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Abstract

Background

Mitochondria support critical cellular functions, such as energy production through oxidative

phosphorylation, regulation of reactive oxygen species, apoptosis, and calcium homeostasis.

Objective

Given the heightened level of cellular activity in patients with asthma, we sought to deter-

mine whether mitochondrial DNA (mtDNA) copy number measured in peripheral blood dif-

fered between individuals with and without asthma.
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Methods

Whole genome sequence data was generated as part of the Trans-Omics for Precision

Medicine (TOPMed) Program on participants from the Study of Asthma Phenotypes and

Pharmacogenomic Interactions by Race-ethnicity (SAPPHIRE) and the Study of African

Americans, Asthma, Genes, & Environment II (SAGE II). We restricted our analysis to indi-

viduals who self-identified as African American (3,651 asthma cases and 1,344 controls).

Mitochondrial copy number was estimated using the sequencing read depth ratio for the

mitochondrial and nuclear genomes. Respiratory complex expression was assessed using

RNA-sequencing.

Results

Average mitochondrial copy number was significantly higher among individuals with

asthma when compared with controls (SAPPHIRE: 218.60 vs. 200.47, P<0.001; SAGE II:

235.99 vs. 223.07, P<0.001). Asthma status was significantly associated with mitochon-

drial copy number after accounting for potential explanatory variables, such as participant

age, sex, leukocyte counts, and mitochondrial haplogroup. Despite the consistent rela-

tionship between asthma status and mitochondrial copy number, the latter was not asso-

ciated with time-to-exacerbation or patient-reported asthma control. Mitochondrial

respiratory complex gene expression was disproportionately lower in individuals with

asthma when compared with individuals without asthma and other protein-encoding

genes.

Conclusions

We observed a robust association between asthma and higher mitochondrial copy number.

Asthma having an effect on mitochondria function was also supported by lower respiratory

complex gene expression in this group.

Introduction

Asthma is a chronic disease of the respiratory system often characterized by airway inflamma-

tion, excess mucus production, and bronchial constriction [1]. In the United States, it is cur-

rently estimated that 11 million adults and 11 million children suffer from asthma [2,3].

Mitochondria are subcellular organelles that produce up to 90% of cellular energy through

the citric acid cycle and oxidative phosphorylation [4]. In addition to producing adenosine tri-

phosphate, mitochondria are involved in other critical intracellular processes such maintaining

calcium homeostasis, triggering apoptotic cell death, and regulating potentially toxic levels of

reactive oxygen species (ROS) [5–8].

Since mitochondria possess their own genome [9], it is possible to estimate the number of

mitochondrial genomes per cell (i.e., mitochondrial copy number) by obtaining the mitochon-

drial DNA (mtDNA) to nuclear DNA (nDNA) ratio. Previous studies have shown that average

mitochondrial copy numbers in white blood cells (WBCs) differ for individuals with respira-

tory diseases, such as chronic obstructive pulmonary disease (COPD) when compared to

healthy individuals [10,11], but to our knowledge such studies have not been performed

among individuals with asthma alone. In vitro and animal models suggest that various

PLOS ONE Relationship between asthma and mitochondrial copy number

PLOS ONE | https://doi.org/10.1371/journal.pone.0242364 November 25, 2020 2 / 24

MI 48202 Reseach_admin@hfhs.org University of

California San Francisco - IRB 490 Illinois Street,

Floor 6 San Francisco, CA 94143 IRB@ucsf.edu.

Funding: Whole genome sequencing (WGS) for

the Trans-Omics for Precision Medicine (TOPMed)

program was supported by the National Heart,

Lung and Blood Institute (NHLBI). WGS for “NHLBI

TOPMed: Study of African Americans, Asthma,

Genes and Environment (SAGE) Study”

(phs000921.v1.p1) was performed at the New

York Genome Center (3R01HL117004-02S3).

WGS for “NHLBI TOPMed: Study of Asthma

Phenotypes and Pharmacogenomic Interactions by

Race-ethnicity” (phs001467.v1.p1) was performed

at University of Washington’s Northwest Genome

Center (HHSN268201600032I). Centralized read

mapping and genotype calling, along with variant

quality metrics and filtering were provided by the

TOPMed Informatics Research Center (3R01HL-

117626-02S1; contract HHSN268201800002I).

Phenotype harmonization, data management,

sample-identity QC, and general study

coordination, were provided by the TOPMed Data

Coordinating Center (3R01HL-120393-02S1;

contract HHSN268201800001I). This work was

also supported by the Fund for Henry Ford Hospital

(AML, DEL, and LKW); the American Asthma

Foundation (LKW, EGB); the Sandler Family

Foundation (EGB); the RWJF Amos Medical Faculty

Development Program (EGB); Harry Wm. and

Diana V. Hind Distinguished Professor in

Pharmaceutical Sciences II (EGB); and the

following institutes of the National Institutes of

Health: National Institute of Allergy and Infectious

Diseases (U19AI077439 to DJE, and R01AI079139

and R01AI061774 to LKW), the National Heart

Lung and Blood Institute (R01HL117004 and

X01HL134589 to EGB; and R01HL079055,

R01HL118267, R01HL141845, and X01HL134589

to LKW), the National Institute of Diabetes and

Digestive and Kidney diseases (R01DK064695 and

R01DK113003 to LKW), the National Institute of

Health and Environmental (R01ES015794 and

R21ES024844 to EGB), and the National Institute

on Minority Health and Health Disparities

(P60MD006902 and R01MD010443 to EGB). GA

reported receiving grants from the National Heart

Lung and Blood Institute of the National Institutes

of Health during the conduct of the current study,

as well as personal fees and salary support from

Regeneron Pharmaceuticals which is outside of the

submitted work. None of the above funding

organizations played a role in the study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

https://doi.org/10.1371/journal.pone.0242364
mailto:Reseach_admin@hfhs.org
mailto:IRB@ucsf.edu


environmental exposures, including aeroallergens, can damage electron transport chain (ETC)

respiratory complex proteins, promote ROS production, and increase oxidative stress [12,13].

Decreased expression of ETC genes in bronchial epithelial cells may predispose to allergic

inflammation and increase airway responsiveness following allergen challenge [12]. Oxidative

stress has also been associated with mitochondrial copy number [14,15]. Therefore, differences

in mitochondrial copy number and ETC gene expression among individuals with asthma may

identify subtle forms of mitochondrial dysfunction contributing to disease. Such findings and

insights may ultimately improve asthma phenotyping and treatment.

In this study, we evaluated whether mitochondrial copy numbers in blood differed among

individuals with and without asthma in participants from both the Study of Asthma Pheno-

types and Pharmacogenomic Interactions by Race-ethnicity (SAPPHIRE) cohort and the

Study of African Americans, Asthma, Genes & Environment (SAGE II). We also consider

potential causes mtDNA copy number differences by measuring expression of genes involved

in oxidative phosphorylation and by assessing mitochondrial volume and membrane

potential.

Methods

Patients and settings

Both the SAPPHIRE and SAGE II cohorts and the research presented here were approved by

the Institutional Review Boards at Henry Ford Health System and the University of California

San Francisco. Both cohorts are part of the Asthma Translational Genomics Collaborative

(ATGC) in National Heart Lung and Blood Institute’s (NHLBI) Trans-Omics for Precision

Medicine (TOPMed) program. Written informed consent was obtained from all participants

or their guardians, as well as written assent from participants <18 years of age, prior to study

enrollment and the collection of participant data.

All individuals in the SAPPHIRE cohort were patients from a single health system serv-

ing metropolitan Detroit and southeast Michigan. This study has been described in detail

elsewhere [16]. Briefly, eligible asthma case individuals had to be 12–56 years of age at the

time of recruitment, have a previously documented clinical diagnosis of asthma from a phy-

sician, and have no prior history of chronic obstructive pulmonary disease or congestive

heart failure. Control individuals were recruited from the same patient population and met

the same entry requirements with the exception of not having a prior diagnosis of asthma.

Since whole genome sequencing (WGS) was primarily performed in African American par-

ticipants in SAPPHIRE as part of the TOPMed program, we restricted our analysis to Afri-

can American participants and to individuals who were�18 years of age at the time of

enrollment.

At the time of enrollment, SAPPHIRE participants underwent a detailed clinical evalua-

tion which included a detailed questionnaire, anthropomorphic measurements, lung func-

tion testing, and specimen collection. Level of asthma control was evaluated using the

Asthma Control Test (ACT), a self-reported instrument consisting of 5 questions, each

scored on a 5-point Likert scale [17]. Composite ACT scores <20 and �20 are considered

uncontrolled asthma and controlled asthma, respectively. Lung function testing was per-

formed in accordance with 2005 ATS/ERS guidelines [18]. Complete blood counts with

5-part white blood cell (WBC) differential were measured in blood collected in ethylenedi-

aminetetraacetic acid tubes using a UniCel DxH 800 Coulter Cellular Analysis System

(Beckman Coulter, Inc., Brea, CA).

The SAGE II cohort consisted of African American individuals with and without asthma

recruited from clinics throughout the San Francisco Bay Area. As a criterion for enrollment,
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subjects had to self-identify as African American and report that both biological parents

and all biological grandparents identified themselves as African American. Participants

were between the ages of 8 and 21 years at the time of enrollment. Cases had a history of

physician-diagnosed asthma and two or more asthma symptoms (wheezing, coughing, or

shortness of breath) in the preceding two years. Participants underwent a detailed evalua-

tion which included obtaining anthropomorphic measurements, testing lung function in

accordance with 2005 ATS/ERS guidelines [18], completing a detailed survey with questions

on medication use and smoking status, and collecting blood for various laboratory tests

(e.g., blood counts). Growth charts (available at http://www.cdc.gov/nccdphp/dnpao/

growthcharts/resources/sas.htm) were used to calculate the BMI percentile of SAGE II par-

ticipants [19]. Only SAGE II participants <20 years of age were included in the current

analysis.

Whole genome sequencing, mitochondrial copy number, mitochondrial

haplogroup, and genetic ancestry

DNA was isolated from whole blood, and samples of sufficient quantity and quality were sent

to the University of Washington’s Northwest Genomic Center or the New York Genome Cen-

ter for sequencing. Pre-sequencing quality checks included an assessment of DNA quantity

and sex discordance. Libraries for WGS were created using Illumina’s TruSeq DNA PCR-Free

Library Preparation Kit. Sequencing was performed on the Illumina HiSeq X platform with

paired-end 150bp reads. The Illumina package, bcl2fastq v2 15.0, was used to generate individ-

ual FASTQ files. The alignment pipeline can be found at https://github.com/CCDG/Pipeline-

Standardization/blob/master/PipelineStandard.md. In brief, the TOPMed Data Coordinating

Center at the Northwest Genomics Center aligned the raw sequence reads in FASTQ format to

the human reference genome to create binary sequence alignment (BAM) files using the Bur-

rows-Wheeler Aligner algorithm, BWA-MEM [20]. The alignment files were then sent to the

Informatics Research Center at the University of Michigan where joint variant calls were per-

formed. We first used existing array data to identify and remove discordant samples based on

genotype mismatches. Samples with>10% genotype missingness or sex mismatched X chro-

mosome heterozygosity were also excluded. The R package GENESIS was used to assess for

relatedness and population structure [21]. In the case of monozygotic twins, one from each

pair was randomly selected and removed from the analysis. Individuals with African ancestry

>5 standard deviations [SD] below the mean (~20% global African ancestry) and individuals

with closer than 3rd degree relationship with other study participants were excluded as a post

hoc sensitivity analysis. We used the BAM files to estimate mitochondrial copy number based

on the ratio of read depth using the fastMitoCalc program included in the mitoAnalyzer soft-

ware package [22]. As a check of the mitochondrial copy number estimates derived using

WGS data, we agnostically selected a set of 50 blood samples to quantitate copy number using

both the real-time polymerase chain reaction (RT-PCR)-based method described by Ajaz et al.
[23] and sequence read depth. The primers selected for this RT-PCR assay identified unique

and singular portions of the mitochondrial and nuclear genomes (i.e., to avoid mitochondrial

pseudogene amplification and dilutional effects from copy number differences in the nuclear

genome) [24]. Mitochondrial copy number estimates were significantly lower using PCR-

based method when compared with the read depth method (67.6 ± 24.4 standard deviation

[SD] vs. 232.3 ± 77.3, respectively; P = 2.2x10-16 [paired T-test]). However, the measurements

obtained by both methods were strongly correlated (Pearson’s r = 0.74, P = 5.9 x 10−10) as

shown in Supplementary S1 Fig, suggesting that relative copy number estimates between indi-

viduals were similar using both approaches.
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BAM files containing mitochondrial read alignments were separated using SAMtools v1.8

software. The pipeline for mitochondrial haplogroup assignments involved the use of Cloud-

gene (locally installed) with mtDNA-Server v1.1.3 and the program HaploGrep 2 [25,26].

Global ancestry (i.e., the overall proportion of continental group ancestry) was estimated using

the programs RFMix and Admixture [27,28].

Medication use and asthma severity

A subset of the SAPPHIRE participants with asthma had detailed records on medication

fills as a result of their health plan membership; these data included pharmacy claims from

health plan and retail pharmacies. We estimated inhaled corticosteroid (ICS) use in the 6

months prior to the visit date using algorithms that we had developed and reported on

previously [29,30]. Average daily exposure to short acting beta agonist (SABA) medication

was estimated using records of SABA fills in the 3-month period preceding study enroll-

ment. Separate metrics of SABA use were calculated for nebulizer use and metered dose

inhaler (MDI) use, as we have previously shown that both the form and the frequency of

SABA medication use may be related to asthma severity [31,32]. Average daily SABA use

for each participant was estimated by summing the total number of doses (e.g., 50 puffs

per canister) dispensed for that individual in the 91 days preceding enrollment and divid-

ing by 91.

We also estimated asthma severity using a previously described metric which uses both

SABA and oral corticosteroid prescription fills in the preceding year [33]. The lowest severity

group, Group 1, had no oral corticosteroid (OCS) fills and�1 SABA fill in the 12 months

prior to the time of evaluation. Group 3 had one of the following: 2 OCS fills, >6 SABA fills, or

the combination of 1 OCS fill and�4 SABA fills. Group 4 had either�3 OCS fills or the com-

bination of 2 OCS fills and>6 SABA fills. Group 2 encompassed all other combinations of

SABA and OCS fills in the year prior to the study visit.

RNA sequence (RNA-seq) data

Blood was collected from SAPPHIRE participants at the time of enrollment for later RNA

analysis. Blood was collected and stored in PAXgene Blood RNA tubes (BD Biosciences,

San Jose, CA) at -80˚C until the time of analysis. The TruSeq Stranded Total RNA Library

Prep Kit with Ribo-Zero Globin (Illumina, San Diego, CA) was used to create sequencing

libraries on a random sample of African American SAPPHIRE participants with and with-

out asthma. Libraries were sequenced on an Illumina HiSeq. FastQC v0.11.5 (available at

http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC v0.8 were used

to assess RNA-seq quality, including the read length distribution and depth [34]. The pro-

gram BBDuk (BBMap v36.49) was used to trim reads and remove Illumina adapter

sequence (available at https://sourceforge.net/projects/bbmap/). The software program

HISAT2 2.1.0 was used to map reads to human genome build GRCh38.p5 [35], and

mapped reads were quantified at the transcript level using StringTie v1.3.3 [36,37]. RSeQC

(v2.6.4) was used to provide post-alignment QC, including the distribution of mapped

reads, coverage uniformity, strand specificity after alignment [38]. Samples that did not

pass any of the above QC measures were excluded from the analysis, we also excluded sam-

ples from batches that didn’t include both cases and control participants. We restricted

our assessment to mitochondrial and nuclear genes encoding proteins making up ETC

complexes. These complexes compose the final critical pathway for oxidative metabolism

of foodstuffs; complexes I-IV participate in the transfer of electrons and the creation of a

proton potential across the inner mitochondrial membrane, and this gradient drives the

PLOS ONE Relationship between asthma and mitochondrial copy number

PLOS ONE | https://doi.org/10.1371/journal.pone.0242364 November 25, 2020 5 / 24

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://sourceforge.net/projects/bbmap/
https://doi.org/10.1371/journal.pone.0242364


formation of cellular energy as ATP by complex V [39]. Gene expression was quantified as

transcripts per kilobase per million reads (TPM); this measure normalizes read counts for

a gene by accounting for its length (in kilobases) and the total number of reads for a sam-

ple (in millions). In addition, the R-package, DESeq2, was used to normalize read counts

across individuals and all protein-encoding genes in order to assess for differences in

expression by asthma status [40].

Mitochondrial assessment in peripheral blood leukocytes by flow

cytometry

We invited a subset of SAPPHIRE participants to provide a new blood sample for mitochon-

drial assessment by flow cytometry. This group included individuals with asthma and a high

mitochondrial copy number (>300) (eligible n = 61), and individuals with (eligible n = 119)

and without (eligible n = 107) asthma who had a mitochondrial copy number near the average

for their group (± 10 from the mean). We evaluated the first to respond from these eligible

groups—4 (average copy number 371.3 ± 25 SD), 4 (average copy number 217.9 ± 1.3 SD),

and 5 (average copy number 198.1 ± 5.7 SD), respectively. Approximately 12 milliliters (ml) of

blood were collected from each participant into heparinized tubes; blood was centrifuged with

14 ml of Ficoll-Paque Plus (GE Healthcare Life Sciences) to isolate WBCs. After centrifugation,

both the buffy coat layer and the granulocyte layer were removed. The latter was combined

with 20 ml of FACS lysing solution (BD Biosciences); the sample was then mixed and incu-

bated for 30 minutes. The peripheral blood mononuclear cells (PBMCs) from the buffy coat

were centrifuged, and the resulting cell pellet was washed multiple times and resuspended in

sterile 15 ml of 1x phosphate-buffered saline solution. A 10 microliter (μl) sample from each

cell suspension was stained with trypan blue, and the cells were counted manually using a

hemacytometer. We used MitoTracker Red CMXRos (Molecular Probes, Inc., Eugene, OR) to

quantify mitochondria–dye accumulation was dependent on both mitochondrial number and

membrane potential. Following the manufacture’s guidelines, cells were incubated for 30

minutes with prewarmed staining solution containing a 100 nanomolar concentration of

MitoTracker Red CMXRos. Cells were then fixed with buffer containing 4% formaldehyde

and stored at -80˚C until the time of analysis. For the flow cytometry analysis, granulocytes

were stained with 2.5 μl of anti-CD203c antibody conjugated with allophycocyanin (APC)

dye (BioLegend, San Diego, CA), 3 μl of anti-CD117 antibody conjugated with APC-Cy7TM

dye (BioLegend), 3 μl of anti-Siglec 8 antibody conjugated with phycoerythrin (PE) dye

(BioLegend), and 5 μl of anti-CD45 antibody conjugated with Brilliant Violet 421TM dye

(BioLegend); PBMCs were stained with 5 μl of anti-CD45 antibody conjugated with Bril-

liant Violet 421TM dye (BioLegend), 2 μl of anti-CD3 antibody conjugated with APC-Cy7TM

dye (BioLegend), 5 μl of anti-CD4 antibody conjugated with peridinin-chlorophyll-protein-

Cy5.5 dye (BD Biosciences), and 3 μl of anti-CD56 antibody conjugated with PE-CF594 dye

(BioLegend). Eosinophils (CD45+, Siglec 8+, and CD203c-), T-helper cells (CD45+, CD3+,

and CD4+), and natural killer (NK) cells (CD45+, CD3-, and CD56+) were assessed for

MitoTracker staining intensity using a LSRFortessa flow cytometer (BD Biosciences). Com-

pensation beads (BD CompBead, BD Biosciences) were used to correct for spectral overlap

between fluorochrome-labeled antibodies, and the gates for positively stained cells were

positioned using “fluorescence minus one” controls. Leukocyte populations were identified

using the light scatter characteristics of live cells in the forward scatter and side scatter chan-

nels to collect 100,000 gated events. Flow cytometry data were analyzed using FacsDiva

v8.0.1 software (BD Biosciences).
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Statistical analysis

The primary study aim was to assess the relationship between mitochondrial copy number

(outcome) and asthma status (predictor variable). Secondary analyses included assessing fac-

tors associated with mitochondrial copy number (outcome) among individuals with asthma

and, conversely, assessing whether mitochondrial copy number (predictor variable) was sepa-

rately associated with the outcomes of asthma status, exacerbations, and control.

Differences in baseline (i.e., at the time of the initial study visit) characteristics between

individuals with and without asthma were assessed using chi-squared tests and t-tests for cate-

gorical and continuous variables, respectively. We then used Welch’s two-sample t-test to

compare copy number differences between mitochondrial haplogroups categorized by loca-

tion of origin. We compared copy numbers between individuals with either African mitochon-

drial haplogroups (L0, L1, L2, L3, and L4) or east Eurasian haplogroups combined (B, F, A, D,

E, and C/Z) with west Eurasian haplogroups combined (U/K [U2, U3, U4, U5, U7, and K], J/

T, HV/H/V, W, and I); individuals with west Eurasian haplogroups were the reference group

for these comparisons. The above population distribution of haplogroup assignments has been

described elsewhere [4,41,42]. We also compared copy numbers between individuals with

African mitochondrial haplogroups (L0, L1, L2, L3, and L4), M haplogroups (D, E, C/Z, M7,

and other M), and N + R haplogroups (N macrohaplogroups [X, A, W, and I] and the R sub-

macrohaplogroups [U/K, B, F, HV/H/V, and J/T]); in these comparisons, individuals with N

+ R haplogroups were considered the reference group. Haplogroup categories were also strati-

fied by asthma status in order to assess within haplogroup differences in mitochondrial copy

numbers by asthma status. The R package, metafor, was used to meta-analyze the standardized

mean difference in mitochondrial copy number between asthma case and control participants

from the SAPPHIRE and SAGE II cohorts [43].

To understand the factors contributing to mitochondrial copy number, we used linear

regression to model copy number as a function of patient asthma status, patient age, sex

(male = 0, female = 1), proportion of African ancestry, body mass index (BMI) in kilograms

per meter squared, smoking status (past or never smoker = 0, active smoker = 1), percent of

predicted forced expiratory volume at 1 second (FEV1), absolute WBC counts for neutrophils,

monocytes, lymphocytes, and eosinophils (basophils were not included given their scant num-

ber), platelet count, and mitochondrial haplogroup (included using dummy variables for Afri-

can haplogroups [L0, L1, L2, and L3] and combined east Eurasian haplogroups as compared

with the combined west Eurasian haplogroups). Given the small number of individuals with

the L4 haplogroup, we did not include them in these analyses. Since most SAGE II participants

were children, BMI percentile was used in lieu of BMI [19]. Only a small subset of SAGE II

participants had WBC counts, so we performed analyses with and without this variable.

In order to identify potential factors within individuals with asthma contributing to higher

mitochondrial copy number, we restricted the model to SAPPHIRE participants with asthma.

In this analysis, we included variables related to asthma treatment and severity, such as the

composite ACT score, asthma severity score, SABA exposure, and ICS exposure. These partic-

ular variables were only available for SAPPHIRE participants.

Logistic regression was used to model asthma status (dependent variable) as a function of

mitochondrial copy number with other potential explanatory and confounding variables, such

as patient age, sex, proportion of African ancestry, BMI, smoking status, percent of predicted

FEV1, absolute WBC counts for neutrophils, monocytes, lymphocytes, and eosinophils (baso-

phils were not included given their scant number), and mitochondrial haplogroups.

As a sensitivity analysis, we reassessed the relationship between asthma status and mito-

chondrial copy number after removing individuals with a low proportion of African ancestry
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or those who were closely related to other study participants. Specifically, we removed 23 indi-

viduals from SAPPHIRE and 1 individual from SAGE II whose African ancestry was>5 SD

below the mean (i.e., a global African ancestry proportion of approximately 20% or less), and

we excluded 203 individuals from SAPPIRE and 0 individuals from SAGE II whose kinship

suggested closer than a 3rd degree relationship (coefficient of relationship >0.125) with

another study participant.

To evaluate whether mitochondrial copy number was associated with asthma complications

and control, we used a Cox proportional hazards regression to prospectively model the time to

severe asthma exacerbations and we used logistic regression to model baseline asthma control

(ACT score <20 [uncontrolled] vs.�20 [controlled]). Prospective data were only available in

SAPPHIRE participants. Severe asthma exacerbations were defined as those requiring oral cor-

ticosteroid burst treatment, an emergency department visit, or hospitalization. The survival

analysis modeled the time between study enrollment and the first severe exacerbation. Individ-

uals were censored on their last recorded clinical visit or at the time of disenrollment from the

health plan.

The non-parametric Mann–Whitney U test was used for the univariate comparison of gene

expression TPM values between asthma cases and controls. DESeq2 was used to assess for dif-

ferential gene expression by asthma status while also adjusting for patient age, sex, global pro-

portion of African ancestry, and absolute cells counts for neutrophils, monocytes,

lymphocytes, eosinophils, and platelets. We also used surrogate variable analysis (SVA) imple-

mented in the package svaseq to account for hidden batch effects; 10 surrogate variables were

used to adjust the models [44]. The Fisher’s exact test was used to compare the expression dis-

tribution (i.e., number of higher, lower, and not-significantly different expressed genes for

individuals with asthma as compared with individuals without asthma) between ETC genes

and other protein-encoding genes (restricted to genes with>10 total read counts across all

individuals).

The t-test was used to compare mean MitoTracker intensities in blood leukocyte popula-

tions (i.e., eosinophils, T-helper cells, and NK cells) between individuals with asthma and high

mitochondrial copy number vs. controls with average mitochondrial number, as well as

between individuals with asthma and average mitochondrial copy number vs. controls with

average mitochondrial number. All analyses were performed using R statistical software [45].

Unless otherwise specified, a p-value <0.05 was considered statistically significant.

Results

The characteristics of participants used in this analysis are shown in Table 1. All individuals

were African American by self-report. The SAPPHIRE cohort analytic set consisted of 3,676

individuals (2,828 cases and 848 controls), and SAGE II set consisted of 1,319 individuals (823

cases and 496 controls). While SAPPHIRE participants were older at the time of enrollment

(�18 years) when compared with SAGE II participants (<20 years), both groups were similar

in their proportion of African ancestry (~80% in both cohorts) and both had a similar mito-

chondrial haplogroup distribution. Approximately, 92%, 91%, 87%, 88% of SAPPHIRE cases,

SAPPHIRE controls, SAGE II cases, and SAGE II controls, respectively, had mitochondrial

haplogroups of African origin (i.e., haplogroups L0, L1, L2, L3, and L4). A detailed breakdown

of mitochondrial haplogroup distribution for each cohort can be seen in Fig 1A and 1B.

Asthma cases and controls also differed in consistent ways in both cohorts, such as case par-

ticipants were significantly younger, had greater a BMI (greater BMI percentile in SAGE II),

and lower percent of predicted FEV1 when compared with their respective control group. Sex

distribution and smoking patterns differed between cohorts (cases were more likely to have
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Table 1. Characteristics of African American participants from the SAPPHIRE and SAGE II cohorts stratified by asthma status�.

Variable SAPPHIRE cohort SAGE II cohort

Participants with asthma

(n = 2,828)

Participants without

asthma (n = 848)

P-

value†

Participants with asthma

(n = 823)

Participants without

asthma (n = 496)

P-

value†

Age (years)–mean ± SD 36.98 ± 12.12 39.60 ± 12.55 <0.001 14.06 ± 3.69 15.85 ± 3.71 < 0.001

Female–no. (%) 1955 (69.1) 581 (68.5) 0.766 407 (49.5) 284 (57.3) 0.007

African ancestry (%)–

mean ± SD‡

0.80 ± 0.12 0.81 ± 0.12 0.226 0.79 ± 0.13 0.78 ± 0.12 0.431

BMI (kg/m2)–mean ± SD 33.17 ± 9.39 31.75 ± 7.89 <0.001 -- -- --

BMI percentile—mean ± SD§ -- -- -- 76.39 ± 24.74 70.95 ± 27.21 0.005

Smoking status–no. (%) -- -- <0.001 -- -- 0.001

Current 765 (27.1) 107 (12.6) -- 68 (8.3) 68 (13.7) --

Past 322 (11.4) 98 (11.6) -- 1 (0.1) 2 (0.4)

Never 1740 (61.5) 643 (75.8) -- 753 (91.6) 426 (85.9) --

Percent of predicted FEV1 –

mean ± SD||

85.14 ± 19.67 96.70 ± 15.29 <0.001 99.01 ± 13.79 101.64 ± 9.22 < 0.001

Composite ACT score <20 –

no. (%)¶

1,580 (55.9) -- -- -- -- --

Asthma severity score–

mean ± SD��
1.68 ± 0.85 -- -- -- -- --

ICS medication use at

baseline–no. (%)††

237 (46.3) -- -- 282 (58.51) -- --

Mitochondrial copy number–

mean ± SD‡‡

218.60 ± 58.80 200.47 ± 64.95 <0.001 235.99 ± 59.22 223.07 ± 61.48 <0.001

WBC counts (1000/μL)–

mean ± SD

6.68 ± 2.32 6.10 ± 1.80 <0.001 6.22 ± 1.98 6.20 ± 2.12 0.951

Neutrophil counts 3.70 ± 1.92 3.24 ± 1.33 <0.001 -- -- --

Monocyte counts 0.46 ± 0.17 0.43 ± 0.15 0.006 -- -- --

Lymphocyte counts 2.28 ± 0.80 2.26 ± 0.72 0.633 -- -- --

Eosinophil counts 0.21 ± 0.19 0.14 ± 0.11 <0.001 -- -- --

Hemoglobin (g/dL)–

mean ± SD

13.29 ± 1.55 13.24 ± 1.40 0.492 -- -- --

Platelet count (1000/μL)–

mean ± SD

242.35 ± 67.00 242.30 ± 61.09 0.985 -- -- --

Mitochondrial haplogroup—

no. (%)§§

-- -- 0.429 -- -- 0.735

L0 122 (4.3) 42 (5.0) -- 42 (5.1) 22 (4.4) --

L1 516 (18.2) 166 (19.6) -- 149 (18.1) 94 (19.0) --

L2 826 (29.2) 262 (30.9) -- 225 (27.3) 145 (29.2) --

L3 1110 (39.2) 298 (35.1) -- 291 (35.4) 174 (35.1) --

L4 22 (0.8) 7 (0.8) -- 5 (0.6) 2 (0.4) --

M 45 (1.6) 11 (1.3) -- 17 (2.1) 10 (2.0) --

N + R 187 (6.6) 62 (7.3) -- 94 (11.4) 49 (9.9) --

East Eurasian 48 (1.7) 13 (1.5) -- 32 (3.9) 17 (3.4) --

(Continued)
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smoked in SAPPHIRE but less likely to have smoked in SAGE II). In SAPPHIRE participants,

asthma cases had significantly greater cell counts when compared with controls: total WBC

Table 1. (Continued)

Variable SAPPHIRE cohort SAGE II cohort

Participants with asthma

(n = 2,828)

Participants without

asthma (n = 848)

P-

value†

Participants with asthma

(n = 823)

Participants without

asthma (n = 496)

P-

value†

West Eurasian 141 (5.0) 40 (4.7) -- 61 (7.4) 27 (5.4) --

SAPPHIRE denotes Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity; SAGE II, Study of African Americans, Asthma, Genes, &

Environment II; SD, standard deviation; BMI, body mass index; FEV1, forced expiratory volume at 1 second; ACT, asthma control test; ICS, inhaled corticosteroid; and

WBC, white blood cell.

�The SAPPHIRE study sample was restricted to participants aged�18 years at enrollment and the SAGE II study samples was restricted to participants aged <20 years

at enrollment.

†P-value for the difference between study participants with and without asthma in each cohort.

‡The average proportion of African ancestry among African Americans was estimated using a set of autosomal markers which spanned the nuclear genome.

§Growth charts specific for age and sex (available at http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm) were used to calculate the BMI percentile of

SAGE II participants.

||Based on the predictive equations from Hankinson et al. (Am J Respir Crit Care Med. 1999 Jan;159[1]:179–87).

¶Composite ACT scores <20 are considered “uncontrolled” asthma.

��This scoring algorithm, which is based on asthma rescue medication use, was developed by Allen-Ramey et al. (J Manag Care Pharm 2006; 12:310–21). This measure

was calculated on the 512 individuals with asthma and available pharmacy claims information.

††This measure was calculated on the 512 individuals with asthma and available pharmacy claims information in SAPPHIRE participants and was based on cross-

sectional self-report of use in SAGE II participants.

‡‡The mitochondrial copy number estimate was for whole blood. It was based on the sequencing read depth ratio between mitochondrial and nuclear DNA isolated

from blood leukocytes.

§§Number of study individuals with a given mitochondrial haplogroup. As shown in Fig 1, the M haplogroups consist of D, E, C/Z, M7 and other M; the N

macrohaplogroups consist of X, A, W, I, and the R sub-macrohaplogroups; and R sub-macrohaplogroups consist of U/K, B, F, HV/H/V, and J/T. Geographical

mitochondrial haplogroup assignments were based on those described by Pereira et al. (Am J Hum Genet. 2009; 84:628–40). Haplogroups L0, L1, L2, L3, and L4 are

considered to be African; haplogroups B, F, A, D, E, and C/Z are considered to be East Eurasian; and haplogroups U/K, J/T, HV/H/V, I, and W are considered to be

West Eurasian.

https://doi.org/10.1371/journal.pone.0242364.t001

Fig 1. Mitochondrial haplogroup distributions. Shown are the mitochondrial haplogroup distributions of the 3,676

SAPPHIRE participants (A) and the 1,319 SAGE II participants (B). Branching shows haplogroup derivation and color

coding denotes the geographic identity of the haplogroup. �In SAPPHIRE this group consisted of 34 individuals with

an African haplogroup (U6) and 41 with a west Eurasian haplogroup (U2, U3, U4, U5, U7, and K), and in SAGE II this

group consisted of 16 individuals with an African haplogroup (U6) and 19 with a west Eurasian haplogroup (U4, U5,

U8, and K). †In SAPPHIRE this group consisted of 7 individuals with an east Eurasian haplogroup (C, Z), and in

SAGE II this group consisted of 3 individuals with an east Eurasian haplogroup (C, Z) and 1 individual with a

haplogroup of unknown origin (M8). ‡In SAPPHIRE this group consisted of 2 individuals with an African haplogroup

(M1) and 11 individuals with a haplogroup of unknown origin (M2, M23, M30, and M32), and in SAGE II this group

consisted of 6 individuals with an African haplogroup (M1) and 6 individuals with a haplogroup of unknown origin

(M3, M5, M6, and M23).

https://doi.org/10.1371/journal.pone.0242364.g001
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counts (6,680 cells/μL vs. 6,100 cells/μL), neutrophil counts (3,700 cells/μL vs. 3,240 cells/μL),

monocyte counts (460 cells/μL vs. 430 cells/μL), and eosinophil counts (210 cells/μL vs. 140

cells/μL). In both SAPPHIRE and SAGE II, mitochondrial copy numbers were significantly

higher among individuals with asthma when compared with those without asthma (SAP-

PHIRE: 218.60 vs. 200.47, P<0.001; SAGE II: 235.99 vs. 223.07, P<0.001).

Table 2 evaluates the relationship between mitochondrial haplogroup and mitochondrial

copy number. Among SAPPHIRE participants, individuals with west Eurasian mitochondrial

haplogroups had lower average mitochondrial counts than did individuals with L1, L3, and

east Eurasian haplogroups. SAPPHIRE individuals with other African haplogroups (L0 and

L2) and SAGE II individuals did not have significantly different mitochondrial copy numbers

when compared with individuals with west Eurasian haplogroups. Defining haplogroup clus-

ters based on the branching shown in Fig 1 (as opposed to geographical haplogroup assign-

ments) demonstrated essentially the same results (Supplementary S1 Table), since the majority

of individuals in the N + R haplogroup branch had haplogroups of west Eurasian origin (181

[72.7%] of 249 in SAPPHIRE and 88 [61.5%] of 143 in SAGE II).

Within haplogroup categories, average mitochondrial copy numbers were consistently

higher among individuals with asthma when compared with those without asthma (Table 3).

These differences were statistically significant for L1, L2, L3, and west Eurasian haplogroups in

SAPPHIRE and the L2 haplogroup in SAGE II. Defining haplogroup clusters based on the

branching shown in Fig 1 (as opposed to geographical haplogroup assignments) demonstrated

essentially the same results with the exception of the small number of individuals with M hap-

logroups who showed a non-significant relationship in the opposite direction (Supplementary

S2 Table). There were too few individuals with the L4 haplogroup for comparison in SAGE II,

so this group was dropped from all subsequent analyses.

Table 2. Relationship between mitochondria haplogroup and copy number among African American participants in the SAPPHIRE and SAGE II cohorts�.

Mitochondrial

haplogroup†

SAPPHIRE cohort SAGE II cohort

Number of

participants‡

African ancestry

(mean ± SD)§

Copy number

(mean ± SD)||

P-value¶ Number of

participants‡

African ancestry

(mean ± SD)§

Copy number

(mean ± SD)||

P-value¶

L0 164 0.81 ± 0.09 201.95 ± 59.25 0.827 64 0.82 ± 0.09 228.63 ± 59.02 0.734

L1 682 0.82 ± 0.09 215.91 ± 60.95 0.010 243 0.80 ± 0.11 228.75 ± 52.67 0.618

L2 1088 0.82 ± 0.09 211.52 ± 58.99 0.079 370 0.81 ± 0.10 228.66 ± 60.10 0.621

L3 1408 0.82 ± 0.09 218.27 ± 62.84 0.001 465 0.81 ± 0.09 237.46 ± 65.52 0.063

East Eurasian 61 0.77 ± 0.16 222.52 ± 44.71 0.008 49 0.67 ± 0.18 222.18 ± 56.82 0.739

West Eurasian 181 0.56 ± 0.27 203.33 ± 57.60 Reference 88 0.58 ± 0.18 225.48 ± 52.70 Reference

SAPPHIRE denotes the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity; SAGE II, Study of African Americans, Asthma, Genes, &

Environment II; and SD, standard deviation.

�The SAPPHIRE study sample was restricted to participants aged�18 years at enrollment and the SAGE II study samples was restricted to participants aged <20 years

at enrollment.

†Geographical mitochondrial haplogroup assignments were based on those described by Pereira et al. (Am J Hum Genet. 2009; 84:628–40). Haplogroups L0, L1, L2, and

L3 are considered to be African. Given the small number of study individuals with non-African haplogroups, we grouped most of the remaining haplogroups into the

broad categories of East Eurasian and West Eurasian.

‡Includes individuals with and without asthma in each cohort.

§African ancestry was estimated using a set of autosomal markers which spanned the nuclear genome.

||The mitochondrial copy number estimate was for whole blood. It was based on the sequencing read depth ratio between mitochondrial and nuclear DNA isolated from

blood leukocytes.

¶P-values were calculated using the Welch two sample t-test to compare mitochondrial copy numbers between West Eurasian haplogroups (referent) and the other

haplogroups.

https://doi.org/10.1371/journal.pone.0242364.t002
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Effect estimates for the factors associated with mitochondrial copy number were remark-

ably consistent between the SAPPHIRE and SAGE II cohorts (Tables 4 and 5, respectively).

Asthma was consistently and significantly associated with greater mitochondrial copy num-

bers in all models tested for both cohorts. Excluding individuals whose African ancestry was

>5 SD below the mean or who had a coefficient of relationship >0.125 among SAPPHIRE

participants did not substantively affect the significant relationship between asthma status and

mitochondrial copy number (Supplementary S3 Table). Similarly, excluding the one SAGE II

with African ancestry >5 SD below the mean also did not affect the results (data not shown).

White blood cell counts were inversely associated with mitochondrial copy number in both

groups (also shown in Supplementary S4 Table for SAGE II). In the SAPPHIRE cohort, all leu-

kocyte counts were inversely associated with mitochondrial copy number, and all but mono-

cytes were significantly associated with copy number in the multivariable analysis (Table 4).

Platelet counts were positively associated with mitochondrial copy number. The relationship

between cell counts by cell type and mitochondrial copy number stratified by asthma status is

shown in Supplementary S2 Fig. Significant interactions by asthma status were seen for neu-

trophils (P = 2.68x10-4) and platelets (P = 0.009); however, asthma was consistently associated

with higher mitochondrial counts regardless of cell type count (i.e., a cross-over interaction

was not observed for any cell type).

Among individuals with asthma, SABA and ICS medication exposure was inversely associ-

ated with mitochondrial copy number (i.e., use associated with lower counts–see

Table 3. Relationship between mitochondria haplogroup and copy number among African American participants in the SAPPHIRE and SAGE II cohorts stratified

by asthma status�.

Mitochondrial

haplogroup†

SAPPHIRE cohort SAGE II cohort Meta-analysis

Participants with

asthma

Participants without

asthma

P-

value§

Participants with

asthma

Participants without

asthma

P-

value§

Standardized

difference (95%

CI)

Heterogeneity

P-value||

P-

value¶

No. Mitochondria

copy number

(mean ± SD)‡

No. Mitochondria

copy number

(mean ± SD) ‡

No. Mitochondria

copy number

(mean ± SD) ‡

No. Mitochondria

copy number

(mean ± SD) ‡

L0 122 204.66 ± 53.87 42 194.09 ± 72.85 0.392 42 232.17 ± 49.65 22 221.87 ± 74.60 0.564 0.18 (-0.11–

0.47)

0.988 0.233

L1 516 220.56 ± 60.50 166 201.44 ± 60.22 <0.001 149 232.97 ± 48.13 94 222.06 ± 58.82 0.133 0.28 (0.14–0.43) 0.496 <0.001

L2 826 216.40 ± 56.96 262 196.14 ± 62.65 <0.001 225 237.64 ± 59.24 145 214.73 ± 58.95 <0.001 0.36 (0.24–0.48) 0.754 <0.001

L3 1110 221.65 ± 60.33 298 205.67 ± 70.11 <0.001 291 240.19 ± 66.28 174 232.89 ± 64.14 0.242 0.21 (0.10–0.32) 0.214 <0.001

East Eurasian 48 222.98 ± 44.89 13 220.80 ± 45.79 0.880 32 227.06 ± 57.03 17 212.99 ± 56.99 0.417 0.15 (-0.27–

0.58)

0.648 0.485

West Eurasian 141 208.98 ± 56.32 40 183.41 ± 58.31 0.016 61 227.25 ± 55.11 27 221.47 ± 47.55 0.619 0.32 (0.04–0.60) 0.245 0.024

SAPPHIRE denotes the Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity; SAGE II, Study of African Americans, Asthma, Genes, &

Environment II; SD, standard deviation; and CI, confidence interval.

�The SAPPHIRE study sample was restricted to participants aged�18 years at enrollment and the SAGE II study samples was restricted to participants aged <20 years

at enrollment.

†Geographical mitochondrial haplogroup assignments were based on those described by Pereira et al. (Am J Hum Genet. 2009; 84:628–40). Haplogroups L0, L1, L2, and

L3 are considered to be African. Given the small number of study individuals with non-African haplogroups, we grouped most of the remaining haplogroups into the

broad categories of East Eurasian and West Eurasian.

‡The mitochondrial copy number estimate was for whole blood. It was based on the sequencing read depth ratio between mitochondrial and nuclear DNA isolated from

blood leukocytes.

§P-values were calculated using the Welch two sample t-test to compare mitochondrial copy numbers between individuals with and without asthma.

||Assessment of the difference in P-values from the SAPPHIRE and SAGE II cohorts. A P-value<0.05 would signify a statistically significant difference in the P-values

between cohorts.

¶Meta-analysis P-value for the standardized difference in mitochondrial copy number between individuals within and without asthma for the SAPPHIRE and SAGE II

cohorts combined.

https://doi.org/10.1371/journal.pone.0242364.t003
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Supplementary S5 Table); therefore, asthma medication exposure is unlikely to account for dif-

ferences in copy number between asthma cases and controls. Inverting the models and pre-

dicting asthma status did not diminish the statistical significance of the relationship between

asthma and mitochondrial copy number in either the SAPPHIRE or SAGE II cohorts (Supple-

mentary S6 and S7 Tables, respectively). Among SAPPHIRE participants with asthma,

Table 4. Factors associated with mitochondrial copy number among African American SAPPHIRE participants.

Variable Univariable Analysis Model 1† Model 2‡ Model 3§ Model 4||

R2� Unadjusted

parameter

estimate

P-value Adjusted

parameter

estimate

P-value Adjusted

parameter

estimate

P-value Adjusted

parameter

estimate

P-value Adjusted

parameter

estimate

P-value

Asthma status 0.016 18.13 <0.001 19.42 <0.001 34.19 <0.001 18.19 <0.001 33.25 <0.001

Age (years) 0.003 -0.28 <0.001 -0.17 0.039 -- -- -- -- -0.20 0.096

Female Sex <0.001 0.17 0.937 1.68 0.447 -- -- -- -- -6.54 0.048

African Ancestry 0.003 29.64 <0.001 33.97 <0.001 -- -- -- -- 9.44 0.483

BMI (kg/m2) 0.002 -0.33 0.003 -0.39 <0.001 -- -- -- -- 0.05 0.790

Smoking status <0.001 0.36 0.879 -2.93 0.219 -- -- -- -- 7.00 0.058

Percent of

predicted FEV1

<0.001 -0.04 0.452 0.05 0.383 -- -- -- -- -0.09 0.253

Total WBC count 0.133 -11.70 <0.001 -- -- -- -- -- -- -- --

Neutrophils 0.120 -13.79 <0.001 -- -- -14.58 <0.001 -- -- -14.36 <0.001

Monocytes 0.043 -87.33 <0.001 -- -- -13.84 0.148 -- -- -18.32 0.067

Lymphocytes 0.033 -16.62 <0.001 -- -- -13.14 <0.001 -- -- -12.67 <0.001

Eosinophils 0.003 -21.91 0.013 -- -- -20.21 0.014 -- -- -24.34 0.004

Platelet count 0.008 0.10 <0.001 -- -- 0.217 <0.001 -- -- 0.23 <0.001

Mitochondrial

haplogroup

0.005 -- -- -- -- -- -- -- -- -- --

L0 vs West

Eurasian

-- -1.38 0.833 -- -- -- -- -0.74 0.909 -1.47 0.875

L1 vs West

Eurasian

-- 12.58 0.014 -- -- -- -- 12.98 0.010 9.47 0.218

L2 vs West

Eurasian

-- 8.19 0.094 -- -- -- -- 8.55 0.078 6.38 0.390

L3 vs West

Eurasian

-- 14.94 0.002 -- -- -- -- 14.77 0.002 13.21 0.073

SAPPHIRE denotes Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-ethnicity; BMI, body mass index; FEV1, forced expiratory volume at 1

second; and WBC, white blood count.

�The coefficient of determination (R2) represented the percent of the variation in the outcome variable (i.e., mitochondrial copy number) that could be accounted for by

each variable in the univariable analyses.

†Model 1 assessed the relationship between mitochondrial copy number in blood leukocytes (dependent variable) and asthma status (main explanatory variable). This

model adjusted for patient age in years, sex (female = 1, male = 0), proportion of African ancestry, BMI, smoking status (past or never smoker = 0, active smoker = 1),

and percent of predicted FEV1. Complete data were available for 3,675 individuals in Model 1, which had an adjusted R2 = 0.024.

‡Model 2 assessed the relationship between mitochondrial copy number in blood leukocytes (dependent variable) and asthma status (main explanatory variable). This

model adjusted for absolute white blood cell counts and platelet counts (in increments of 1000 cells per microliter). Complete data were available for 2,031 individuals in

Model 2, which had an adjusted R2 = 0.219.

§Model 3 assessed the relationship between mitochondrial copy number in blood leukocytes (dependent variable) and asthma status (main explanatory variable). This

model adjusted for mitochondrial haplogroup, and only individuals with the L0, L1, L2, L3, and West Eurasian haplogroups were included. Complete data were

available for 3,523 individuals in Model 3, which had an adjusted R2 = 0.020.

||Model 4 assessed the relationship between mitochondrial copy number in blood leukocytes (dependent variable) and asthma status (main explanatory variable); this

model included all of the variables from models 1–3. Complete data were available for 1,942 individuals in Model 4, which had an adjusted R2 = 0.229.

https://doi.org/10.1371/journal.pone.0242364.t004
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mitochondrial copy number was not associated with either asthma severity, as measured by

time to exacerbation (Supplementary S8 Table), or asthma control (Supplementary S9 Table).

RNA-seq data from SAPPHIRE participants with (n = 197) and without (n = 419) asthma

were used to evaluate differences in ETC respiratory complex gene expression (Supplementary

S10 Table). In the adjusted expression analysis, 48 of 100 respiratory complex genes were

Table 5. Factors associated with mitochondrial copy number among African American SAGE II participants.

Variable Univariable Analysis Model 1† Model 2‡ Model 3§

R2� Unadjusted

parameter

estimate

P-value Adjusted

parameter

estimate

P-value Adjusted

parameter

estimate

P-value Adjusted

parameter

estimate

P-value

Asthma status 0.010 12.91 <0.001 28.31 <0.001 12.86 <0.001 27.62 <0.001

Age (years) 0.033 -2.94 <0.001 -2.43 <0.001 -- -- -2.28 <0.001

Female sex 0.001 -5.52 0.097 -5.12 0.145 -- -- -6.54 0.072

African

ancestry

proportion

0.001 17.17 0.190 32.25 0.023 -- -- 36.18 0.039

BMI percentile 0.001 0.07 0.312 0.01 0.852 -- -- 0.0076 0.916

Smoking

status

<0.001 -27.19 0.436 -46.66 0.237 -- -- -45.15 0.251

Percent of

predicted

FEV1

0.003 -0.30 0.024 -0.14 0.294 -- -- -0.18 0.201

Total WBC

count

0.243 -11.11 <0.001 -- -- -- -- -- --

Mitochondrial

haplogroup

0.002 -- -- -- -- -- -- -- --

L0 vs West

Eurasian

-- 3.15 0.750 -- -- 3.63 0.713 -11.84 0.285

L1 vs West

Eurasian

-- 3.28 0.663 -- -- 4.31 0.565 -7.48 0.389

L2 vs West

Eurasian

-- 3.19 0.656 -- -- 4.28 0.548 -2.65 0.750

L3 vs West

Eurasian

-- 11.98 0.088 -- -- 12.85 0.066 0.013 0.999

SAGE II denotes the Study of African Americans, Asthma, Genes, & Environment II; BMI, body mass index; FEV1,

forced expiratory volume at 1 second; and WBC, white blood count.

�The coefficient of determination (R2) represented the percent of the variation in the outcome variable (i.e.,

mitochondrial copy number) that could be accounted for by each variable in the univariable analyses.

†Multivariable linear regression model 1 (Model 1) assessed the relationship between asthma and overall

mitochondrial copy number in blood. This model adjusted for patient age in years, sex (female = 1, male = 0),

proportion of African ancestry per individual (continuous), BMI percentile (continuous), smoking status (past or

never smoker = 0, active smoker = 1), and percent of predicted FEV1 (continuous). Complete data were available for

1017 individuals in Model 1, which had an adjusted R2 = 0.087.

‡Multivariable linear regression model 2 (Model 2) assessed the relationship between overall mitochondrial copy

number in blood and asthma status as well as mitochondrial haplogroup. Haplogroup was included as categorical

variable with West Eurasian as reference level. Only cases with haplogroup L0, L1, L2, L3 and West Eurasian were

included in the model. Complete data were available for 1230 individuals in Model 2, which had an adjusted R2 =

0.012.

§Multivariable linear regression model 3 (Model 3) assessed the relationship between overall mitochondrial copy

number in blood, and all variables in models 1 and 2. Complete data were available for 953 individuals in Model 3,

which had an adjusted R2 = 0.084.

https://doi.org/10.1371/journal.pone.0242364.t005
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significantly (FDR adjusted P-value <0.05) differentially expressed between individuals with

and without asthma. Only 3 (PTCD1, CYC1 and MT-CO1) of the 48 significantly differentially

expressed genes were more highly expressed in individuals with asthma; the other 45 had

lower expression in individuals with asthma as compared with individuals without asthma

(Fig 2A). In contrast, an evaluation of the other 18,484 protein-encoding genes with>10 total

reads across all individuals showed a symmetric distribution for genes with significantly higher

(n = 1,627) and significantly lower (n = 1,603) expression for individuals with asthma as com-

pared with those without asthma (Fig 2B). The distribution observed for ETC genes differed

significantly from the distribution observed for the other protein-encoding genes

(P = 3.97x10-21).

Individuals with asthma and high mitochondrial copy number had lower average Mito-

Tracker intensities in blood eosinophils (16,279.8 ± 5,414.7 SD) when compared with controls

without asthma (25,693.3 ± 21,181.4 SD), but these differences were not statistically significant

(P = 0.525) (Supplementary S11 Table). Individuals with both asthma and an average mito-

chondrial number had a similar average eosinophil MitoTracker intensity (29,350.5 ± 21,897.1

SD) when compared with controls (P = 0.833). Neutrophils showed the same pattern among

individuals with asthma and high mtDNA copy number, asthma with average mitochondrial

number, and controls– 13,510.2 (± 5,453.0 SD), 24,581.5 (± 18,482.5 SD), and 23,865.7 (±
21,196.3 SD), respectively. With the exception of monocytes, average MitoTracker intensity

was lower in all other cell types assessed (i.e., NK-cells, B-lymphocytes, and T-helper cells)

among individuals with asthma and high mitochondrial counts when compared with control

individuals.

Discussion

To our knowledge this is the first study to investigate the association between mitochondrial

copy number and asthma status. Specifically, individuals with asthma were observed to have

on average higher mitochondrial copy numbers when compared with individuals without

Fig 2. Volcano plots of gene expression differences for SAPPHIRE participants with asthma (n = 197) as compared with participants without asthma (n = 419).

Plot A presents expression differences for 100 electron transport chain (ETC) genes derived from RNA-seq of whole blood. Plot B presents expression differences for

18,484 protein-encoding genes not involved in the ETC from the same participant samples. Genes with significantly higher expression in individuals with asthma are

shown in purple; genes with significantly lower expression are shown in green; and genes whose expression does not differ significantly between individuals with and

without asthma are shown in gray.

https://doi.org/10.1371/journal.pone.0242364.g002
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asthma. Both cohorts comprised individuals from a similar ancestral background, yet the two

study populations were largely non-overlapping with respect to age (i.e., <20 years vs.� 18

years at the time of enrollment) and U.S. locale (i.e., West Coast vs. Midwest). Therefore, the

association was robust to these differences, as well as adjustment for multiple potential con-

founders and explanatory variables. Although leukocytes and platelets are the source of mito-

chondria in peripheral blood, white cell counts were actually inversely associated with

intracellular mtDNA numbers and platelet counts were positively associated with mitochon-

drial copy numbers; these findings have been reported previously [46]. Mitochondrial copy

number appeared to be consistently higher among individuals with asthma at all cell count lev-

els, and the relationship between asthma and copy number persisted after adjustment for leu-

kocyte and platelet numbers. Mitochondrial copy number also appeared to be unrelated to

asthma severity or level of control. Together these observations suggest that higher mitochon-

drial copy numbers in WBCs may be intrinsic to asthma.

Higher mitochondrial copy numbers in peripheral blood leukocytes have been associated

with either higher or lower risk for a number of other disease conditions, including develop-

ment of chronic kidney disease (lower risk) [47], cardiovascular disease (lower risk) [48], dia-

betes (lower risk and later onset) [49,50], rheumatoid arthritis (lower risk) [51], and multiple

malignancies, such as breast cancer (greater risk) [52], chronic lymphocytic leukemia/small

lymphocytic lymphoma (greater risk) [53,54], and renal cell carcinoma (lower risk) [55].

Given these multiple associations and the substantial overlap in the distribution of counts

between asthma cases and controls, it is unlikely that mitochondrial copy number alone will

prove useful as a predictive or diagnostic measure for asthma. Nevertheless, understanding the

mechanisms driving the higher mitochondrial counts in individuals with asthma may result in

better disease phenotyping and treatment. One twin study has suggested that the heritability of

mitochondrial copy number in lymphocytes is 65% [55]. Given the likely polygenic etiology of

both mitochondrial copy number and asthma, it is conceivable these two traits share one or

more genetic risk factors.

Oxidative stress and the overproduction of damaging ROS are considered features of

asthma [56,57]. Inflammatory cells, such as neutrophils, macrophages, and eosinophils, are

capable of producing significant increases in ROS when activated [58]. Without sufficient

enzymatic and non-enzymatic antioxidant activity, these oxygen radicals can promote cellular

apoptosis, damage tissue, and increase airway reactivity [59]. Leukocytes from individuals with

asthma have been shown to generate greater levels of superoxide (O2
-) and have lower antioxi-

dant activity when compared with cells from healthy controls [60,61]. Zmijewski and col-

leagues found that mitochondrial membrane complexes play a central role in regulating ROS

levels, and that selective inhibition of complexes I and III could reduce lipopolysaccharide

induced lung injury in mice [62,63]. We found that the expression of both nuclear- and mito-

chondrial-encoded respiratory complex genes were more likely to be lower among individuals

with asthma when compared with individuals without asthma. Hence, the lower expression of

these genes among individuals with asthma could be a compensatory response to oxidative

stress in order to limit inflammatory tissue damage. Oxidative stress can also stimulate an

increase in mitochondrial copy number [14]. With diminished ETC function, a proliferative

reaction to ROS production could be a compensatory response to maintain cellular energy lev-

els [15].

We also used flow cytometry to identify whether rhodamine-based mitochondrial dye

retention in blood leukocytes was influenced by asthma status and mitochondrial copy num-

ber. Cellular uptake of rhodamine-based dyes is influenced by mitochondrial number and

membrane potential, such that both higher mitochondrial numbers and functioning electron

transport with lower proton leak result in greater dye retention [64]. We obtained white blood
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cells from individuals with asthma and high mtDNA copy numbers, as well as from individuals

with and without asthma with average mitochondrial copy numbers. Among cells capable of

high ROS production (i.e., eosinophils and neutrophils), MitoTracker staining was lower in

individuals with asthma and high mitochondrial copy number when compared with individu-

als with average mitochondrial copy numbers (with and without asthma). These differences

were not statistically different; however, their consistency suggests that rhodamine dye uptake

was more profoundly affected by the loss of mitochondrial membrane potential than by the

overall increase in mitochondrial copy number. This would be consistent with the observed

lower ETC gene expression among participants with asthma, and it suggests that copy number

increases are a response to intracellular oxidative stress and reduced ETC function in individu-

als with asthma. Since a small number of samples were evaluated, these interpretations should

be considered highly speculative; nevertheless, these results are useful for generating hypothe-

ses and providing a direction for future investigations.

It is possible that differences in mitochondrial copy number by asthma status reflect envi-

ronmental exposures. For example, exposure to volatile organic compounds, such as benzene,

have been separately associated with higher blood mitochondrial copy numbers and childhood

asthma [65,66]. However, the effect of environmental pollutants may differ by exposure type.

Exposure to elemental carbon and particulate matter (PM10) has been associated with lower

mitochondrial copy numbers in the blood of adults [67], but is associated with an increased

risk of asthma diagnosis in young children [68]. In our study, we did not observe a significant

relationship between smoking status and mitochondrial copy number in blood. However,

other studies of individuals exposed to either tobacco smoke or high levels of polycyclic aro-

matic hydrocarbons suggest that the relationship to mitochondrial copy number is complex

and may require better accounting of environmental exposures and individual respiratory

complex function than performed here [69,70].

Other study limitations must be considered when evaluating this study. First, since we

included only individuals who self-identified as African American in our analysis, our findings

may not be generalizable to other populations groups, such as Europeans and Asians. How-

ever, as many African Americans have both European and African ancestry [71,72], we

assessed and did not find that adjusting for genetic ancestry and mitochondrial haplogroup

abrogated the significant relationship between asthma status and mitochondrial copy number.

Second, PCR-based quantification is the most common and accepted method to assess mito-

chondrial DNA copy number [23,73], whereas we used the results of massively parallel WGS

to estimate mtDNA copy number. Methods have been developed to rapidly calculate copy

number based on WGS data and have been employed in large studies [22,74], but there have

been few head-to-head comparisons with PCR-based methods. A recent study using exome

sequence data showed moderately good agreement with real time PCR methods for quantify-

ing mitochondrial copy number [75]. In a set of 50 samples, we also showed that PCR-based

and sequencing-based assessments of mitochondrial copy number were strongly correlated

(albeit different in absolute number). Third, we did not specifically evaluate rhodamine-based

mitochondrial dye uptake in platelets. The observed significant interaction between platelet

counts and asthma status on mitochondrial copy number suggests that platelets may be a

source of some of the higher mitochondrial counts seen in individuals with asthma; this

deserves further evaluation. Lastly, we did not directly measure intracellular differences in

ROS production or mitochondrial respiration between individuals with and without asthma,

and this could be an important next step to further support our observations and hypotheses.

In summary, we performed the first assessment of mitochondrial copy number with asthma

status and identified an association that was robust to adjustment for multiple potential

explanatory and confounding variables. We further evaluated this relationship in the context
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of mitochondrial ETC gene expression and rhodamine-based dye uptake by leukocytes. From

the resulting observations, we hypothesize that mitochondrial copy number is a manifestation

of underlying intracellular oxidative stress in individuals with asthma. Our findings are sup-

ported by a number of studies showing that stimulated and unstimulated inflammatory cells

(i.e., eosinophils, neutrophils, and monocytes) from individuals with asthma produce more

ROS when compared with individuals without asthma [76,77], and also by a study showing

that exhaled air condensate from children with stable asthma had higher peroxide levels when

compared with healthy controls [78]. Inhaled corticosteroid treatment has been shown to

restore antioxidant superoxide dismutase enzyme activity in bronchial epithelial cells from

individuals with asthma to levels similar to healthy controls [79], and we found that ICS use

among individuals with asthma was significantly and negatively associated with mtDNA copy

number. Therefore, mitochondrial copy number may prove to be a subtle sign of ongoing

inflammation, a measure of therapeutic response, or an indicator for specific types of treat-

ments (e.g., anti-oxidants) among individuals with asthma; however, this will require addi-

tional research.
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PCR quantification (x-axis). Mitochondrial copy number estimated by WGS is on the y-axis

and copy number estimated by real-time PCR quantification is on the x-axis.
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S2 Fig. Relationship between peripheral blood cell counts and mitochondrial copy number

stratified by asthma status. Subfigures show the relationship for neutrophils (A), monocytes

(B), lymphocytes (C), eosinophils (D), and platelets (E). Individuals with asthma are shown in

red and individuals without asthma are shown in blue. The interaction P-value is derived from

the linear adjusted model for the differences in the relationships by asthma status. The shaded

areas represent the 95% confidence interval.

(TIF)
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