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The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are
significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced
to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF)
in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by
the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high
similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than
20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia.The results
demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region’s localization. Moreover, the quantitative indexes
of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced
clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image
and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

1. Introduction

Single photon emission computed tomography (SPECT)with
99mTc-ethyl cysteine dimer (99mTc-ECD) has been widely
used to evaluate many types of cerebrovascular diseases and
brain disorders by measuring regional cerebral blood flow
(rCBF) [1–6]. Moreover, longitudinal 99mTc-ECD SPECT
brain imaging can be adopted to monitor the changes of
rCBF to support the treatment plan [7, 8].Themost common
approach for interpreting SPECT brain images is visual
inspection in daily clinical practice. Usually the relevant
structural images, such as CT or MRI images, are preferred
for the visual interpretation together with SPECT images. For
treatment monitoring, the baseline and follow-up SPECT
brain images should be parallelly interpreted under the same

condition to figure out the differences. Due to the lack of the
quantitative standards, the accuracy and reliability of visual
inspection mainly rely on the experience of the physicians,
such that only the qualitative results are presented in the
reports. The aforementioned drawbacks of vissual insspec-
tion prevent the applications of SPECT imaging in distant
diagnosis and multicenter studies. The image processing
technology can bring solutions to the visual inspection prob-
lems and explore the hidden information in the images.

Beside the region of interest (ROI)/volume of inter-
est (VOI) analysis methods, statistical parametric mapping
(SPM) has been used in group-wise comparisons of func-
tional brain images to evaluate the responses to the treat-
ments [9, 10]. On the other hand, subtraction analysis is
also a useful technology to extract differences in a series
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Figure 1: The workflow of the computer-aided analysis method to extract a change-rate map.

of images for individual treatment monitoring. In ictal-
interictal SPECT imaging, the subtraction analysis has been
proved to benefit the treatment plan of epilepsy patients [11–
14]. Recent studies have reported that the quantitative SPECT
analysis would be playing an ever-growing role in treatment
plan and response monitoring of several disorders related
with the central nervous system [15, 16].These studies encour-
age us to generate the parametric imaging and extract quan-
titative indexes from the SPECT images to support the treat-
ment plan. In this study, we introduce a computer-aided anal-
ysis (CAA) method inherited from subtraction analysis to
quantify the changes of rCBF in longitudinal SPECT images
for individual treatment monitoring.The performance of the
proposed method would be objectively and systematically
evaluated by the computer simulations and the clinical appli-
cations.

2. Materials and Methods

2.1. Computer-Aided Analysis Method. When using SPECT
imaging in treatment monitoring, the pre- and postscans
are usually performed to acquire the baseline and follow-up
SPECT images before and after delivering treatments. The
obtained baseline and follow-up images from an individual
subject are a set of longitudinal SPECT images requiring
independent analysis. For interpreting the individual subject’s
data, a computer-aided analysis (CAA)method is established
to process the longitudinal SPECT images via three main
steps: coregistration, value normalization, and parametric
imaging. The workflow chart is shown in Figure 1.

In the first step, the follow-up SPECT brain images are
aligned with the baseline images by the rigid registration
algorithm provided by SPM 8.0 software package (http://
www.fil.ion.ucl.ac.uk/spm/). If the SPECT brain imaging is
performed using SPECT-CT integrated system, the CT and
SPECT images can be obtained in the same position and
considered as well aligned. In this condition, the baseline
and follow-up CT images could be used as the reference and
source image, respectively, in the step of coregistration for
aligning longitudinal SPECT images.

In the second step, the value normalization is applied
on the SPECT images. Before the numerical calculation, the
extracerebral voxels are removed by a predefinedwhole-brain
mask. If only the SPECT image is available, then the whole-
brain mask can be obtained by segmenting the enhanced
SPECT image with Otsu’s algorithm. If the corresponding
aligned CT image is available, then the whole-brainmask can
be more accurately defined by separating the brain tissues
fromnonbrain tissue inCT images using fuzzy𝐶-means clus-
tering algorithm [17]. The whole-brain mask extracted based
on the CT images is then applied on the SPECT images to
delineate the brain area.

After deriving the whole-brain area in the SPECT images,
the value of each cerebral voxel is normalized by the average
voxel value of the reference area that is automatically selected
by 𝑍-map approach [18]. In 𝑍-map approach, the 𝑍 value of
the 𝑖th voxel was calculated as in (1). Two𝑍-maps are, respec-
tively, estimated for baseline and follow-up SPECT brain
images. Then, the reference region is the intersection of the
𝑍 < 1 areas of these two 𝑍-maps.

𝑍𝑖 =
󵄨󵄨󵄨󵄨𝐶𝑖 −mean󵄨󵄨󵄨󵄨

SD
, (1)

where 𝐶𝑖 is the value of the 𝑖th voxel in one SPECT brain
image; mean and SD, respectively, denote the average and
standard deviation of voxel values of brain area in the SPECT
image.

In the third step, the changes in the longitudinal SPECT
images are expressed in a parametric image to reflect the
disease progress or responses to the treatment. As in sub-
traction analysis, the difference can be directly obtained by
subtracting two aligned normalized images, as

𝐷𝑖 = 𝐶
𝑓
𝑖 − 𝐶
𝑏
𝑖 , (2)

where 𝐶𝑓𝑖 and 𝐶
𝑏
𝑖 denote the normalized values of the 𝑖th

voxel in the follow-up and baseline SPECT images, respec-
tively.

Next, the change-rate map can be calculated voxel-by-
voxel to reflect the extent of the changes between the baseline
and follow-up images. The value of the 𝑖th voxel in the
estimated change-rate map is denoted by 𝑅𝑖, which can be
derived from

𝑅𝑖 =
𝐷𝑖
𝐶𝑏𝑖
. (3)

The change-rate map (CRM) is a parametric image which
can be fused with aligned SPECT/CT images for visual
inspections. The positive voxel value in CRM demonstrates
the recovery of hypoperfusion, while the negative value indi-
cates the recovery of hyperperfusion. For the visualization,
Gaussian smoothing filter can be applied in the CRM to
reduce the impact of noise. Based on the CRM, the changed
regions are automatically obtained by thresholding and clus-
tering. Firstly, the voxels with lower change-rate (<20%) were
set to 0 in CRM. Then, the 𝐾-means clustering algorithm is
adopted to recognize the changed regions. The morphologi-
cal processing is applied to refine and distinguish each region.
Considering the SPECT image resolution and partial volume
effects, the regions with larger volumes (>120 voxels) are
selected as the recovered regions.

For the localization of recovered regions, an atlas of brain
lobes, which consists of 12 brain anatomical structures (listed
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Table 1: The list of brain anatomical structures in the atlas of brain
lobes.

Brain anatomical structures Values in atlas
Cerebellum anterior lobe 80
Cerebellum posterior lobe 10
Frontal lobe Left: 50, right: 55
Frontal-temporal space Left: 110, right: 115
Limbic lobe Left: 40, right: 45
Medulla 20
Midbrain 100
Occipital lobe Left: 90, right: 95
Parietal lobe Left: 120, right: 125
Pons 70
Sublobar 60
Temporal lobe Left: 30, right: 35

in Table 1), is created from the Talairach Daemon atlas [19,
20] and then translated into MNI (Montreal Neurological
Institute) space [21] with dimensions of 91 × 109 × 91 sampled
at 2mm intervals, corresponding to the SPM templates [22].
The SPECT/CT images as well as the obtained CRM are
mapped to SPM template by the nonrigid registration algorithm
provided by SPM 8.0 software package and then aligned with
the atlas of brain lobes. Based on the atlas of brain lobes,
the recovered regions could be located in the different brain
lobes.Thequantitative indexes for the recovered regions, such
as themean andmaximum change-rate and the proportion of
the recovered regions to the corresponding brain lobes, could
be calculated for each detected recovered regions.

In order to facilitate the expression, the proposed approach
used to evaluate longitudinal SPECT images through a CRM
derived by the CAAmethod is noted as CAA-CRM approach
in the subsequent parts.

2.2. Computer Simulations

2.2.1. Simulated Data. In this study, the performance of the
CAA-CRM approach in treatment monitoring was objec-
tively and systematically evaluated by the computer simula-
tions. The longitudinal SPECT images are simulated using
predesigned digital brain phantoms.The normal digital brain
phantom is a 100 × 100 × 82 matrix representation of the
hardwareHoffmanphantom [23], whose voxel size is 2.13mm
× 2.13mm × 2.13mm. In the digital brain phantom, the value
of each voxel presents the radioactivity in the corresponding
position. Generally, this digital brain phantom is used to
simulate the normal brain perfusion images acquired by
99mTc-ECD SPECT imaging. Comparing with other regular
geometrical objects, the sphere ismore suitable for simulating
the ischemic lesions in perfusion images. For convenience, a
sphere is created in the normal digital brain phantom located
in the right frontal lobe as a lesion analogue.Thediameter and
radioactivity of the sphere can be changed for several scales
to simulate the varied degrees of hypoperfusion for brain
ischemia. The diameter of the sphere was designed in three

scales: 8mm, 16mm, and 24mm. In addition, the radioactiv-
ity in the sphere was set based on the predefined change-rate
scaled in 9 different levels uniformly distributed from 10% to
90%. The simulated brain SPECT images are generated with
an injected dose of 25mCi of 99mTc-ECD. The abnormal and
normal brain images are, respectively, regarded as the base-
line and follow-up images obtained in treatment monitoring
for brain ischemia.

The system parameters used in computer simulations are
set according to the geometry of the dual-head Philips Prece-
dence 6 SPECT/CT scanner. Each detector head is mounted
with a low-energy and high-resolution (LEHR) collimator.
The two heads rotate in H-mode to obtain 128 projections in
total over 360∘ around the predesigned phantom. Projection
data are acquired for 10 minutes with a total count number
of 108 accompanied with measurement noise that is modeled
as an additive Poisson noise.The radioactivity distribution in
the brain phantom is reconstructed with a maximum a pos-
teriori (MAP) algorithm with total variation regularization.

2.2.2. Performance Evaluation. In the performance evalua-
tion, the ground truth of CRM is directly defined based on
the phantoms for every simulated lesion size at each change-
rate. The estimated CRM is compared to the corresponding
ground truth for evaluating its quality. In this study, the
indexes of image quality are adopted to objectively and sys-
tematically quantify the performance. Denote the value of the
𝑖th voxel in the estimated CRM as 𝑅𝑖, and denote the value of
corresponding voxel in ground truth as𝐺𝑖.Thus, the normal-
ized absolute error (NAE), which is the simplest metric for
measuring the difference between two images, can be calcu-
lated by

NAE =
∑𝑁𝑖=1
󵄨󵄨󵄨󵄨𝑅𝑖 − 𝐺𝑖
󵄨󵄨󵄨󵄨

∑𝑁𝑖=1 𝐺𝑖
. (4)

As shown in (5), the peak signal to noise ratio (PSNR)
is the index to reflect the image quality of obtained CRM
comparing with its ground truth.

PSNR = 20 log10
𝐺max
√MSE
,

MSE = 1
𝑁

𝑁

∑
𝑖=1

(𝑅𝑖 − 𝐺𝑖)
2 ,

(5)

where 𝐺max is the maximum voxel value of ground truth of
CRM; MSE is for mean square error.

The normalized cross-correlation (NCC) is used to quan-
tify the similarity between the obtained CRM and its ground
truth. The NCC can be calculated by

NCC = 1
𝑁 − 1

𝑁

∑
𝑖=1

(𝑅𝑖 − 𝑅) (𝐺𝑖 − 𝐺)
𝜎𝑐𝜎𝐺

, (6)

where 𝑅 and 𝐺 represent the mean values of the obtained
CRM and the corresponding ground truth, respectively; 𝜎𝑐
and 𝜎𝐺 denote their standard deviations.
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After the recovered region is detected based on CRM,
the Dice similarity coefficient (DSC), which is calculated as
in (7), is used to measure the accuracy of the recovered
regions detection comparing with the ground truth that is the
predefined sphere in the phantom.

DSC = 2 × TP
TP + FN + TP + FP

, (7)

where TP is true positive, that is, the set of voxels common
to the derived recovered region and ground truth; TN is true
negative, that is, the set of voxels not labelled as the derived
recovered region and ground truth; FN is false negative; and
FP is false positive.

Moreover, the change-rates derived from the recovered
regions are also used to evaluate the accuracy of recovered
region detection. Because of the homogeneity of voxel values
in the predefined digital phantom, only themean change-rate
of the recovered region is calculated and compared with the
predefined real value by linear regressions.

2.3. Clinical Applications

2.3.1. Clinical Data Acquisition. In this study, 99mTc-ECD
SPECT brain imaging is used in the treatment monitoring of
the internal carotid artery (ICA) stenting, which is a common
treatment technique for brain ischemia. This study has been
approved by the Ethics Committee of Renji Hospital, School
of Medicine, Shanghai Jiaotong University. All the SPECT
scans are performed in accordance with the guidelines for
brain perfusion SPECT using 99mTc-labelled radiopharma-
ceuticals [1]. 50 patients in total (7 women, 43 men, and
average age 62.9 ± 10.5 years) prescribed ICA stenting are
recruited. 27 of them have cerebral infarction, while the rest
suffer different degrees of cerebral ischemia. For each patient,
the baseline 99mTc-ECD SPECT imaging is performed within
7 days before surgery, and then the follow-up scan is generally
conducted in ∼7 days (ranged from 2 to 12 days) after the
treatment of ICA stenting. The SPECT imaging was started
within 20∼30 minutes after the radiotracer injection (around
25mCi 99mTc-ECD) using dual-head Philips Precedence 6
SPECT/CT scanner with low-energy and high-resolution
collimators. For 41 patients, the CT scans are performed
together with SPECT imaging. For the rest of 9 patients, the
corresponding CT images are not available. The system reso-
lution is 7.4mm full width half maximum (FWHM) at 10 cm
for SPECT imaging. Three-dimensional SPECT images were
reconstructed using Astonish� technology, which adopts an
iterative ordered-subset expectation-maximization (OSEM)
algorithm with built-in scatter correction and attenuation
correction [24]. For each patient, a pair of baseline and
follow-up SPECT images was used to evaluate the therapy of
ICA stenting.

2.3.2. Clinical Data Analysis. For the data analysis, the
traditional visual inspection and theCAA-CRMapproach are
both used to assess the recovery levels. For the visual inspec-
tions, the baseline and follow-up SPECT brain images were
compared by two independent experienced physicians in the

same image workstation. When CT images are available, the
physicians inspected the SPECT images with the support of
the aligned CT images. The hypoperfusion lesions caused by
cerebral infarction or ischemia are carefully studied, and then
the recovered regions are delineated manually. Furthermore,
the overall recovery level for each patient is formally reported
in four scales (none, mild recovery, moderate recovery, and
severe recovery) based on the physicians’ experience. On the
other hand, these longitudinal SPECT images are quantita-
tively analyzed by the CAA-CRM approach. After all auto-
matic processes, a CRM is derived for each patient. Then, the
estimated CRM is fused with the original SPECT/CT images.
The recovered regions are automatically derived based on the
CRM by thresholding and clustering. The threshold is set
as 20% according to the results of computer simulations (as
mentioned in Section 3). Small regions (less than 120 voxels)
are excluded to eliminate the influence ofmeasurement noise.
Then, the automatically recovered regions are located by the
atlas of brain lobes and the quantitative indexes related to
recovery level are estimated. In the further evaluation of the
performance of CAA-CRM approach in treatment monitor-
ing, the clinical diagnosis derived by visual inspection is
considered as the standard of the classification of recovery
groups to validate the results of the CAA-CRM approach.

In the performance evaluation, the automatically recov-
ered regions are firstly compared with manually defined
ones. If an automatic recovered region hits the corresponding
manual one, it would be considered as a successful detection
of the real recovered region. Moreover, McNemar’s test [25]
for paired automatic and manual recovered regions is used
to investigate the concordance of the CAA-CRM approach
and traditional visual inspection in the detection of recovered
regions.Meanwhile, quantitative indexes, including themean
change-rate, maximum change-rate, and proportion of the
recovered regions to the corresponding lobes, are estimated
from the CRM. The statistics of these quantitative indexes
related to the recovery levels are analyzed in three different
recovery groups classified according to clinical reports. Non-
parametric one-way ANOVA is also applied in the analysis of
variance of different recovery groups.

3. Results

3.1. Results of Computer Simulation. Using CAA-CRM
approach, the CRMs are derived based on the simulated data.
These estimated CRMs are compared with the corresponding
ground truths. The properties of CRM in treatment moni-
toring are quantified by image quality indexes, including the
NAE, PSNR, and NCC.The comparative results of the image
quality indexes for different lesion sizes at each change-rate
are shown in Figure 2. In Figure 2(a), NAE declines with
the increase of change-rate for each lesion size. Moreover, for
small-size lesion (𝜙8mm), the calculatedNAE ismuchhigher
than larger-size lesions (𝜙16mm and 𝜙24mm), especially
in the condition of low change-rates (10% and 20%). In
Figure 2(b), PSNR progressively rises along the increase of
change-rate, and it climbs quicker in the case of small-size
lesion. Figure 2(c) shows that NCC goes up with the increase
of change-rate when the lesion size is comparatively large
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Figure 2: Comparisons of the image quality indexes for three-size lesions (𝜙8mm: diameter of 8mm, 𝜙16mm: diameter of 16mm, and
𝜙24mm: diameter of 24mm) at nine different change-rates (10% to 90%). (a)Thenormalized average error (NAE) formeasuring the difference
between the change-rate map (CRM) and its ground truth; (b) the peak signal-noise ratio (PSNR) for reflecting the image quality of the CRM;
(c) the normalized cross-correlation (NCC) for quantifying the similarity between the CRM and its ground truth.

(𝜙16mm and 𝜙24mm). However, NCC increases slightly for
small-size lesion.

DSC andmean change-rate estimates of recovered region
are both used to evaluate the performance of the derived
CRM in recovered region detection. From the curve chart
in Figure 3(a), the DSC of large lesion (𝜙24mm) maintains
a higher value (>0.7). For the medium lesion (𝜙16mm), the
DSC increases quickly with rising of change-rate when the
change-rate is less than 40%. Meanwhile, the DSC changes
slightly and stays in a high level when the recovery level is
higher than 40%. However, the DSC fluctuates with a low
value along the increase of recovery level for the small lesion
(𝜙8mm). In Figure 3(b), the linear regressions are plotted for

three different lesion sizes. The highly linear relations (𝑟2 =
0.99,𝑝 < 0.0001) between the change-rates estimates and real
values are observed in the condition of larger lesions (𝜙16mm
and 𝜙24mm). It is also found that the estimated mean
change-rates are underestimated since the liner regression
lines of the estimates and real values are under the line 𝑦 = 𝑥
(the black solid line).The underestimation ismore serious for
the small lesions. It seems that the CAA-CRM approach fails
in deriving the acceptable change-rate for small-size lesion
with diameter of 8mm.

Based on the results of compuater simulations, it can
be concluded that the CAA-CRM approach has a better
performance in the detection of recovered regions and
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Figure 3: Comparisons of detected recovered regions with the ground truth for three-size lesions (𝜙8mm: diameter of 8mm, 𝜙16mm:
diameter of 16mm, and 𝜙24mm: diameter of 24mm) at nine different change-rates (10% to 90%). (a) The Dice similarity coefficient (DSC)
for measuring the accuracy of the recovered regions detection comparing with the ground truth; (b) linear regressions of estimated change-
rates (CR) of the recovered regions with the real values.

the quantification of change-rates, when the lesion size is
sufficiently large (larger than a sphere with diameter of 8mm
that is closed to the proposed spatial resolution of SPECT
images) and the change-rate is high enough (at least not lower
than 20%).

3.2. Results of Clinical Application. For the visual inspection,
17 of 50 patients are reported as severe recovery in brain
perfusion after ICA stenting, while 22 patients are scaled as
moderate recovery. In the remaining 11 patients, there are 8
patients with mild recovery, and 3 patients are diagnosed as
no improvement along with the treatment. Considering the
population distributions of these 4 groups, themild and none
recovery patients are combined as one group to compare with
the other groups. In the visual inspection, 106 manual VOIs
are totally delineated to locate the recovered regions for these
50 patients.

Beside the visual inspection, the CAA-CRM approach is
applied to monitor the changes based on the longitudinal
SPECT images for each patient. Figure 4 illuminates a typical
case of severe recovery. In Figure 4(a), there are three trans-
verse slices (the 36th, 40th, and 44th slices) of baseline 99mTc-
ECD SPECT images. The lesion of cerebral infarction can be
clearly found in the left parietal lobe, which is pointed by a
white arrow. The cerebral ischemia is easily detected for the
hypoperfusion regions around the lesion.The corresponding
slices of aligned follow-up SPECT images are shown in
Figure 4(b). In the clinical report based on visual inspection,
the lesion of cerebral infarction had no improvement after the
treatment of ICA stenting. However, the cerebral blood flow
recovers significantly in the hypoperfusion regions around
the lesion of cerebral infarction. The overall recovery level
given by physicians is severe recovery. In Figure 4(c), the

Table 2: The concordance of automatic VOIs with manual ones in
the localization of recovered regions.

FN TP FP
Sever 3 41 5
Moderate 3 42 3
Mild/none 1 16 4
Total 7 99 12
FN: false negative, the number ofmanually recovered regions whichwere not
hit by automatic ones; TP: true positive, the number of manually recovered
regions which were hit by automatic ones; FP: false positive, the number
of automatically recovered regions which could not find the paired manual
ones.

estimated CRM presents as a parametric image fused with
the corresponding baseline SPECT image. In this case, the
derived CRM could be used to enhance the visual inspection
for physicians in treatment monitoring. In Figure 4(d), the
CRM as well as the corresponding SPECT images is mapped
to the standard atlas of brain lobes for the convenient
localization of recovered regions.

The CAA-CRM approach also has the advantages in
automatic and quantitative analysis of recovered regions. For
all the patients’ SPECT images, the recovered regions are
automatically derived, located, and compared tomanual ones
which are used as the standard for validation. The detailed
results are listed in Table 2 to reflect the concordance between
the automatic detection and manual detection of recovered
regions. From Table 2, there are in total 99 concordat pairs
(automatically recovered regions that hit manual ones) and
the total concordance rate of localization is 93.4%. For
the rest of 19 discordant pairs, there are 12 (12/19, 63.2%)
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Figure 4: A typical case of treatment monitoring using CAA-CRM approach, where the estimated change-rate map can directly reflect
response to treatment.The patient (male, 69-year-old) suffered cerebral infarction in left parietal lobe. While the baseline 99mTc-ECD SPECT
scan was performed 3 days before the treatment of ICA stenting, the follow-up scan was obtained 7 days after the treatment. (a) Three
transverse slices (the 36th, 40th, and 44th slices) of baseline SPECT images. The lesion of cerebral infarction is pointed out by white arrow.
Around this lesion, the hypoperfusion could be observed. (b) Three corresponding transvers slices of the follow-up SPECT image. There is
no improvement in the lesion of cerebral infarction, while the severe recovery is observed for the cerebral ischemia in hypoperfusion regions
around the lesion. The recovery level was scaled as severe by the traditional visual inspection in clinical report. (c) Three transverse slices
of the derived change-rate map (CRM) fused with baseline SPECT image. The scales of change-rate are presented by rainbow color bar. The
warmer color denotes higher change-rate. In this case, the recovered regions can be detected easily and clearly in the change-rate map. (d)
The selected transverse slices of the CRM fused with the atlas of brain lobes. The contours of the brain lobes are delineated. The recovered
regions can be conveniently localized in the brain area.

pairs where the automatic method recommended recovered
regions while the physicians did not, and 7 (7/19, 36.8%)
pairs are in the contrary condition. By the conventional
criteria of McNemar’s test (𝑝 < 0.05), this difference is
considered to be not statistically significant. There is also
no significant difference between the automatic and manual
approaches in localization of recovered regions, whatever
group (severe, moderate, and mild/none groups) is chosen.
The results indicate that the CAA-CRM approach and visual
inspections of experienced physicians have the concordance
in the localization of recovered regions.

After localizing the recovered regions, the mean and
maximum change-rates for each patient could be calculated
based on the delineated recovered regions and then compared
in groups. The group-wise results of statistical comparisons
are illuminated by bar graphs in Figure 5. Figure 5(a)
illuminates that the mean change-rates of the severe recovery
group are mainly higher than those for the moderate group
and mild/none group. The similar results can be observed
in Figure 5(b) for the maximum change-rate estimates for
three groups.The statistical results of nonparametric one-way
ANOVA indicate that the significant differences (𝑝 < 0.0001)
exist among the mean/maximum change-rates of three dif-
ferent recovery groups. Beside the indexes of change-rate,

the proportion of recovered regions to the corresponding
brain lobes, which is calculated as a volume ratio between
recovered regions and the corresponding brain lobes, is also a
specific index for quantifying the recovery level for treatment
monitoring. The comparison of proportion of recovered
regions for three recovery groups is shown in Figure 5(c).
The tendency of the proportions in groups is similar to that
of the change-rate. It is obvious that the better recovery
groups have the higher proportions. According to the results
of nonparametric one-way ANOVA, three recovery groups
had significant effect (𝑝 < 0.001) on proportion of recovered
regions to the brain lobes.

To sum up the results of clinical applications, the higher
change-rates and larger recovered regions could correspond
to better recovery levels given in the clinical reports. These
quantitative indexes derived by the CAA-CRM approach can
be used to quantify the response to the treatment.

4. Discussion

In this study, the performance of the CAA-CRM approach is
objectively and systematically evaluated by the computer sim-
ulations as well as the clinical applications. From the results
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Figure 5: The bar graphs (mean + SD) for comparisons of quantitative indexes for three recovery groups (S: severe, M: moderate, and M/N:
mild/none). (a) The mean change-rate (CR) estimates of the recovered regions; (b) the maximum CR estimates of the recovered regions; (c)
the proportion of recovered regions (RRs) to the corresponding brain lobes.

of computer simulations, the lesion size and change-rate are
considered as two major factors for extracting reliable CRM.
According to the changing tendency of image quality indexes
of CRM, it can be concluded that the lesions with larger size
and higher change-rate could be easier to detect; moreover,
the estimates of change-rate could be more accurate as the
real values. This conclusion confirmed our experiences from
clinical practice. Additionally, the results also clarified that
the spatial resolution of SPECT image could be a major
limitation of the CAA-CRM approach to get accurate quanti-
tative indexes for quantifying the recovery levels. It has been
reported that the quantitative accuracy of the radioactive
concentration in SPECT image would deteriorate with the
decreasing of target size, especially when the targets are below
three times of spatial resolution [26]. For the CAA-CRM
approach, the poor quantitative accuracy of original SPECT
images would directly result in estimated bias of change-rate
and even in the missing recovered regions. As the results
shown in Figure 2(c), for the small lesion (𝜙8mm),whose size
is closer to spatial resolution (7.4mm FWHM at 10 cm), the
values of NCC aremuch lower than those of the larger lesions
(𝜙16mm and 𝜙24mm).The uptrend with increasing change-
rate is also very slight.The low value of NCC reflects the poor
similarity between the obtained CRM and its ground truth.
It means that the obtained CRM could not accurately reflect
the small recovered regions when the region size is closed to
or even smaller than the spatial resolution of SPECT images.

In the computer simulations, the underestimation of
change-rate is observed for all lesions with varied sizes.
However, the underestimation is more significant for the
small lesion.Thebias probably comes from the partial volume
effects (PVEs) that are usually related to the spatial resolution.

The PVEs could induce the underestimation for quantitative
SPECT images, especially when the target is smaller than
three times of spatial resolution [26]. This impact could
directly propagate into the CRM that is derived based on
SPECT images. As illuminated in Figure 3(b), the estimated
change-rate is much lower than the predefined change-rate
for the small-size lesion (𝜙8mm).The estimated change-rates
for middle-size lesion (𝜙16mm) have the high linear relation
with the predefined values, although the values are only
nearly 70% of the real values. It is concluded that the change-
rate could be significantly underestimated comparing with
the real value, when the sizes of recovered regions are below
three times of spatial resolution.Therefore, this underestima-
tion should be kept in mind for clinical applications.

For the clinical applications, the CAA-CRM approach
could be used to define the recovered regions and derived
quantitative indexes to measure recovery levels. In this study,
the thresholding and clustering method is applied to auto-
matically derive the recovered regions. The chosen threshold
of change-rate could be themajor impact factor in delineating
the recovered regions. Furthermore, it could influence the
estimations of quantitative indexes from recovered regions
[27, 28]. The experimental threshold is set as 20% in the clin-
ical applications. It is chosen based on the results of the com-
puter simulations. As shown in Figure 2, the image quality
indexes for the change-rates of 10% and 20% are both much
poorer than the other change-rates regardless of the lesion
size. The CRM would not accurately reflect the change-rate
lower than 20%.This indicates that the significant distortions
may exist in the CRM for the voxels with lower change-rates.
In this case, the lowest limit for available estimated range
of change-rate is required to eliminate the turbulences from
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Figure 6: The bar graphs (mean + SD) for comparisons of quantitative indexes for severe and moderate recovery groups with different
thresholds (S 20: severe recovery group with the threshold of 20%, M 20: moderate recovery group with the threshold of 20%, and M 10:
moderate recovery group with the threshold of 10%). (a) The mean change-rate (CR) estimates of the recovered regions; (b) the proportion
of recovered regions (RRs) to the corresponding lobes.

lower change-rate estimates. Meanwhile, the threshold set-
ting should try to retain as much information as possible in
the CRM for further quantitative analysis. Hence, the experi-
mental threshold set in this study is chosen as 20% rather than
10%. The thresholds could also be able to reset for different
conditions of varied clinical applications.

In the clinical applications, considering the concordance
of the CAA-CRM approach in the detection of recovery
regions, the false positive (12/99) and false negative (7/99)
could be found. The false positive might be caused by
using the uniform 20% threshold which might result in the
detection of not only themain recovered regions (validated by
visual inspections) but also the otherminor recovered regions.
However, the minor recovered regions might be ignored by
the physicians. On the other hand, the uniform threshold
could easily introduce the small changed regions (<120
voxels) for a certain case. The small changed regions could
be removed or even miss the main recovered regions. This
may lead to the false negative. In this condition, the threshold
should be adjusted carefully to balance the false positive and
false negative for detecting the recovered regions. Moreover,
the chosen threshold could further impact on the estimations
of the mean change-rate and the proportion of recovered
regions to the brain lobes. As shown in Figure 6, when a
threshold of 10% instead of 20% is applied in the moderate
group, the values of mean change-rate are decreased sharply.
Meanwhile, the values of proportion of recovered regions to
the brain lobes have increased. From the comparisons, the
mean change-rate is negatively related to the proportion of
recovered region. Therefore, these two quantitative indexes
should be used together to scale the recovery level in

treatment monitoring. To an extent the maximum change-
rate could not be affected by the chosen threshold in theCAA-
CRM approach, so that it becomes an important quantitative
index in treatment monitoring.

Because all the algorithms used in the proposed CAA-
CRM approach totally rely on image contents, this approach
could be extended to analyze other types of SPECT brain
images, such as 99mTc-HMPAO SPECT brain images. The
obtained change-rate map could also illuminate the global
changes for reflecting the response to treatment. The derived
quantitative indexes have the potential to quantify the recov-
ery levels.

5. Conclusion

In this study, a CAA-CRM approach has been introduced
to evaluate the longitudinal 99mTc-ECD SPECT images in
treatment monitoring. This approach can provide change-
rate map as a parametric image to reflect the changes of rCBF.
Computer simulations show the efficacy of the proposed
approach in detecting the recovered regions and in quantify-
ing the change-rates for the lesions larger than spatial resolu-
tion. In clinical applications, this method is used to assess the
treatment of ICA stenting. The results demonstrate that the
quantitative indexes derived from CRM are all significantly
different among the groups and highly correlated with the
experienced clinical diagnosis.

In conclusion, the CAA-CRM approach has the advan-
tages of directly illuminating the global recovery and conve-
niently quantifying the recovery levels. It could be helpful in
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improving the efficiency and accuracy of therapy evaluations
using SPECT brain images in clinical routines.
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