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Abstract

Miniaturized imaging devices have pushed the boundaries of point-of-care imaging, but

existing mobile-phone-based imaging systems do not exploit the full potential of smart

phones. This work demonstrates the use of simple imaging configurations to deliver superior

image quality and the ability to handle a wide range of biological samples. Results presented

in this work are from analysis of fluorescent beads under fluorescence imaging, as well as

helminth eggs and freshwater mussel larvae under white light imaging. To demonstrate ver-

satility of the systems, real time analysis and post-processing results of the sample count

and sample size are presented in both still images and videos of flowing samples.

Introduction

Traditionally, the analysis of biological samples has been restricted to a lab or a central facility.

These analyses employ the use of large imaging systems such as white light microscopes, fluo-

rescence microscopes or flow cytometers, depending on the type of sample under study.

Microscopes are great for obtaining qualitative information about the cells such as size, shape,

distribution, or cellular inclusions. The downside of microscope is the cost, size, and fragility

of the equipment. Manual analysis using a microscope requires a trained eye for proper inter-

pretation, making analysis time consuming. Fluorescent imaging devices screen a range of

diseases including blood related disorders, cancers, and AIDS. Microscopes have been an

indispensable equipment in diagnosis by providing both qualitative and quantitative informa-

tion about the sample. The downside of microscopes is manual screening; the reliability of this

method depends on the experience of the clinician or the pathologist. Flow cytometers are

automated devices that also provide quantitative and qualitative information, making them

the state-of-the-art technique to screen for human immunodeficiency virus (HIV). The draw-

back of these devices is the costs associated with the device; commercial flow cytometers cost

$35,000 or more and have a maintenance costs of $6000 per year [1]. The other drawback of
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this device is clogging; analysis is performed only on one cell at a time, hence the size of the

aperture must be small. The device can handle cells up to 100 μm, which is wider than most

cells. The problem arises when two or more cells are lumped together or when an abnormal

cell is being analyzed. Cancer cells and other unhealthy cells usually tend to be larger than

healthy cells, clogging the system during analysis.

Two solutions have been proposed to address the drawbacks of the device and the tech-

niques: miniaturization and mobile phone microscopy. An overview of miniaturized subsys-

tems that can be used to develop a miniaturized microscope is given by Helmchen [2]. The

working principle of the miniaturized systems proposed by Ghosh et al. [3] is similar to a con-

ventional lab microscope; instead of traditional excitation sources and imaging techniques, the

system integrates a CMOS imager, filter cubes and mirrors, an FPGA and other electronics to

reduce the size of the imaging system. Although miniaturization improves portability, it intro-

duces new challenges and adds complexity to the overall system.

Mobile phone microscopy is the other approach that appends optics to a mobile phone

camera enabling it to perform white light and fluorescence microscopy. Groups have demon-

strated cell sample detection, sample count, and fluorescence detection with this approach.

Diagnosis of sickle cell anemia and malaria using mobile phone microscopy has been previ-

ously published [4]. The setup used by this group consists of precisely placed lenses and filters

aligned with the mobile phone’s camera. Later work employs a similar optics holder to detect

fluorescence from biological sample [5]. In both the systems, images are captured using the

inbuilt camera application and analyzed manually or transferred to a computer for post

processing.

This paper improves on existing mobile phone microscopy techniques by detecting sample

and offering quantitative and qualitative information in real time. While other published work

has made significant contributions to specific aspects of mobile phone microscopy such as

optics and specialized imaging components, this work focuses on developing a simple setup

for a broad range of biological applications and sample detection techniques. The proposed

setup would consist of a 3D printed jig to align simple optics and the sample to the mobile

phone microscope. An inbuilt android application will capture images of the sample which

can either be automatically analyzed in real time or sent to a computer for offline processing.

In this work, we have demonstrated the capability of the application to detect and provide

sample count in both stationary images and from videos of biological sample. Image process-

ing techniques to analyze the sample in real time using Java and post processing using Matlab

is also outlined in this work. To demonstrate that the proposed system is capable of handling a

wide range of biological sample, this system was used to analyze three distinct biological sam-

ples: fluorescent beads, helminth eggs, and glochidia.

The system was tested with fluorescent beads to demonstrate its significance in medical

applications. Existing miniaturized systems that can detect fluorescence employ techniques

such as total internal reflection [6], time-domain excitation separation using high speed pixels

[7], spin coated filters [8], and fiber optic phase plate with fixed sample-sensor separation [9].

Although these devices are smaller than the traditionally used flow cytometers, the complexity,

fragility, and costs of these systems limits their use to laboratory settings. The ability of the pro-

posed mobile phone based system to detect fluorescence signal drastically improves its signifi-

cance in disease screening especially, at remote and resource limited areas.

Soil-transmitted helminths are among the most common infections that affect poor and

deprived communities [10]. Traditional screening of helminth eggs involves analysis of a stool

smear under a microscope. Microscopic analysis requires a trained technician to systematically

examine the entire fecal smear. This problem has been partially addressed by replacing micro-

scopes with mobile devices such as the demonstration by Bogoch et al. that detection of soil-
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transmitted helminth eggs is possible with a mobile-phone based microscope [11]. Their

method requires the preparation of a fecal smear, and sample analysis is performed using the

Kato-Katz technique; the reported time for Kato-Katz is 48 minutes per sample [12]. The pro-

posed system in this paper improves on their mobile-phone microscopy by producing high

quality images and reducing the cost, time, and resources required for screening. The sample

analyzed with the proposed system, does not require sample preparation or the Kato-Katz

method.

Glochidia are the larval stage of freshwater mussels, the most imperiled of any major group

of animals in North America. Artificial propagation has been one of the approaches used to

restore mussel populations and this process requires counting large quantities of glochidia.

Traditionally, the counting is done by a foreman with the use of a microscope [13]. However,

counting microscopic glochidia is labor intensive and prone to human error. We explore how

glochidia counting can be automated by use of image processing. Some previous studies have

been done on the counting problem of larger rigid objects such as cars or pedestrians [14] [15]

which do not change their shapes and sizes, and are easily visible with the naked eye and there-

fore less challenging to acquire in images for processing. The problem of glochidia counting

is more complex because the objects of interest are microscopic, have variations in size and

shape, and can resemble other organisms and particles in the sample.

The next section describes the materials and methods involved in the imaging set up, tech-

niques used to prepare the sample, and imaging techniques that were employed for data analy-

sis. Section 3 discusses the results from data analysis and compares the results from the 3

techniques: manual analysis, real time analysis, and analysis using Matlab.

Materials and methods

In this section we describe the setup used for our experiments and the device fabrication tech-

niques used to handle the problem. More specifically, we will discuss the following:

• Imaging setup— Optics, jig design, microfluidic device design.

• Sample preparation— fluorescence beads (medical applications), helminth eggs (diagnos-

tics), and mussels (counting and inoculation).

• Imaging techniques— Manual analysis, Post processing (OpenCV) [16], Real-time process-

ing (Android platform)

Imaging setup

Mobile phones are widely available and most devices have an inbuilt camera with multi-mega-

pixel resolution. The camera on the phone can be used in macro mode by placing a simple ball

lens in front of it. The resulting magnification can be increased by simply picking a ball lens

with a different focal length. Data for this work was collected from an LG Nexus 5 phone. For

data collection, two setups were employed: one for collecting data from stationary samples and

one for collecting data from samples inside a microfluidic channel. The analyses performed on

the samples are summarized in Table 1.

The setup shown in Fig 1 was employed to collect data from stationary sample, i.e the sam-

ple was placed on a glass slide and protected with a cover slip. The imaging set up consists of a

socket for the ball lens to be placed above the phone’s camera, a slot for the glass slide, and a

second socket for a filter if fluorescence imaging is used. The slide slot has threads to keep the

slide in place and allows adjustment of the sample sensor separation. The jig was designed in

AutoCAD and 3D printed.

Analysis of biological samples using mobile phone microscopy
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Although most biological samples are analyzed after they are fixed to a surface, there are

many benefits to analyzing flowing samples. The primary benefit is reduction in analysis time;

throughput of sample analysis can be drastically increased by analyzing flowing samples. To

achieve this with mobile phone microscopy, a special jig was designed to interface microfluidic

devices with mobile phones. The illustration and the printed prototype of the jig is shown in

Fig 2. This jig has a base similar to the jig used to analyze stationary samples and is fitted with

a holder for the microfluidic device. The sample sensor separation can be changed with the

help of the metal knob shown in the Fig 2.

Table 1. Overview of samples and techniques used.

Sample Device Detection Measurement

Helminth flowing (video) Color segmentation / Edge detection count

Glochidia flowing (video) Background subtraction / Edge detection count; size

Flourescent beads still (image) Watershed Algorithm / Edge detection count

https://doi.org/10.1371/journal.pone.0193797.t001

Fig 1. 3D printed jig used in mobile phone microscopy to analyze stationary samples.

https://doi.org/10.1371/journal.pone.0193797.g001

Fig 2. 3D printed jig used in mobile phone microscopy to analyze samples in microfluidic devices.

https://doi.org/10.1371/journal.pone.0193797.g002
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In this work, for still samples, the microfluidic networks, shown in Fig 3, were fabricated on

a microscope slide by patterning heat sensitive adhesive tape (HSA) and sealing the device

with a slab of cured Polydimethylsiloxane (PDMS). A simple network with a straight channel

and ports was designed for this experiment. The tape was patterned and layered to obtain a net

thickness and channel width of 200 μm and 1 mm respectively. Most traditional microfluidic

systems are made out of PDMS using a technique known as soft lithography. This requires a

master mold to fabricate the devices. The advantage of using tape based devices is the flexibility

to change the design of the microfluidic device without the need for a new master mold.

Although simple straight channel microfluidic system was employed in this work, any complex

network of systems can be interfaced with this set up for analysis.

For the counting experiments which involved flowing samples, the microfluidic device was

fabricated by using sheets of PDMS with a thickness of 250 μm. The sheets were cut using a Sil-

houette Cameo desktop cutter to form the desired channel shape. Multiple layers of the cut

sheets were stacked on top of each other to attain the desired channel height. A plasma cleaner

is used to bond the PDMS layers to each other. A final PDMS layer facilitating holes for tube

insertion for flowing the sample inside the channel is placed on top. Tubes are inserted at both

Fig 3. Microfluidic device used for still sample experiment.

https://doi.org/10.1371/journal.pone.0193797.g003
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ends to provide sample input and output through the channel. The tubes are sealed using a

mixture of PDMS and silicone elastomer curing agent in the ratio 10:1. The tubes are carefully

inserted horizontally instead of vertically to limit clogging at the insertion point, which was

found to be a problem with vertical insertion due to presence of large debris particles in the

sample. The final device is shown in Fig 4.

Sample preparation

In this work, three different biological samples were used to demonstrate the robustness of the

proposed imaging system. The samples being imaged are fluorescent beads, helminth eggs,

and glochidia. Sample preparation techniques and handling methods are listed in this section.

To demonstrate that the system can detect fluorescence, commercially available fluorescent

beads (Spherotech FP-10045-2) were used. These beads are commonly used to calibrate clini-

cal flow cytometers. During imaging, 1 μL of the bead solution was mixed with 500 μL of

deionized water to make the working solution.

To demonstrate the capability of detecting helminth eggs, stool samples from five mice

infected with T. muris (whipworm) were collected. The feces samples were diluted by mixing

one gram with 30 mL water and stored at 4˚.

Fig 4. Microfluidic device used for flowing sample experiments.

https://doi.org/10.1371/journal.pone.0193797.g004
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For propagation of freshwater mussels, glochidia are extracted from gravid females and

used to either inoculate host fish, on which they transform into juveniles, or put into petri

dishes for growth and development in vitro. To create samples used in this work, glochidia

were pipetted into in clean water, with care given toward minimization of extraneous debris.

The target concentration for sample collection is approximately 50 glochidia per 5mL of water.

Imaging techniques

To develop an algorithm for counts we first begin with detection and counting of fluorescent

beads.

Counting fluorescent objects. The fluorescent-object-count scenario is somewhat sim-

pler than the helminth and glochidia scenarios, due to the fact that it is taking still images as

input instead of video and also because the contrast between target objects and background is

much higher, see Fig 5a. However, the algorithm must still be designed carefully to deal with

visual artifacts such as blurring due to the relatively low quality of a smartphone camera and

also to be able to properly count objects that have clumped together and may appear as one

single, large object if not processed carefully.

Our algorithm is derived from the watershed computer vision algorithm for identifying

regions of high contrast in an image [17], using only the portions relevant for our task and

with some additional filtering added. Intuitively, this algorithm identifies regions that are

potentially the center of a fluorescent object, then combines those regions in a carefully con-

trolled way to determine which are actually separate objects for counting.

We first preprocess the image using three standard computer vision techniques— top-hat

transform, histogram equalization, and median blur— to ensure that the contrast is as high as

possible and that illumination is consistent across the entire image. From there, we identify

candidate object centers using simple thresholding and perform a “distance transform” which

assigns every pixel in the image to the closest candidate center, which creates clusters of pixels

representing candidate objects. At that point it is simply a matter of shrinking the regions

using an “erode” operation so as to distinguish neighboring objects. Once that is complete, the

objects can easily be counted using connected-components techniques.

Fig 5. Figure showing the processing of fluorescent beads on two platforms. a) Original image of fluorescent beads.

b) Processed image on Android showing count. c)Processed Image on PC.

https://doi.org/10.1371/journal.pone.0193797.g005
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Counting helminth eggs and glochidia. The first step in processing the sample is to crop

the video to the region of interest to reduce the size of the video, thereby making the computa-

tion easier on the mobile computing platform. The region of interest (ROI) in our case is the

width of the channel through which the sample is flowing. Fig 6 shows the channels and ROIs

for both the helminth eggs and glochidia.

Helminth eggs and glochidia are processed using the same procedure, except that an addi-

tional pre-processing step of color segmentation is applied to the Helminth videos due to poor

contrast between the Helminth eggs and the background (compare Figs 7a and 8a), as well as

the larger amount of random moving particles in the Helminth sample. The color segmenta-

tion step partitions the video into regions based on changes in color, and this converts the low

contrast observed in Fig 8a into the higher contrast observed in Fig 8b. Color segmentation

was not needed in glochidia because the samples already have higher contrast against the chan-

nel which has minimal debris particles (see Fig 7a). After applying color segmentation to Hel-

minth eggs, the subsequent processing steps applied to Helminth eggs and glochidia are the

same.

The next step is to do segmentation to separate out the object of interest from the back-

ground. Background subtraction (BS) is a common and widely used technique for stationary

video sources that generates a foreground mask that isolates the pixels of moving objects in the

video. Background subtraction calculates the absolute difference between the current frame

and a background model to produce the foreground mask. The background model contains

the stationary or non-moving part of the video, which are all the parts that would be consid-

ered as background. Background modelling consists of two steps namely Background Initiali-

zation and Background Update. The first step takes the initial frame as the background model,

and the second step is performed recursively to adapt to the changes in the background (e.g.

lighting, camera position, inserted background objects, etc) [18]. We are using the Pixel-Based

Adaptive Segmenter (PBAS) technique from [19] to perform background subtraction. The rea-

son for using this technique is its low computation complexity. This algorithm is much faster

but less accurate than the common Mix of Gaussian (MOG) subtraction technique. Fig 7a

shows the original image of the channel and Fig 7b shows the foreground mask generated after

Fig 6. Rectangles show regions of interest in videos for glochidia (left) and helminth egg (right) experiments.

https://doi.org/10.1371/journal.pone.0193797.g006
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Fig 7. Figure showing the various processing steps involved in the processing of glochidia sample. a) Original

image of microfluidic channel. b) Result of Background subtraction, morphological operation and contour detection

on frame. c) Blob tracking and counting using virtual line.

https://doi.org/10.1371/journal.pone.0193797.g007

Analysis of biological samples using mobile phone microscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0193797 March 6, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0193797.g007
https://doi.org/10.1371/journal.pone.0193797


performing background subtraction on glochidia sample. The white blob in Fig 7b is formed

due to presence of glochidia moving through the channel. This blob would then be used for

tracking and calculating the centroid of the glochidia.

After creating the blobs of objects, Morphological operations are performed on the image

to find objects having a shape that matches the target. The type of the structuring element used

depends on the size and shape of the target object. For glochidia an elliptic structuring ele-

ment, that is, a filled ellipse inscribed into the rectangle is used. For Helminth eggs, we use the

rectangular structuring element. A series of erosion and dilation morphological operations are

applied to the frame to remove noise in the video after applying Background subtraction. This

also closes the broken blobs which helps in their detection as one object. Canny edge detection

[20] followed by contour detection is performed. Fig 7b shows the result of these operations

performed on a background subtracted frame.

The contours of the objects are apparent after background subtraction. From the contours,

the size of the objects and also the number of objects in the scene can be calculated. These

objects are then filtered based on their area to eliminate objects that are too small or large to be

the targets. Fig 7b shows the labeled blobs after the operations discussed above; only the mov-

ing blobs have been marked (by green boxes) in the image.

To enable counting, the objects that survive the filtering operation are then given identifiers

and are tracked in the video using the cvBlob library in openCV. To track the objects, the cen-

troid of each blob is calculated in the starting frame. In the next frame, the centroid of the

blobs are calculated again and based on the position of the centroid, the blob IDs from the pre-

vious frame are assigned to nearest blob in the next frame. This process is performed repeat-

edly to keep track of blobs within the region of interest. When a tracked object’s centroid

crosses a virtual line in the ROI (shown in red in Figs 7c and 8c), a check is performed to see

whether the crossing object matches the target object. If the match is detected the count of the

object is incremented.

Measuring glochidia sizes. To determine glochidia size, automated measurements are

also performed after counting. To measure the size, the known channel width of 350 μm is

used to calibrate a pixels-to-length conversion factor that translates the size in number of pixels

to size in standard length units. The longest dimension of the bounding box of the glochidia

blob is used as its size measurement. Fig 9 shows the histogram of glochidia sizes for a count of

Fig 8. Figure showing the various processing steps involved in the processing of helminth eggs sample. a) Original

image of microfluidic channel with Helminth eggs. b) Processed video showing detected blobs after Color

segmentation, Background subtraction and morphological operation on frame. c) Blob tracking and counting using

virtual line.

https://doi.org/10.1371/journal.pone.0193797.g008
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400. Fig 10 shows the bounding boxes that were generated when measuring the sizes of six dif-

ferent glochidia; in most cases, the bounding boxes are found to match tightly to the glochidia

dimensions, giving confidence that the measurements are measuring the glochidia appropri-

ately. Note that the image processing recognizes and measures the glochidia without making

any distinction about whether their shells are open or closed (see Fig 10); the mixture of open

and closed shells leads to a bimodal distribution in the measured sizes.

System setup

Fig 11 shows the setup used to automate the glochidia counts. The syringe is filled with the sam-

ple and is attached to a automated dose delivery system. The tube from the microfluidic channel

is connected to the syringe and the sample is delivered automatically at a rate of 60mL/hour.

The Android phone captures the video and performs the processing to extract counts and sizes.

Although the syringe pump is used in these experiments for consistency, a manual hand-oper-

ated syringe could be used in place of the pump for experiments done in the field.

Evaluation

In this section we discuss the pros and cons of using the mobile phone microscope and com-

pare the technique with the traditional bench top lab microscopes. Fig 12 shows the image

Fig 9. Glochidia size distribution histogram.

https://doi.org/10.1371/journal.pone.0193797.g009

Fig 10. Example of the bounding boxes used to measure glochidia sizes.

https://doi.org/10.1371/journal.pone.0193797.g010
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comparison of the three samples under consideration. The images shown on the left were

taken with a lab microscope. We can clearly see the superior quality of the images taken by the

lab microscope. The increase in the image quality comes with a substantial increase in cost as

well as restriction in mobility of the setup. This improvement is not worth the cost and restric-

tion of the setup to lab environment.

The mobile phone microscope can be carried to any location and nowadays even inexpen-

sive mobile phone costing under a hundred dollars have good cameras. In light of this, one

may conclude that automated detection using mobile phone microscope is superior to tradi-

tional microscope in settings where cost and mobility are important.

Results

The results of counting experiments on the mobile phone microscope platform are found to

be competitive to the results obtained by manual counting, as summarized in Fig 13. Table 2

shows the counts obtained for two samples of fluorescent bead using manual counting, auto-

mated counting performed in software running on the Android phone, and automated count-

ing with an additional filtering step that pre-processes images to remove pixels falling outside

of the expected range of values. Table 3 shows the counts obtained from three different hel-

minth samples and three glochidia samples. The samples were processed under constrained

lighting conditions. A LED light source was attached closely to the side of the PDMS device to

provide bright lighting to allow the use of low exposure setting to prevent motion blurring and

ghosting. Manual count was performed on the recorded video and a comparison was made

with the reported software count. The mean absolute percentage error across all sample count-

ing experiments is 11%.

Conclusion

This work has demonstrated the feasibility of mobile phone microscopy as a simple platform

for performing real-time analysis on important biological samples. The proposed system could

not only enable screening of soil-transmitted helminths in resource limited areas but would

also increase the throughput of screening when compared to traditional methods. The tech-

niques show promise for automated glochidia counts during propagation, but practical appli-

cation is hindered by low glochidia density needed for accurate counts and low flow rates

needed to prevent clogging. Detection of fluorescence in sample enables point-of-care

Fig 11. System setup to automate sample counting process using syringe pump, mobile phone on printed jig, and

container to catch the samples after processing.

https://doi.org/10.1371/journal.pone.0193797.g011
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diagnosis for a wide range of diseases and disorders. Overall, the ability of the proposed system

to perform fluorescence imaging, detect flowing samples, and determine size of the sample has

numerous applications in medicine, biology, environmental studies, microfluidics, and disease

screening.

Fig 12. Comparison of image quality using a traditional microscope (left) and mobile phone microscope (right).

Traditional microscope images of the a) eggs, b) glochidia, and c) beads were captured under 10X, 20X, and 20X

respectively.

https://doi.org/10.1371/journal.pone.0193797.g012
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