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ABSTRACT

We have developed a web server, FOLD-RATE, for
predicting the folding rates of proteins from their
amino acid sequences. The relationship between
amino acid properties and protein folding rates has
been systematically analyzed and a statistical
method based on linear regression technique has
been proposed for predicting the folding rate of pro-
teins. We found that the classification of proteins into
different structural classes shows an excellent cor-
relation between amino acid properties and folding
rates of two and three-state proteins. Consequently,
different regression equations have been developed
for proteins belonging to all-a, all-b and mixed class.
We observed an excellent agreement between pre-
dicted and experimentally observed folding rates of
proteins; the correlation coefficients are, 0.99, 0.97
and 0.90, respectively, for all-a, all-b and mixed
class proteins. The prediction server is freely avail-
able at http://psfs.cbrc.jp/fold-rate/.

INTRODUCTION

Prediction of protein folding rates from amino acid sequences
is one of the most important challenges in computational and
molecular biology (1). Several investigations have been car-
ried out to understand/predict the folding rates of proteins from
protein 3D structures. These studies include the concept of
contact order (2), first principles of protein folding (3), long-
range order (4), elementary statistical model (5), combination
of contact order and stability (6), number of native contacts
(7), total contact distance (8), topomer search model (9), the
topological properties of protein conformation (10), neural
networks based on contact order, long-range order and
total contact distance (11), amino acid properties (12),

chain length (13), size (14), helix parameter (15) and native
state geometry (16). Recently, different methods have been
proposed for predicting protein folding rates from amino acid
sequence, secondary structure and structural class information
(17–20).

The folding of a protein is mainly dictated by inter-residue
interactions, which are influenced by physical, chemical, ener-
getic and conformational properties of amino acid residues
(21). Further, amino acid properties have been successfully
used for understanding the transition state structure of pro-
teins, predicting protein stability upon mutation etc. (22,23). In
this work, we have analyzed the relationship between amino
acid properties and folding rates of proteins, and developed
multiple regression equations for predicting protein folding
rates to different structural classes of proteins using amino
acid properties and a large dataset of 77 two and three-state
proteins. A web server has been set up to predict the protein
folding rates, which takes the amino acid sequence and struc-
tural class information as input and displays the folding rate of
the protein along with amino acid composition in the output.
Our method showed an excellent correlation of 0.96 between
predicted and experimental folding rates of proteins. The
prediction server is available online at http://psfs.cbrc.jp/
fold-rate/.

MATERIALS AND METHODS

Experimental folding rates

The experimental folding rates of 77 two and three-state pro-
teins used in related works (13,18,19) form the basis for the
present study. The Protein Data Bank codes (24) and experi-
mental ln(kf) values are given in Table 1. The structural
classification of these proteins yielded 16 all-a (dominated
by a-helices; a > 40% and b < 5%), 26 all-b (dominated
by b-strands; b > 40% and a < 5%) and 35 mixed class
proteins (contain both a-helices and b-strands; a > 15%
and b > 10%).
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Amino acid properties

We used a set of 49 diverse amino acid properties (physical–
chemical, energetic and conformational), which fall into
various clusters analyzed by Tomii and Kanehisa (25) in
the present study. The amino acid properties were
normalized between 0 and 1 using the expression,
Pnorm(i) ¼ [P(i) � Pmin]/[Pmax � Pmin], where P(i), Pnorm(i)
are, respectively, the original and normalized values of amino
acid i for a particular property, and Pmin and Pmax are, respect-
ively, the minimum and maximum values. The numerical and
normalized values for all the 49 properties used in this study
along with their brief descriptions have been explained in our
earlier articles (26,27).

Computational procedure

The average amino acid property for each protein, Pave(i) was
computed using the standard formula,

PaveðiÞ ¼
XN

j¼1

PðjÞ=N 1

where, P(j) is the property value of jth residue and the sum-
mation is over N, the total number of residues in a protein. The
computed property value Pave(i) for each class of proteins was
related with experimental folding rate lnkf (i) using single cor-
relation coefficient. Further, we have combined the amino acid
properties using multiple regression technique (28). It is the
extension of linear single regression with more than one prop-
erty. For example, the multiple regression equation for lnkf

with two properties, P1 and P2 may be written as:
lnkf ¼ c + aP1 + bP2, where c is a constant, and a and b
are regression coefficients obtained by fitting the properties
P1 and P2 with lnkf.

RESULTS AND DISCUSSIONS

Prediction of protein folding rates

We have analyzed the relationship between amino acid
properties and folding rates of proteins belonging to different
structural classes. We observed that the conformational
and thermodynamic properties show good correlation with
protein folding rates in all-a proteins. In all-b proteins,
thermodynamic properties and in mixed class proteins,

Table 1. Predicted folding rates in a set of 77 two and three-state proteins

PDB code Experimentala ln(kf) predicted Deviation

All-a proteins
1LMB 8.50 8.45 0.05
2ABD 6.55 6.33 0.22
1IMQ 7.31 7.20 0.11
2PDD 9.80 9.54 0.26
1HRC 8.76 8.66 0.10
1YCC 9.62 9.74 �0.12
256B 12.20 12.42 �0.22
1VII 11.52 11.47 0.05
1BDD 11.75 11.72 0.03
1l8W 1.61 1.61 0.00
1ENH 10.53 10.49 0.04
1EBD 9.68 9.90 �0.22
1A6N 1.10 1.20 �0.10
1CEI 5.80 5.95 �0.15
2CRO 3.70 3.82 �0.12
2A5E 3.50 3.43 0.07

All-b proteins
1NYF 4.54 4.34 0.20
1PKS �1.05 �0.62 �0.43
1SHG 1.41 1.57 �0.16
1SRL 4.04 4.09 �0.05
1FNF-9 �0.91 �0.96 0.05
1TEN 1.06 1.22 �0.16
1WIT 0.41 0.18 0.23
1CSP 6.98 6.75 0.23
1MJC 5.24 5.70 �0.46
2AIT 4.20 4.05 0.15
1PNJ �1.10 �1.77 0.67
1SHF 4.50 4.78 �0.28
1C9O 7.20 7.24 �0.04
1G6P 6.30 6.11 0.19
1LOP 6.60 6.57 0.03
1PIN 9.44 9.63 �0.19
1C8C 6.91 7.04 �0.13
1PSF 3.22 3.53 �0.31
1FNF-10 5.48 5.36 0.12
1HNG 2.89 2.60 0.29
1HX5 0.74 0.75 �0.01
1TIT 3.47 3.57 �0.10
1IFC 3.40 3.38 0.02
1EAL 1.30 1.20 0.10
1OPA 1.40 1.07 0.33
1CBI �3.20 �2.68 �0.52

Mixed-class proteins
1APS �1.48 �1.18 �0.30
1HDN 2.70 2.45 0.25
1URN 5.73 5.36 0.37
2HQI 0.18 0.47 �0.29
1PBA 6.80 6.92 �0.12
1UBQ 7.33 6.63 0.70
2PTL 4.10 3.77 0.33
1FKB 1.46 1.23 0.23
1COA 3.87 3.73 0.14
1DIV 6.58 6.87 �0.29
2VIK 6.80 6.39 0.41
1CIS 3.87 3.30 0.57
1PCA 6.80 6.68 0.12
1HZ6 4.10 4.64 �0.54
1PGB 6.00 5.75 0.25
2CI2 3.90 3.88 0.02
1AYE 6.80 7.62 �0.82
1RIS 5.90 6.08 �0.18
1POH 2.70 2.45 0.25
1BRS 3.40 3.20 0.20
1UBQ 5.90 6.63 �0.73
2ACY 0.92 1.07 �0.15
3CHY 1.00 1.08 �0.08
2RN2 0.10 0.28 �0.18
1RA9 �2.50 �2.30 �0.20

Table 1. Continued

PDB code Experimentala ln(kf) predicted Deviation

1BNI 2.60 2.90 �0.30
2LZM 4.10 4.14 �0.04
1SCE 4.20 4.46 �0.26
1GXT 4.38 4.15 0.23
2A5E 3.50 3.71 �0.21
1AON 0.80 1.46 �0.66
1PHP (N-TERMINAL) 2.30 2.02 0.28
1PHP (C-TERMINAL) �3.45 �3.71 0.26
1qop (a-Subunit) �2.53 �2.76 0.23
1qop (b-Subunit) �6.91 �6.86 �0.05

italics.

aExperimental folding rates are obtained from Galzitskaya et al. (13), Ivankov
and Finkelstein (18) and Gromiha (19). The three-state proteins are shown in
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physical–chemical properties show significant correlation
with protein folding rates. This observation is similar to
that reported earlier with a small set of proteins (19).

We have combined the amino acid properties using multiple
regression technique. The combination of 10 properties in all-
a proteins yielded the correlation coefficient of 0.997 and the
predicted folding rates are presented in Table 1. We have also
performed jack-knife test to examine the validity of the present
method and the results are shown in Figure 1. In this test, the
folding rates of (n � 1) proteins have been used to derive the
coefficients in multiple regression equation and the same
coefficients have been used for predicting the folding rate
of the left-out protein. The same procedure has been repeated
for n times for obtaining the folding rates of all proteins. We
observed an excellent correlation of 0.992 between experi-
mental and predicted folding rates of proteins in the considered
all-a proteins. We have also carried out the computations for
all-b and mixed class proteins and the results are included in
Table 1 and Figure 1. We obtained the correlation of 0.99 for
both all-b and mixed class proteins in back-check prediction.
The jack-knife test yielded the correlation of 0.97 and 0.90,
respectively for all-b and mixed class proteins. The less
correlation of mixed class proteins than all-a and all-b classes
of proteins might be due to the complicate nature of the
structures with both a-helices and b-strands.

Considering all the 77 proteins together, we obtained the
overall correlation of 0.99 and 0.96, respectively, for the back-
check prediction and jack-knife tests. The deviation between
experimental and predicted folding rates is 0.23 for the back-
check prediction and 1.19 for the jack-knife test. Further, the
prediction results obtained with two-state proteins are similar
to that obtained with three-state proteins. It may be noted that
the reported folding rates are given in logarithmic scale and the
actual error will be relatively high in the real values of protein
folding rates. Interestingly, the folding rates of 44 out of

77 proteins (57%) are predicted within the deviation of less
than 1 unit. In the self-consistency test (back-check prediction)
all proteins have been predicted within this limit. Further, we
have developed a single equation for predicting the folding
rates of proteins without structural class information and
obtained the correlation of 0.87.

Prediction on the web

We have developed a web server for predicting the folding
rates of two and three-state proteins. Figure 2a shows the
details of our web server including the input options. It
takes the amino acid sequence in one letter format as the
input and automatically omits gaps. It also gets the information
about the structural class. The structural class information for a
protein of known structure can be obtained either from SCOP
or CATH databases and prediction results for structural class
can be obtained with other servers, such as, protein structure
prediction server (PSA; http://bmerc-www.bu.edu/psa/), sec-
ondary structural content prediction (SSCP; http://www.bork.
embl-heidelberg.de/SSCP/) etc. The output formats are shown
in Figure 2b. It shows the amino acid composition of the query
protein, selected type of the protein and the predicted folding
rate. As an example, for l repressor belonging to all-a protein,
the predicted folding rate, ln(kf), is 8.44/s, which agrees
remarkably well with experimental observations (8.50/s).
The prediction results are freely available at http://psfs.cbrc.
jp/fold-rate/.

Comparison with other methods

The methods based on 3D structures of proteins reveals the
relationship between structural parameters, such as contact
order, long-range order, etc. and protein folding rates.
These methods showed a correlation in the range of 0.8–
0.9. Gong et al. (17) reported the correlation of 0.91 using
secondary structure content. Recently Putna and Rost (20)
predicted protein folding rates from amino acid sequence
using the information about predicted long-range contacts
and reported a correlation of 0.61 for a set of 37 proteins.
The present method shows the correlation of 0.97 and 0.93
between experimental and predicted folding rates with the
back-check and jack-knife tests, respectively. These accuracy
levels are better than other methods in the literature. Although
the direct comparison of correlation coefficients obtained in
the present work with the other methods is not appropriate, the
empirical relationships derived for different structural classes
predict the folding rates with high accuracy.

Limitations of the present method and possible
improvements

In the present work, we have used the amino acid sequence and
49 amino acid properties for predicting protein folding rates
using multiple regression equations. We observed a good
agreement between predicted and experimental folding rates
of proteins. It may be noted that the folding rates of proteins
depend on experimental conditions, which are not considered
in the present work. On the other hand, the inclusion of struc-
tural and evolutionary information may improve the prediction
accuracy.
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Figure 1. Relationship between experimental and predicted ln(kf) values using
multiple regression model with jack-knife test in a set of 77 two and three-state
proteins.
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CONCLUSIONS

We have devised a method based on multiple regression tech-
nique for predicting protein folding rates using amino acid
properties. Different regression equations have been
developed for proteins belonging to all-a, all-b and mixed
class proteins. We observed that the predicted folding rates
show an excellent agreement with experimental results. A web
server has been developed for the prediction purpose and the
results are available online, which may be very helpful for the
users to get the folding rate of any protein with its structural
class information.
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