.” This is an interesting point that should
remind us that the multiplex biological network should be constructed with a hypothesis in mind (e.g.
various molecular levels from transcripts to proteins to metabolites) rather than piling up different
networks into a multiplex structure. There is not much reason to think that just adding different sources of
biological information should increase the performance of detecting disease modules. The tradeoff
between signal and noise with the addition of diverse biological layers can be added as a point of
discussion.

11) Multiplex versus monoplex: The notion that multiplex networks help identify a greater number of
significant disease modules than monoplex networks combined is an exciting prospect. However, the
evidence shown in Figure 3 is a little scant. How was the comparison done exactly? Were the number of
significant modules from each separate network summed up and compared to the one from multiplex?
These kinds of details should be included.
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12) | found the Discussion a bit too DREAM Challenge-oriented. | think the parts comparing the results
with those of the top performer are unnecessary (but this may be a requirement of the challenge so ignore
if that's the case). The authors should revise the discussion to recapitulate and interpret their results, and
to highlight the advantages of using the multilayer approach. | think it is commendable that the authors
chose to include all of the six datasets, regardless of how related they are. Even the fact that the addition
of some (possibly orthogonal) layers is detrimental to the outcome is an important finding.

Minor points:
1) In the definition of multiplex modularity: KA(g)_i should be lowercase, i.e. k(g)_i.

2) Also in the definition of multiplex modularity, | would suggest the authors use s_i instead of k_i if they’re
dealing with weights to denote the strength of the node rather than the degree. This is an optional point,
but it would make it more aligned with the network science literature and nomenclature.

Typos:

- “biological networks are nowadays assembled on a large-scale.” --> on a larger scale

- “picks the move that increases the most modularity” --> picks the move that increases modularity the
most

- “data in which we randomly withdrawn vertices” --> data in which we randomly withdraw (or just say
remove) vertices

- “but to a limited extend after more than four runs” --> to a limited extent

- “obtained by considering or not these weights in the MolTi partitioning” --> obtained by considering and
not considering these weights in the MolTi partitioning

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.
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Anais Baudot, CNRS, France

In their manuscript entitled “Identifying communities from multiplex biological networks
by randomized optimization of modularity,” Didier et al. apply a network clustering
method to identify communities that are significantly enriched in disease signatures. They
build on their previously published community detection method, which is based on the
greedy optimization (following the algorithm by Louvain et al.) of multiplex modularity.
The study is submitted as part of the DMI DREAM Challenge, which aims to evaluate
different clustering algorithms by how well the resulting clusters are associated with
GWAS-implicated disease genes. The authors test their approach on simulated datasets
as well as DMI benchmark datasets. They have three improvements on their original
method: randomization, edge and layer weights, and recursive clustering for large
clusters.

The DMI DREAM Challenge itself is an important exercise addressing the non-trivial task
of identifying biologically meaningful communities in molecular networks. This paper by
Didier et al. takes on this challenge by treating the benchmark datasets as a multiplex
network. While limited by the constraints of the challenge, | think the paper is an
important contribution that offers an insight as to how multiplex methods fare on
real-world biological networks of diverse and not necessarily related sources.

The paper is well written, but it has room for improvement, especially in the concise way
information is presented in the Methods and Results section. Most of my major comments
relate to the clarification of details | thought to be missing from Methods and Results. In
various places in the manuscript, the reader is assumed to be familiar with the DREAM
Challenge and the previous paper [5] on which this paper is based. The Methods section
should thus be expanded to render the study more accessible and self-contained. In some
places, the results could be interpreted better. Below are my suggestions meant to help
the authors improve the presentation of their study:

We agree that our manuscript requires familiarity with the DMI DREAM challenge data and
consortium manuscript: It is indeed not independant, and was specifically written as a companion
paper to be published with papers from other participants for the F1000 dream challenge channel.
We apologize for it's strong size constraints, and the fact that we tried to avoid any overlap with the
main consortium paper, available in bioRxiv and considered for publication in a journal. We
checked and tried to give the same amount of details as the other papers published in DREAM
channels, in particular in the DMI channel.

Major comments:

1) Randomly generated synthetic networks: Even if previously published in [5], it would be
helpful if this were described a little more in detail. Providing details about how the
community structure is defined or what exactly balanced communities means would be
helpful to the reader.

This point was also stated by another reviewer, and we now have extended the method section
describing the generation of random network with a known community structure. We simulated
networks with 20 balanced communities, meaning that the communities have the same size
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(regarding the number of nodes).

2) More information is needed for the network types, even if they’re described elsewhere
under the umbrella of the DMI challenge. What were the sources for each network? Which
organism are the PPI networks derived from? Are the co-expression networks
tissue-specific or not? Details like these would be informative when interpreting the
results of Figure 3 from a biological standpoint.

We agree that more information about the individual networks can help deepening the
understanding of some of the results presented in the article, but the networks are an important
point and deeply described in the main DMI challenge consortium paper available on biorXiv. This
challenge paper is still considered for publication in a journal, and we are expected to avoid any
overlap. We however now state in the method section that all the data are human.

3) It is important to clarify how the multiplex network was constructed out of the six
networks. For it to be a multiplex network, the same set of nodes should be represented
on each layer, which likely requires the pruning of the six benchmark networks. How
many nodes did the final multiplex consist of? How many edges were on each layer? Is
there any specific inter-layer link structure?

This is a very important and interesting point. The integration of biological networks obtained from
different sources into a multiplex network is indeed not straightforward, as the different networks
contain different data. In the multiplex framework, it is not mandatory to prune the networks to get
the same set of nodes: multiplex networks share the same set of vertices (i.e., the union of all the
nodes from all layer), as defined in [1]. Each layer provides information for a subset of the nodes,
and the information for the remaining nodes is unknown and considered as missing data. In this
context, the number of nodes to be clustered is the union of nodes in each layer, not the
intersection. It is also in this context that we tested network layers with missing data in the
simulations.

The multiplex modularity is equal to the sum of the individual modularities of the graphs of the
multiplex with regard to the same community partition. Therefore, there is no need for an inter-layer
link structure when constructing the multiplex network.

[1] Kivela M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. 2014. Multilayer
networks. Journal of Complex Networks 2:203-271

4) The authors use PASCAL to determine the disease-associated genes from GWAS,
which are in turn used to determine the communities that are significantly enriched in
disease signals. It is crucial at this point to convey to the reader very clearly what
PASCAL does and how it’s translated to “significant disease modules.” The authors
should, with a couple of sentences, describe how PASCAL does the SNP-to-gene
mapping, and then, more importantly, how the p-value weighted gene annotations from
PASCAL are used in the enrichment to determine the significant disease modules. A good
description of this would facilitate the interpretations of Figure 2-4.

We rephrased the corresponding method section to mention p-value and multiple testing
corrections. However, we have for this companion paper a strong size constraints. The PASCAL
tool is a complex approach deeply described in a publication (Lamparter et al. Plos Computational
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Biology), and its application and use in the context of the DMI dream challenge is fully described in
the consortium paper. A precise and correct description of the evaluation procedure, from SNP
mapping to significant modules would be too long and overlapping with the consortium and
PASCAL papers.

5) The Methods section on controlling the size of modules could be more informative. “We
tested different pre-filters (pruning leaves), parameters (resolution parameter, recursions,
combination of graph weights for multiplexes) and post-filters (density, size, pruning
leaves) in each leaderboard round.” This sentence contains a lot of information without
really getting into details. The authors could elaborate on each item. For instance, the
resolution parameter does not really seem to come into play (it is even omitted from the
definition of multiplex modularity since it is set to 1). Recursion was used to limit the size
of the clusters, and while the authors mention tests conducted in leaderboard rounds, no
data here is shown as to how varying the resolution parameter changes the resulits.
Perhaps the authors could either omit the section about the resolution parameter
altogether or provide some supplementary figures on it.

Indeed, the resolution parameter was missing in the equation, and we now have included it. In
addition, we removed from the manuscript the sentence describing the various test we made as
this was indeed possibly confusing.

Concerning the choice of the default resolution parameter, we made extensive tests that are
provided below, but we lack space in the manuscript to detail them. These tests show that the
recursion approach provides overall a higher number of significant disease modules in the Dream
Module Identification (DMI) challenge framework.

Total number of modules obtained when running Molti with 10 randomizations on the 6 DMI
challenge network for different values of the resolution parameter:

Table 1

Number of significant Modules obtained with variations of Gamma:

Table 2

Comparison with recursion (apply Molti in a recursive way to communities larger than 100):

Table 3

For FDR=0.1
Figure 1

For FDR = 0.05
Figure 2

For FDR = 0.01
Figure 3

6) The 100 cutoff is set by the challenge, but in other settings, is there a way to set this ad
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hoc limit more concretely? Could the authors comment on this?

Defining the optimal module size is a complex task. One could imagine using the challenge
benchmark to find the optimal module size. However, this is not feasible in practice as 1) the
computation of PASCAL scores are time-consuming and cannot really be used to optimize the
algorithms, 2) the sensitivity/volatility of the results to the number of submitted modules and GWAS
data used make the interpretation on a fine-grained scale difficult.

The consortium paper discuss this point and identify, in particular, that the average module size do
not correlate with the number of significant modules identified by the different approaches (Figure
3C in bioRxiv). It is also interesting to note that some modules are submodules of larger modules.

7) In Figure 1, the authors note that the randomizations improve the accuracy of the
detected communities, in particular for dense multiplex networks. This is interesting. May
that suggest that dense networks have more possibilities whereby local maxima in the
modularity landscape can lead to better results than the best solution? Can the authors
comment on possible reasons why this could be the case?

This is a very interesting point. We were actually surprised by the extent to which randomization
improves the community detection on simulated networks. We initially thought that the greater
increase in the accuracy of the communities detected on dense multiplex networks came from the
fact that there was more room for improvement in this case. Your point makes sense since one can
expect a greater number of local maxima for the modularity for dense network than for sparse
ones, in addition to more possibilities of moving vertices during the Louvain execution. This point
definitely deserves to be further investigated.

8) What Figure 2 tells me is that if we simply relax the association criterion (FDR cutoff),
we’ll simply get more enriched communities, which is not entirely surprising. Here | think
the distinction between the different GWAS datasets is important to discuss, if the authors
are saying the results are sensitive to the datasets. What is it that makes the
“Leaderboard” and “Final” datasets different? What are the diseases and traits included
in the GWAS datasets? Perhaps the authors could comment on this.

The number of significant communities increases when the FDR cutoff is larger, as expected.
However, the results are also quite sensitive to the dataset considered as pointed out by the
reviewer. The different GWAS datasets were chosen by the DREAM challenge organizers, and
splited into “Leaderboard” and “Final” manually. A detailed discussion of the diseases and traits
included in the GWAS datasets, as well as their comparison, is proposed in the DMI consortium
manuscript (in particular in Figures 1, 3 and 4) and cannot be reproduced here.

9) Also for Figure 2 (I may be missing something obvious here) - are these results based
on multiplex or monoplex?

In order to clarify this point, we now state in the figure caption that the results are based on the
multiplex networks.

10) “We hypothesize that the community structures of these networks (if they exist) are so
unrelated that it is pointless to seek for a common structure by integrating them.” This is
an interesting point that should remind us that the multiplex biological network should be
constructed with a hypothesis in mind (e.g. various molecular levels from transcripts to
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proteins to metabolites) rather than piling up different networks into a multiplex structure.
There is not much reason to think that just adding different sources of biological
information should increase the performance of detecting disease modules. The tradeoff
between signal and noise with the addition of diverse biological layers can be added as a
point of discussion.

Thanks for this interesting remark. We agree that multiplex biological networks should be
constructed with a hypothesis in mind, and that the network that are piled up in a multiplex are
expected to be realisations of the true underlying biological modules. This is the case for the two
PPI network and the pathway network that are expected to represent cellular processes. In
addition, pairs of proteins belonging to the same pathway or co-expressed are more likely to
physically interact than pairs of random proteins [1]. Therefore, even if the biological information
contained in co-expression or pathways networks is completely different to the one contained in
PPI networks, they still can improve the detection of the communities by adding more signal to the
system and reducing the bias and noise of individual networks as we previously demonstrated [2].
The cancer network, contrarily, might contain very different biological information.

However, concerning the bias and noise present in the different networks, as the bias and noise
are not the same, we see the combination of the different sources in a more positive way, as not
adding noise but complementing each other to reduce noise. For instance, if we take individual PPI
networks obtained from different sources and we integrate them into a multiplex PPI network, we
expect to obtain better clustering results than with the individual networks alone. All these
monoplex PPl networks try to reflect the real PPI network containing all the human genes, all their
interactions and their real community structure. However, they have missing data and they strongly
depend on the technologies used to get the interactions (bias and noise). Therefore, since all of
them attend to reflect the same system, the biological signal increases and the noise and missing
data tend to reduce. We added a sentence to the discussion concerning this point.

[1] Rual JF, Venkatesan K, Hao T, et al.: Towards a proteome-scale map of the human
protein-protein interaction network. Nature. 2005; 437(7062): 1173-1178.

[2] Didier G, Brun C, Baudot A: Identifying Communities from Multiplex Biological Networks. Peerd.
2015; 3: e1525.

11) Multiplex versus monoplex: The notion that multiplex networks help identify a greater
number of significant disease modules than monoplex networks combined is an exciting
prospect. However, the evidence shown in Figure 3 is a little scant. How was the
comparison done exactly? Were the number of significant modules from each separate
network summed up and compared to the one from multiplex? These kinds of details
should be included.

The comparison between the different approaches is done following the DMI challenge
benchmark, that is by computing the number of significant disease modules (with a FDR threshold
of 0.1). We computed this number of significant modules identified from the 6 biological networks
independently, and then from combination of networks thanks to the multiplex framework . We
used combinations of 2 to 6 networks, considered as multiplex networks of 2 to 6 layers.

12) | found the Discussion a bit too DREAM Challenge-oriented. | think the parts
comparing the results with those of the top performer are unnecessary (but this may be a
requirement of the challenge so ignore if that's the case). The authors should revise the
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discussion to recapitulate and interpret their results, and to highlight the advantages of
using the multilayer approach. | think it is commendable that the authors chose to include
all of the six datasets, regardless of how related they are. Even the fact that the addition of
some (possibly orthogonal) layers is detrimental to the outcome is an important finding.

The manuscript is indeed DREAM challenge oriented as it is not an independent manuscript but a
companion paper. Regarding the interpretation of the multiplex approach, we think it is important to
state that the top-performers selected a subset of the 6 networks, reflecting also the reviewer’s
comment on the choice of the network to be piled up. We agree that a lot could still be discussed
regarding our (and others) obtained results in this challenge, and extended a bit the discussion.
This point is also discussed in the challenge consortium manuscript.

Minor points:

1) In the definition of multiplex modularity: K*(g)_i should be lowercase, i.e. k*(g)_i.
Thanks for pointing this out, it has been changed to s following your next comment.

2) Also in the definition of multiplex modularity, | would suggest the authors use s_i
instead of k_i if they’re dealing with weights to denote the strength of the node rather than
the degree. This is an optional point, but it would make it more aligned with the network
science literature and nomenclature.

Done

Typos:

Thanks for pointing all these typos !

- “biological networks are nowadays assembled on a large-scale.” --> on a larger scale
Done

- “picks the move that increases the most modularity” --> picks the move that increases
modularity the most

Done

- “data in which we randomly withdrawn vertices” --> data in which we randomly withdraw
(or just say remove) vertices

Done

- “but to a limited extend after more than four runs” --> to a limited extent

This sentence has been removed after other reviewer's comment.

- “obtained by considering or not these weights in the MolTi partitioning” --> obtained by
considering and not considering these weights in the MolTi partitioning

Done

Competing Interests: No competing interests were disclosed.
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Yasir Suhail
Department of Biomedical Engineering, Yale University, New Haven, CT, USA

Overview

The paper presents:
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1. a couple of improvements over the method in the authors' previous 2015 paper on multiplexed
modularity, and
2. the application of this improved method to the Disease Module Identification DREAM challenge.

Method

The paper adequately describes the incremental improvement of the general method over the previous
paper regarding the following.

1. The algorithm randomly selects one of the moves improving the modularity at every stage. | assume
this helps the method to arrive at different local minima for each run, thereby improving its performance on
the nonlinear modularity surface.

2. The incorporation of edge and graph weights into the definition of modularity.

Both of these points are well justified, and presented in adequate detail. The only minor detail that is
missing is that Equation 1 does not include the resolution parameter.

Results and Performance Evaluation

The improvement in performance due to randomization is presented in Figure 1, while Figure 4 presents
evidence of improvement due to the graph (layer) weights.

The improvement due to edge weights is not presented, but it logically follows that any network model
wherein edges with larger weights are likely to form within modules will show improved performance
under a weighted definition of modularity.

The authors did not have control over the DREAM challenge evaluation, but a reader might have a few
questions regarding the performance evaluation. For example, if the judging criterion is the number of
significantly GWAS associated modules, does the score improve by dividing one large disease
associated module into two, if they both are still significant?

Presentaion

Other than the missing resolution parameter, the method is adequately presented. There were a few
minor issues with language. For example:

1. The second paragraph of the abstract should end with "the number of trait and disease communities
detected."

2. While describing the method of simulating the missing data, another form of the word should be used
instead of " ... we randomly withdrawn vertices of each layer ..."

The authors provide source code for both the latest version, and also the version that was used for the
DREAM challenge. It would be helpful if the authors also provide, if those are readily available, the scripts
that were used to run the DREAM and simulated data for the results presented. This will help answer
minor questions regarding details like filtering etc.

Conclusion and suggestions

| think the method described by the paper is scientifically valid and its presentation is adequate, other than
the minor issues raised above.
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Some of the important questions that may be pursued further are related to the selection of the graph
weights. Currently, the weights are selected arbitrarily using the relative performance of the individual
networks on predicting the disease modules. Could there be a more systematic manner of weight
selection based on both the congruency with what's known of the true modules and the relative
redundancy in the various layers?

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Anais Baudot, CNRS, France

The paper presents:

1. a couple of improvements over the method in the authors' previous 2015 paper on
multiplexed modularity, and

2. the application of this improved method to the Disease Module Identification DREAM
challenge.

Method

The paper adequately describes the incremental improvement of the general method over
the previous paper regarding the following.

1. The algorithm randomly selects one of the moves improving the modularity at every
stage. | assume this helps the method to arrive at different local minima for each run,
thereby improving its performance on the nonlinear modularity surface.

2. The incorporation of edge and graph weights into the definition of modularity.

Both of these points are well justified, and presented in adequate detail. The only minor

Page 21 of 33



FIOOOResearch F1000Research 2018, 7:1042 Last updated: 03 DEC 2018

detail that is missing is that Equation 1 does not include the resolution parameter.

Thanks for pointing out this omission. The resolution parameter has been included to the Equation
1 in the revised version of the manuscript.

Results and Performance Evaluation

The improvement in performance due to randomization is presented in Figure 1, while
Figure 4 presents evidence of improvement due to the graph (layer) weights.

The improvement due to edge weights is not presented, but it logically follows that any
network model wherein edges with larger weights are likely to form within modules will
show improved performance under a weighted definition of modularity.

The tests of edge weights is indeed not presented as a figure, but some data are summarized as a
table (Table 2).

The authors did not have control over the DREAM challenge evaluation, but a reader
might have a few questions regarding the performance evaluation. For example, if the
judging criterion is the number of significantly GWAS associated modules, does the score
improve by dividing one large disease associated module into two, if they both are still
significant?

This is a tricky question. Briefly, the DREAM evaluation uses the PASCAL tool to compute a score
for each modules according to their enrichments in GWAS-significant genes. The number of
significant disease module in a given partition is then computed according to an enrichment
threshold, and considering correction for multiple testing. In this context, the total number of
submitted valid communities is important, as submitting more modules will induce a stronger
correction for multiple testing. It is thereby not straightforward to evaluate if dividing a large disease
module into two will lead to two submodules both still significant, as this will also increase the
correction for multiple testing. In other words, submitting more modules can affect badly the results
even if without multiple testing correction it would have increased the number of significant disease
modules. The PASCAL tool also takes into account the GWAS statistics to compute the
significance, it is thus overall very hard to use the obtained discrete results (i.e., the number of
significant disease modules) to tune/optimize slight variations of the approach, as the variability in
the results can come from many factors. Some of these points are discussed in the DMI challenge
manuscript as some of the top-performers of the subchallenge 1 selected the modules based on
their sizes without working on the improvement of the algorithms per se.

Presentaion

Other than the missing resolution parameter, the method is adequately presented. There
were a few minor issues with language. For example:

1. The second paragraph of the abstract should end with "the number of trait and disease
communities detected."

Corrected

2. While describing the method of simulating the missing data, another form of the word
should be used instead of " ... we randomly withdrawn vertices of each layer ..."

We changed the instances of “withdraw” to “remove”
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The authors provide source code for both the latest version, and also the version that was
used for the DREAM challenge. It would be helpful if the authors also provide, if those are
readily available, the scripts that were used to run the DREAM and simulated data for the
results presented. This will help answer minor questions regarding details like filtering
etc.

The scripts used to run the DREAM challenge approaches are all available from the challenge
webpages as a community resource.

Conclusion and suggestions

| think the method described by the paper is scientifically valid and its presentation is
adequate, other than the minor issues raised above.

Some of the important questions that may be pursued further are related to the selection
of the graph weights. Currently, the weights are selected arbitrarily using the relative
performance of the individual networks on predicting the disease modules. Could there be
a more systematic manner of weight selection based on both the congruency with what's
known of the true modules and the relative redundancy in the various layers?

This is a very interesting question. As noted by the reviewer, we selected the weights based on the
relative performance on the individual networks. However, this could not be done in a more
systematic way, as true modules are not known (and in fact the challenge goal was to defined a
benchmark as a proxy for these true modules). Another approach could be to weight the different
layers based on our a priori knowledge/trust of the different layers. However, we have difficulties
understanding how it would be possible in practice to weight according to the relative redundancy
of the various layers.

Competing Interests: No competing interests were disclosed.

Referee Report 07 August 2018

https://doi.org/10.5256/f1000research.16880.r35949

?

Lenore J. Cowen
Department of Computer Science, Tufts University, Medford, MA, USA

The authors explain the method that underlies their submission to the 2016 DREAM Disease Module
Identification challenge. The authors only discuss their results from subchallenge 2; they should either say
this is what they are going to do up front or also mention their performance on subchallenge 1.

The paper is not self-contained, it already assumes some familiarity with the setup of the challenge; since
this is being published in a collection on F1000 related to the dream challenge, perhaps that is
appropriate, however | would have preferred if the authors had spent more time describing the challenge:
i.e. what does it mean in more detail to identify communities from the six biological networks jointly, rather
than independently?

While the authors release their code, which is commendable, there are not sufficient details in the text to
completely understand their methods without returning to the code. For example, they talk about a
resolution parameter y but this parameter is defined nowhere in their paper: is this a parameter of the
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GenlLouvain method to which they refer?

The authors present a randomized algorithm which they run from 1 to 10 times, and return the partition
with highest modularity, but figure 1 uses only 1 to 5 randomization runs. Furthermore, the authors do not
explain how the parameter "5" or "10" is selected. There are other method details that involve parameters
that are missing, for example in their set of simulated networks, it is impossible to discover how they set
their parameters from just this writeup: They write "we simulated random multiplex networks with a fixed
known community structure,... and various topological properties (i.e. dense/sparse/mixed, with/without
missing data)" Is this the same collection of simulated networks that they generated in a previous paper
(reference 5 that they cite?) if so, please say this explicitly. Even the writeup in reference 5 is somewhat
sketchy, but it's better than what is here.

The authors conclude that the power of including multiplex networks is dependent perhaps on the
networks being generated from partial views of the same underlying community structure; when networks
5 and 6, which were very different were included, the performance of their method degraded, and this was
found across the challenge in general.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
No

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: The referee also participated on a top-scoring Dream Challenge team: since all
Dream Challenge participants will eventually be invited on the main Dream Challenge paper, the authors
of this article will eventually be co-authors on a publication with the referee.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Anais Baudot, CNRS, France

The authors explain the method that underlies their submission to the 2016 DREAM
Disease Module Identification challenge. The authors only discuss their results from
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subchallenge 2; they should either say this is what they are going to do up front or also
mention their performance on subchallenge 1.

We indeed focused on subchallenge 2. During the challenge leaderboard phase, our consortium
tested many very different approaches on subchallenge 1, and we did not evaluate Molti
thoroughly in this subchallenge. In addition, Molti was specifically designed to leverage multiplex
networks. We added a sentence (highlighted in blue) to the manuscript to state this point more
clearly.

The paper is not self-contained, it already assumes some familiarity with the setup of the
challenge; since this is being published in a collection on F1000 related to the dream
challenge, perhaps that is appropriate, however | would have preferred if the authors had
spent more time describing the challenge: i.e. what does it mean in more detail to identify
communities from the six biological networks jointly, rather than independently?

We agree that our manuscript was specifically written for the F1000 dream challenge channel: it
has strong size constraints and requires some familiarity with the challenge. The consortium
manuscript is available in bioRxiv, and is still under consideration for publication in a journal. We
wanted to avoid any potential overlap in the interpretation of the results in between the consortium
paper and our manuscript. We finally also checked other papers published in DREAM channels
and tried to give the same level of details. We however extended the description of the DREAM
sub-challenge 2 in the main text.

While the authors release their code, which is commendable, there are not sufficient
details in the text to completely understand their methods without returning to the code.
For example, they talk about a resolution parameter y but this parameter is defined
nowhere in their paper: is this a parameter of the GenLouvain method to which they refer?
Thanks for pointing this out. Indeed, we had forgotten the y parameter and its description in the
method section. The y parameter is a resolution parameter allowing to tune the size of the obtained
communities. Increasing this parameter allows reducing the size of the obtained communities. We
now present the results obtained by tuning this parameter instead of applying the recursion in the
answer to another referee. We also extended the description of the code in the github repo and the
description of the simulated networks with SBM to answer the comment below.

The authors present a randomized algorithm which they run from 1 to 10 times, and return
the partition with highest modularity, but figure 1 uses only 1 to 5 randomization runs.
Furthermore, the authors do not explain how the parameter "5" or "10" is selected. There
are other method details that involve parameters that are missing, for example in their set
of simulated networks, it is impossible to discover how they set their parameters from just
this writeup: They write "we simulated random multiplex networks with a fixed known
community structure,... and various topological properties (i.e. dense/sparse/mixed,
with/without missing data)" Is this the same collection of simulated networks that they
generated in a previous paper (reference 5 that they cite?) if so, please say this explicitly.
Even the writeup in reference 5 is somewhat sketchy, but it's better than what is here.

1. Number of randomizations
We agree that the different number of randomizations used along the manuscript can be confusing.
We tried to make this point clearer in the revised version. The number of randomizations needed
for a given dataset is not easy to set a priori. Since increasing the number of randomizations
improves the modularity - and hopefully the accuracy - of the communities detected, we basically
increased the number of randomization until obtaining no significant change in the communities
detected. For the simulations, we selected 5 randomizations because the adjusted Rand index plot
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for 5 randomizations is confounded with that for 4 randomizations. For the Dream Challenge
dataset, we considered 10 randomizations because increasing this number was too heavy in
computation time.

1. Simulated networks with a community structure
The method section has been extended to describe SBM network simulations more precisely.
These random networks are generated with the same protocol as the one described in reference 5,
but were re-generated for this project. In addition, the code to generate the multiplex networks with
SBM (and detect and compare the communities with adjusted Rand index) is now available on the
github repository.

Competing Interests: No competing interests were disclosed.

Referee Report 03 August 2018

https://doi.org/10.5256/f1000research.16880.r36392

? Emre Guney
Research Programme on Biomedical Informatics, the Hospital del Mar Medical Research Institute,
Pompeu Fabra University, Barcelona, Spain

Didier and colleagues present MolTi-DREAM, an update to their previous software for community
detection in multiplex networks and its application to the disease module discovery using synthetic and
DREAM challenge data. The new version of the software adds the possibility of edge and layer weights,
the randomization of the underlying Louvain algorithm and partitioning of large modules into smaller
modules based on user defined parameters. Based on their analysis of simulated and biological
interaction data, they reaffirm that using multiple layers of networks and randomized repetition of module
discovery could improve the accuracy. Overall the article is clearly written and the technical details are
clearly explained with several exceptions | mention below:

1. The multiplex modularity formula lacks the resolution parameter (which should appear before ki kj / 2m
in the summation). The authors are encouraged to provide data / figures with respect to the reasoning on
the selection of the default resolution parameter (currently they mention verbally that it showed better
results on leaderboard).

2. Randomization procedure is unclear. | believe the cost function used is the multiplex modularity given in
Eq 1 (L) but the “move” leading to an increase of the modularity is not formally stated (sth like i, j:
random_pick(argmax ci, cj L)). The choice of 4 by default is also somewhat arbitrary given that the
difference between 3,4,5 are all very small. The significance of the difference in Rand index across runs in
Figure 1 could be used to decide the number after which the change is not significant.

3. The simulation of the multiplex networks could be explained better. Potentially owing to the previous
publication, there is no detail in regards to which model was used to generate these networks. A brief
description of SBMs and the underlying assumptions of the model it relies on would help. Are these
simulated networks are more ER-like? Could this be the reason why the simulated results do not reflect
the results on the real networks? Also, it would certainly be useful to add the standard deviation across
2000 networks in Figure 1. | had difficulties following how exactly the mixed and noisy networks are
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generated (did the mixed ones still have 1000 vertices, 500 from sparse and 500 from dense, for the
missing data if the vertices were drawn half of the time, did they have 500 vertices?).

4. The coverage / precision of disease module discovery is missing. What is the number of all modules
identified by the algorithm, how many disease modules are there (or could there be) in total? The latter
question could be tricky to answer but | believe a lower and upper bound could be provided (e.g., number
of diseases and a number based on the GWAS hits for that disease divided by the min module size).

5. “combining biological networks in a multiplex generally increases the number of significant modules”.
The Figure 3 does not exactly reflect this, it seems the number of significant modules for multiplex(ppit,
ppi2) < monoplex(ppi1) + monoplex(ppi2). Maybe the authors could show the numbers for the union of
the modules identified using ppi1and ppi2 and put that into the figure as to what to expect when the
modules are combined using these networks separately.

6. The choice of the for each biological network seems rather arbitrary. Could these weights be optimized
(i.e. using leaderboard data) and their effect be tested on final data?

7. “the community structure of these networks (if they exist) are so unrelated that it is pointless to seek for
a common structure by integrating them” | feel that this statement should be supported by further
evidence. Could the authors provide some measures in regards to the modularity of each of these
networks and the overlap of nodes / edges between them. This would also help to justify the argument on
the “DMI biological networks are constructed from different biological sources that might correspond to
unrelated community structures”.

Minor:

Explain what monoplex network means at its first occurrence for readers not familiar with terminology.
“hande mulxtiplexes” multiplex networks

“following the PASCAL tool” identified using

“Considering a greater number of layers...” lacks the main clause / verb

“after more than four runs” upto four runs / repetitions

“varies in a non-trivial way” non-trivial?

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes
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Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Anais Baudot, CNRS, France

1. The multiplex modularity formula lacks the resolution parameter (which should appear
before ki kj / 2m in the summation). The authors are encouraged to provide data / figures
with respect to the reasoning on the selection of the default resolution parameter
(currently they mention verbally that it showed better results on leaderboard).

Indeed, the resolution parameter was lacking in the formula. We now have corrected this.
Concerning the choice of the default resolution parameter, we made extensive tests that are
provided below, but we lack space in the manuscript to detail them. These tests show that the
recursion approach provides overall a higher number of significant disease modules in the Dream
Module Identification (DMI) challenge framework.

Total number of modules obtained when running Molti with 10 randomizations on the 6 DMI
challenge network for different values of the resolution parameter:

Table 1

Number of significant Modules obtained with variations of Gamma:
Table 2

Table 3

Table 4

Comparison with recursion (apply Molti in a recursive way to communities larger than 100):
Table 5

For FDR=0.1
Figure 1

For FDR = 0.05
Figure 2

For FDR = 0.01
Figure 3
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2. Randomization procedure is unclear. | believe the cost function used is the multiplex
modularity given in Eq 1 (L) but the “move” leading to an increase of the modularity is not
formally stated (sth like i, j: random_pick(argmax ci, cj L)). The choice of 4 by default is
also somewhat arbitrary given that the difference between 3,4,5 are all very small. The
significance of the difference in Rand index across runs in Figure 1 could be used to
decide the number after which the change is not significant.

The cost function is indeed the multiplex-modularity given in Eq 1. At each step, all the moves of an
element from a community to another that lead to an increase of the multiplex-modularity are
considered, and one of them is randomly picked with a uniform probability. The final number of
randomizations was arbitrarily chosen, but several were tested during the Challenge.

The choice of 4 randomizations by default was indeed arbitrary, and we removed this sentence in
the manuscript to just state that this number is user-defined. The significance of the difference in
Rand indexes can also be used to select a correct number of randomizations. However, since the
adjusted Rand index is computed with regard to the real communities, it could be used only when
the real communities are known, i.e. in our random network simulations. For the real biological
networks provided by the challenge, the actual community structure is unknown.

Increasing the number of randomizations cannot harm (except with regard to the computation time)
since the modularity of the detected communities increases with this number. A possibility could be
to test the significance of the modularity increase between two successive numbers of
randomizations. However, computing this significance is complex and time-consuming for large
networks.

3. The simulation of the multiplex networks could be explained better. Potentially owing to
the previous publication, there is no detail in regards to which model was used to
generate these networks. A brief description of SBMs and the underlying assumptions of
the model it relies on would help. Are these simulated networks are more ER-like? Could
this be the reason why the simulated results do not reflect the results on the real
networks? Also, it would certainly be useful to add the standard deviation across 2000
networks in Figure 1. | had difficulties following how exactly the mixed and noisy networks
are generated (did the mixed ones still have 1000 vertices, 500 from sparse and 500 from
dense, for the missing data if the vertices were drawn half of the time, did they have 500
vertices?).

Indeed, the simulations have been described in our previous publication, but the current version
was lacking details. We extended the method section to describe more precisely how the
simulated networks with a known community structure, and their variations are generated.

As detailed in the revision, a key property of the SBMs is that, given a community structure, each
edge is drawn independently with a probability that depends only the community to which its nodes
belong. These property is certainly not granted in biological networks but random graph models
taking into account dependance between edges (e.g., exponential random graph models) are
difficult to estimate and to simulate. We considered simple SBMs parameterized with a probability
for edges between nodes in a same community (intra-community edges) and a probability for edge
between nodes belonging to two different communities (inter-community edges). Networks
obtained from SBMs are generally not homogeneous, thus quite different from ER ones. The
software performing the simulation of multiplex networks from SBMs, called “simul” is now
available in the GitHub repository.

We tried to display the standard deviation of the adjusted Rand index, but the result was quite
confusing since the the error bars tend to overlap themselves (see below for the simulated sparse
and dense networks).
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Figure 4

Figure 5

4. The coverage / precision of disease module discovery is missing. What is the number of
all modules identified by the algorithm, how many disease modules are there (or could
there be) in total? The latter question could be tricky to answer but | believe a lower and
upper bound could be provided (e.g., number of diseases and a nhumber based on the
GWAS hits for that disease divided by the min module size).
Indeed, the total number of discovered modules was not detailed in the manuscript. It was however
used by the PASCAL tool to compute the number of significant disease modules, as the total
number of submitted modules is used to correct for multiple testing. We added the total number of
discovered valid modules (of size [7-100]) to the figure and table captions.
Number of total modules detected by Molti for the results presented on:

®  Figure 2. The numbers used in the Figure 2 have been added to the caption.
Table 6

®  Figure 3:
Table7

® Table 2: (nRandom = 10). These numbers have been added to the Table 2 caption
No Weights <- 615
Weights <- 585

®  Figure 4: (nRandom = 10).These numbers have been added to the Figure caption.
No Weights <- 585
Confidence Weights <- 555
Inverse Confidence Weights <- 648

The question of how many disease modules exist or could exist is indeed tricky to answer, and is
partly discussed in the DMI challenge consortium paper. In this challenge manuscript, the full detail
on the 180 GWAS disease/trait datasets, their classification, as well as the scoring method are
detailed. Briefly, a module is considered significant if it is enriched in at least one
GWAS-associated trait or disease according to the PASCAL approach. A sampling approach is
also used to account for robustness in comparing the challengers’ results. The figures 1, 3 and 4 of
the consortium paper are in particular and attempt to dig in the reviewer’s proposed direction.

https://www.biorxiv.org/content/early/2018/02/15/265553

5. “combining biological networks in a multiplex generally increases the number of
significant modules”. The Figure 3 does not exactly reflect this, it seems the number of
significant modules for multiplex(ppi1, ppi2) < monoplex(ppi1) + monoplex(ppi2). Maybe
the authors could show the numbers for the union of the modules identified using ppiland
ppi2 and put that into the figure as to what to expect when the modules are combined
using these networks separately.

The modules identified by the multiplex approach cannot be directly compared to the sum of the
modules identified independently in the monoplex networks, as the communities might be the
sames or very similar. In principle, the two PPl networks should detect similar communities, since
they are supposed to contain biological information of the same nature. However, both networks
are built from different sources, each one with different features or missing data. Therefore, their
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combination into a multiplex network should lead to a closer representation of the “real PPI
network”, and is expected to result in the detection of a larger number of more accurate
communities.

In order to compare the communities detected by the two monoplex PPI networks individually with
the communities identified when these networks are integrated into a 2-layer multiplex network, we
computed the adjusted Rand index [1] between the three corresponding partitions. The adjusted
Rand index is the corrected-for-chance version of the Rand index, which is a measure of the
similarity between two data clustering [2]. It is usually applied to compare partitions obtained by
different clustering algorithms on the same network. Nevertheless, it can be applied to our problem
by considering the common nodes between every pair of monoplex network (i.e., considering the
partitions reduced to the intersection of the two sets of elements).

The results are displayed below in a table and a figure:

PPI_1 PPI_2 PPI1_+_PPI2

PPI_1 1.0000000 0.1075211 0.2645176

PPI_2 0.1075211 1.0000000 0.2906837

PPI1_+_PPI2 0.2645176 0.2906837 1.0000000

Figure 6

These results show that the community structure obtained from the multiplex approach is closer to
the ones found with both single PPIs. In other words, the communities obtained from single PPI
networks are closer to the multiplex than to the communities obtained from the other single
network. In addition, 2*Randindex(PPI_1,PPI_2) < RandIindex(PPI_1, PPI1_+_PPI2) and
2*RandIndex(PPI_1,PPI_2) < RandIindex(PPI_2, PPI1_+_PPI2). Therefore, it seems that the
multiplex approach can reflect better the “real” community structure of the “real PPI” than the
addition of both single networks. Finally, the community partition of the multiplex is closer to the
one of the PPI_2 than to the one of the PPI_1.

6. The choice of the for each biological network seems rather arbitrary. Could these
weights be optimized (i.e. using leaderboard data) and their effect be tested on final data?
We indeed considered different optimizations of the weights. This point was not clearly stated in
the manuscript, but the weights were chosen based on the number of significant modules obtained
in the application of Molti on the isolated monoplex networks. We rephrased the corresponding
sentence to clarify this.

However, we do not think a posteriori that the results of the leaderboard can be used to choose the
best weights in the final data : the results obtained using the Leaderboard and the Final GWAS
datasets (as well as using the union in the Total GWAS dataset) are not clearly correlated, making
difficult to optimize the weights from the Leaderboard results. In addition, the evaluation of the
significance of the results by a discrete number of significant disease modules is strongly sensitive
to the number of submitted modules, because of the correction for multiple testing. This volatility
makes the benchmark difficult to use to evaluate subtle changes in the methods. That's why we
implemented and tested our approach on the simulated networks. Unfortunately, the simulated
networks cannot be used to evaluate weights.

7. “the community structure of these networks (if they exist) are so unrelated that it is
pointless to seek for a common structure by integrating them” | feel that this statement
should be supported by further evidence. Could the authors provide some measures in
regards to the modularity of each of these networks and the overlap of nodes / edges
between them. This would also help to justify the argument on the “DMI biological
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networks are constructed from different biological sources that might correspond to
unrelated community structures”.

The modularity is a measure that needs to be computed on a community structure, hence we need
first to partition the networks to compute the modularity. To evaluate the modularity of the
considered biological networks, we applied Molti with default parameters on the individual
networks (as in Figure 3) to obtain the network partitions. We then computed the adjusted Rand
index [1] in between the 6 network partitions. Here also, the adjusted Rand index is applied to our
problem by considering the common nodes between every pair of monoplex network (i.e.,
considering the partitions reduced to the intersection of the two sets of elements).

The Adjusted Rand Index computed for every pair of partitions of the monoplex networks provided
by Molti (10 randomizations) are displayed in the following table and figure:

PPI_1 PPI_2 PATH_3 COEX_4 CANCER_5 HOMO_6
PPI_1 1.000000000 0.107521064 0.082823431 0.012937084 0.004922555 0.051958946
PPI_2 0.107521064 1.000000000 0.091792998 0.010104981 0.004755694 0.023984747
PATH_3 0.082823431 0.091792998 1.000000000 0.007815447 0.001958814 0.024252282
COEX_4 0.012937084 0.010104981 0.007815447 1.000000000 0.002040522 0.006049318
CANCER_5 0.004922555 0.004755694 0.001958814 0.002040522 1.000000000 0.002211310
HOMO_6 0.051958946 0.023984747 0.024252282 0.006049318 0.002211310 1.000000000

Figure 7

The two PPI networks are the most similar in terms of communities structure, as expected. The
community structure of the Pathways network is also quite similar to both PPIs, which makes sense
since proteins in the same pathway are more likely to interact physically than those belonging to
different pathways. In addition, the Homology network is more similar to those three networks than
the Co-expression network. This might come from the fact that this homology network is built by
expanding known pathways (Kegg in particular) with the addition of new member related by
eukaryotic homology, as detailed in the challenge consortium manuscript. The partition the most
different is the one obtained from the cancer network.

[1] Santos J, Embrechts M. 2009. On the use of the adjusted rand index as a metric for evaluating
supervised classification. In: Alippi C, Polycarpou M, Panayiotou C, Ellinas G, eds. Artificial neural
networks—ICANN 2009. Lecture notes in computer science, vol. 5769. Berlin Heidelberg:
Springer, 175-184.

[21W. M. Rand (1971). "Objective criteria for the evaluation of clustering methods". Journal of the
American Statistical Association. American Statistical Association. 66 (336): 846-850. doi
:10.2307/2284239. JSTOR 2284239.

Minor:

Explain what monoplex network means at its first occurrence for readers not familiar with
terminology.

OK, done in the method section

“hande mulxtiplexes” multiplex networks
OK, all occurrences of “multiplexes” have been changed to “multiplex networks”
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“following the PASCAL tool” identified using
Changed “following” to “using”

“Considering a greater number of layers...” lacks the main clause / verb

OK, changed to “We observed that considering a greater ...”

“after more than four runs” upto four runs / repetitions

OK, changed to “Increasing the number of randomization runs improves the results up to four
runs.”

“varies in a non-trivial way” non-trivial?

OK, we changed to “is strongly dependent". This expression was related to the fact that we do not
observe a clear correlation between the results obtained on the leaderboard and final GWAS
datasets.
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