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Abstract

The BioCreative VI Track IV (mining protein interactions and mutations for precision

medicine) challenge was organized in 2017 with the goal of applying biomedical text

mining methods to support advancements in precision medicine approaches. As part

of the challenge, a new dataset was introduced for the purpose of building a super-

vised relation extraction model capable of taking a test article and returning a list of

interacting protein pairs identified by their Entrez Gene IDs. Specifically, such pairs

represent proteins participating in a binary protein–protein interaction relation where

the interaction is additionally affected by a genetic mutation—referred to as a PPIm

relation. In this study, we explore an end-to-end approach for PPIm relation extrac-

tion by deploying a three-component pipeline involving deep learning-based named-

entity recognition and relation classification models along with a knowledge-based

approach for gene normalization. We propose several recall-focused improvements to

our original challenge entry that placed second when matching on Entrez Gene ID

(exact matching) and on HomoloGene ID. On exact matching, the improved system

achieved new competitive test results of 37.78% micro-F1 with a precision of 38.22%

and recall of 37.34% that corresponds to an improvement from the prior best system

by approximately three micro-F1 points. When matching on HomoloGene IDs, we report

similarly competitive test results at 46.17% micro-F1 with a precision and recall of 46.67

and 45.59%, respectively, corresponding to an improvement of more than eight micro-F1

points over the prior best result. The code for our deep learning system is made publicly

available at https://github.com/bionlproc/biocppi_extraction.

http://creativecommons.org/licenses/by/4.0/
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1 Introduction

Precision medicine is an emerging disease treatment
paradigm in which healthcare is customized to each
individual patient. To support this effort, it is important
to be able to extract useful translational information such
as mentions of relationships between genes (given proteins
are biochemical materials resulting from expression of
corresponding genes, the terms gene and protein are used
interchangeably in this paper and the exact meaning
is dependent on the context), mutations and diseases.
BioCreative (Critical Assessment of Information Extraction
in Biology) [12] is an initiative with the aims of providing
a standard evaluation framework for assessing text mining
systems with respect to relevant problems in the biomedical
domain. The related challenges are important as they
provide an avenue for introducing new gold standard
datasets to the research community that are hand-annotated
by human domain experts. The precision medicine track
of BioCreative VI, specifically, was organized to identify
and study mutations and their effect on molecular
interactions. Concretely, this track focuses on mining
biomedical literature for protein–protein interactions (PPIs)
that are affected by the presence of a genetic mutation.
As an example, consider the following sentence: ‘We
found that dominant-negative mutants of PML blocked
AXIN-induced p53 activation, and that AXIN promotes
PML SUMOylation, a modification necessary for PML
functions.’ Here, we see that ‘AXIN’ and ‘PML’ are
proteins that interact, as indicated by the assertion that
‘AXIN’ promotes SUMOylation in ‘PML’; moreover, a
mutation of ‘PML’ is involved. Based on this observation,
we can deduce that ‘AXIN’ and ‘PML’ are interesting
pairs of proteins to study. We refer to this particular
type of relation, where the participants of a PPI are also
affected by a mutation, as a PPIm relation. This challenge
is important as there has been a lack of tools that allows
for the extraction of such interactions from biomedical
literature despite its potential to support approaches in
precision medicine.

The precision medicine track involves the following two
distinct tasks: ‘document triage’ and ‘relation extraction’.
In the first task, participants are asked to build systems able
to determine whether a PubMed citation is ‘relevant’ or
‘not relevant’ with respect to the relation extraction task;
that is, whether or not it contains any PPIm relations to
be extracted. In the second task, we are asked to build
systems that take as input a PubMed citation and out-
put any PPIm relations along with the Entrez Gene IDs
(https://www.ncbi.nlm.nih.gov/gene/) of the participating
genes. Thus, for the second task, besides the input text,
no additional information is provided making it a true

end-to-end requirement where gene spotting, normalization
and interaction detection are all required.

In this paper we exclusively focus on the PPIm extraction
task and propose a pipeline of the following three modular
components: named entity recognition (NER), gene men-
tion normalization (GN) and relation classification (RC).
The input to the pipeline is a PubMed article and the
output is a set of extracted PPIm pairs. The first component
identifies spans of text corresponding to gene mentions.
The second component maps the gene mentions to their
normalized Entrez Gene IDs. Lastly, the third component
classifies all pairs of unique gene IDs found in the article as
either positive or negative for the PPIm relation. The system
we present here is an improved version of our original
challenge entry [35] with three major changes. First, we use
GNormPlus [38] to augment the original training corpus
with additional gene annotations. For the NER component,
this has the effect of reducing mixed signals stemming from
the lack of annotations in the original training data. For
the RC component, this provides many more meaningful
negative examples such that the label imbalance more accu-
rately reflects real-world situations. Second, during testing,
we tag sequences of tokens that are missed by the NER
component but appear in a gene lexicon (provided with
the BioCreative II Gene Normalization training data [26])
to boost overall recall. Third, we consult PubTator [37]
as a secondary reference (in addition to the gene database
lookup; more later) for document-level gene annotations
when mapping genes to their Entrez Gene IDs. We find
that these changes drastically improve recall while retaining
high precision.

The PPIm extraction task differs from a typical relation
extraction task in three notable ways. First, a protein may
interact with itself, which implies that a protein can partici-
pate simultaneously as both the ‘subject’ and the ‘object’ of
a PPIm relation. Second, directionality of a protein pair is
immaterial, which implies that (A, B) and (B, A) are equiva-
lent for the sake of system evaluation. Here, the interaction
type is also not important as in other PPI tasks so each
relation can sufficiently be represented as a pair instead the
usual (‘subject’, ‘predicate’, ‘object’) triple. Lastly, it is pos-
sible for relations to be expressed across sentence bounds
such that the subject and object mentions of a PPIm pair are
in different sentences. Hence, we believe it is better to make
RC decisions (i.e. extract protein pairs) at the document
level for this particular task. This is opposed to sentence-
level relation extraction where sentences are assumed to be
mutually independent when extracting relations and only
pairs mentioned in the same sentence are considered as valid
candidates for extraction. Document-level extraction has an
additional advantage in that it takes into account sentence-
level correlations such as order of sentences expressed.

https://www.ncbi.nlm.nih.gov/gene/
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In the rest of the manuscript, we discuss other
approaches to this task and provide an overview of deep
neural network architectures in Section 2. We present our
main methods in Section 3 and discuss system performance
and comparisons in Section 4.

2 Background and related work

In this section we cover some basic background on deep
neural networks, general prior efforts in biomedical relation
extraction and the top performer of the PPIm extraction
task we address in this manuscript.

Deep Neural Networks Recent progress in natural lan-
guage processing (NLP) in general has mostly been a con-
sequence of advances in ‘deep’ neural networks—neural
networks with at least two layers between the input and
output layer and capable of composing useful intermediate
representations. Convolutional neural networks (CNNs) in
particular were originally developed for image recognition
tasks [18] and have been successfully applied to the text
domain by exploiting so-called neural word embeddings
[17, 33]. These word embeddings represent words as vec-
tors and can be pre-trained using unsupervised methods
and further trained when learning on a specific task. CNNs
exhibit geometric translational invariance, which allows
them to detect contextual features while being insensitive to
changes of a translational nature. Using CNNs along with
neural word embeddings has been shown to be effective in
many natural language tasks (including text classification
and relation extraction) since they naturally capture syn-
tactic and semantic information [3, 7, 24].

Recurrent neural networks (RNNs) involving cyclical
connections offer another type of neural architecture that
has been successfully applied to NLP tasks involving
sequence data such as part-of-speech tagging, NER
and machine translation [2, 14]. RNNs are a natural
architecture for modeling sequences where outputs from
previous time steps are fed back as input to the network.
It is typical to compose RNNs in both the forward and
the backward direction as this allows the sequence to be
modeled in both directions in a joint architecture called
a bidirectional RNN (Bi-RNN). In a typical Bi-RNN
architecture, both the forward and backward RNN receive
the same input and are composed independently; once
composed, the output vector is typically concatenated at
each corresponding time step. Bi-RNNs are important for
sequence labeling tasks as the full context is taken into
account when assigning a label for each timestep of the
input sequence. In this study, we used Bi-RNNs with a more
powerful recurrent unit called ‘long short-term memory’
(LSTM) [11, 13] units in the hidden layer that are simply
termed Bi-LSTMs.

Biomedical Relation Extraction Many early works on
relation extraction preprocess the input as a dependency
parse tree [4, 29] and exploit features corresponding to the
shortest dependency path between candidate entities; this
general approach has also been successfully applied in the
biomedical domain [1, 10, 20, 32], where they typically
involve a graph kernel based Support Vector Machine
(SVM) classifier [20, 32]. The concept of network central-
ity has also been applied [27] such that gene networks
were created with respect to a specific disease; genes are
then ranked according to network centrality metrics where
highly ranked genes were considered more likely to be
associated with the disease. Other studies, such as the effort
by Frunza et al. [9], apply the more traditional ‘bag-of-
words’ approach focusing on syntactic and lexical features
while exploring a wide variety of classification algorithms
including decision trees, SVMs and Naïve Bayes. More
recently, innovations in relation extraction have centered
around designing meaningful deep learning architectures.
Liu et al. [21] proposed a dependency-based CNN archi-
tecture wherein the convolution is applied over words
adjacent according to the shortest path connecting the
entities in the dependency tree, rather than words adjacent
with respect to the order expressed, to detect drug–drug
interactions (DDIs). In Kavuluru et al. [16], ensembling
of both character-level and word-level RNNs is further
proposed for improved performance in DDI extraction. Raj
et al. [30] proposed a deep learning architecture such that
word representations are first processed by a bidirectional
RNN layer followed by a standard CNN, with an optional
attention mechanism towards the output layer. Luo et al.
[22] proposed convolving over not only the sentence, but
rather over the following five segments of a sentence: before
the first entity mention, the first entity mention, in between
the entity mentions, the second entity mention and after
the second entity mention. A single representation of the
candidate relation and its context are then composed via
simple concatenation of the CNN outputs. Recent studies
have also explored joint modeling of both NER and rela-
tion extraction in an end-to-end fashion via deep neural
networks [15, 25, 39].

Top Performing PPIm Extraction Entry Chen et al. [5]
produced the best micro-F1 scores during the BioCreative
VI PPIm extraction challenge. They used the GNormPlus
[38] tool as an ‘out-of-the-box’ solution for recognizing
and normalizing gene mentions. The main contribution lies
in the RC aspect in which two different approaches are
explored. The first is based on a rule-based system using
the heuristic that if a protein–protein pair occur together
in more than N sentences then it is considered positive
for a PPIm relation. This works surprisingly well, which is
likely due to the observation that an article that has already
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been deemed relevant during document triage phase is likely
topically-focused on a specific PPIm relation. It is reason-
able to assume that two proteins mentioned together mul-
tiple times are more likely to be part of a relation than not.
They found that N = 2 was optimal during validation. The
second approach is based on traditional SVM with a graph
kernel where the input is a dependency graph. Syntactic
dependency graphs generated for each sentence are used as
classifier features. In case a protein pair is mentioned across
two sentences, an artificial root node is generated connect-
ing the roots of the two sentences to form a single larger
graph to be used as input. They additionally experimented
with introducing handpicked mutation-context binary fea-
tures in the form of 30 interaction terms including ‘interact’,
‘complex’, ‘bound’, ‘bind’ and ‘regulate’. From the 5-fold
cross validation results on the training set, they found that
SVM with these mutation features worked best at 27.5%
F1. This is contrary to the test results, in which the rule-
based approach was superior at 37.67% on the official test
set. The authors note an end-to-end performance ceiling of
56% F1 when using GNormPlus for protein recognition
and normalization. This aligns with our observation that
improving the gene annotation aspect plays a key role in
improving overall performance. The system we propose
in this paper uses more elaborate heuristics for the NER
and gene normalization components and exploits recent
advances in deep neural networks for NLP. Our current
results improve upon Chen et al.’s best results during the
challenge by three micro-F1 points in exact matching and
by over eight micro-F1 points in homolog-level matching
strongly indicating that our end-to-end formulation is more
suitable for this task.

3 Method

For the relation extraction subtask, we propose a pipeline
system that consists of the following three components:
supervised NER for gene mention detection, knowledge-
based gene normalization and supervised RC to predict each
pair of genes found as either positive or negative for an
interaction. It is possible to use an ‘out-of-the-box’ solution
such as GNormPlus that identifies both gene mentions
and their corresponding gene identifier directly; however,
we opted for a supervised approach that lets us leverage
the generous gene annotations provided with the training
corpus for this task. In the rest of this section, we first
describe the dataset to be used in Section 3.1. We describe
the NER system used to identify spans of text correspond-
ing to a gene mention in Section 3.2. We then describe
our knowledge-based method for gene normalization in
Section 3.3 and RC model in Section 3.4.

3.1 PPIm Dataset

The PPIm dataset consists of 597 article titles and abstracts
each of which is annotated with gene mentions and inter-
acting relevant protein pairs (at least one per citation)
identified by their Entrez Gene IDs. In total, there are 752
pairs such that each article contains 1.26 relevant PPIm
pairs ‘on average’. It is important to note that a gene is
only annotated with mention-level offsets if it exists as
part of a PPIm relation in the ground truth; hence, these
gene annotations are incomplete for the sole purpose of
training an NER model to identify gene mentions. The
test has 632 articles each with at least one PPIm pair
and a total of 868 PPIm pairs over the full test set; here
we observe a similar distribution to the training set with
an average of 1.37 pairs per article. Systems designed for
this task are officially evaluated using standard metrics
such as micro and macro F1/precision/recall; additionally,
evaluations can be performed using exact or homologous
gene matching. Further details of system evaluation are
discussed in Section 4.

3.2 Gene mention identification (NER)

The aim of the first component in the pipeline is to identify
spans of text corresponding to gene mentions. To that
end, we propose the use of a deep neural network system
based on a CNN–LSTM hybrid model initially proposed by
Chiu et al. [6] for NER. This sequence-to-sequence model
composes word representations with CNNs by convolving
over character n grams. At the word level, contextual word
representations are composed using a bi-directional LSTM
layer. A separate fully-connected softmax output layer is
present at the output of each LSTM unit such that an
Inside–Outside–Beginning (IOB; The IOB format is a tag-
ging scheme commonly used in NER and sequence labeling
tasks. The Inside and Beginning tags indicate that the tag
is inside and at the beginning of a typed span, respectively,
while Outside indicates that the tag is outside of a span.
Typically, and in our model, the Beginning tag is only used
when a tag is followed by a tag of the same type to indicate
the start of a new span.) [31] label prediction can be made
for each token. A visualization of the architecture can be
observed in Figure 1.

Herein, we formulate the model from the bottom up. In
this formulation, a word at position i for i = 1, . . . , n is
treated as a lowercased character sequence ci

1, . . . , ci
Ti rep-

resented by their index into the character vocabulary Vchar.
The corresponding character embedding matrix Echar ∈
R

|Vchar|×α embeds each character as a vector of length α

(a hyperparameter). Embedding matrices can be initialized
to random or pretrained values; in either case, the word
vectors are (further) modified via backward propagation.
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Figure 1. Deep neural network architecture of the NER model.

We use the same embedding set-up to produce ‘character
type’ embedding vectors of length 8 indicating the type of
character: lowercase, uppercase, punctuation or other. Sup-
pose the embedding matrix for ‘character type’ is Ectype ∈
R

4×8 and zi
1, . . . , zi

Ti represents the sequence of enumerated
character types for the word at position i. The word at
position i can then be represented as a matrix composition
Bi of its character embeddings, or concretely

Bi =

⎛
⎜⎜⎜⎝

Echar
[ci

1]
‖ Ectype

[zi
1]

...
Echar

[ci
Ti ]

‖ Ectype
[zi

Ti ]

⎞
⎟⎟⎟⎠ ,

where Echar
[j] , Ectype

[j] is the jth row of Echar, Ectype, respectively
and ‖ is the vector concatenation operator. The central idea
in CNNs is the so-called ‘convolution’ operation over the
document matrix (or in this case, the ‘word’ matrix) to
produce a feature map representation using a ‘convolution
filter’ (CF). The convolution operation ∗ is formally defined
as the sum of the element-wise products of two matrices.
That is, for two matrices A and B of same dimensions,
A ∗ B = ∑

j
∑

k Aj,k · Bj,k. We perform a convolution
operation over Bi of window size 3 to obtain the feature
map vi = [vi

1, . . . , vi
Ti−2

] such that

vi
j = ReLU(Wchar ∗ Bi

[j:j+2] + bchar),

where Bi
[j:j+2] is a window of matrix Bi spanning from row

j to row j + 2, Wchar and bchar are network parameters
representing a CF, and the linear rectifier activation function
ReLU(x) = max(0, x). The goal is to learn multiple CFs
that can collectively capture diverse representations of the
same word. Here, specifically, we learn κ filters to obtain
κ corresponding feature maps denoted as vi,1, . . . , vi,κ . As

a crucial step with CNNs, we select the most distinctive
feature of each feature map using a max-over-time pooling
operation [8]. Let vi,j

k be the kth value of vi,j, then the word
representation at position i is ui = [v̂i,1, . . . , v̂i,κ ], where
v̂i,j = max (vi,j

1 , . . . , vi,j
Ti−2

). Conceptually, we can roughly
equate this to composing a word representation using the
traditional ‘bag-of-words’ model, except here the features
consist of character tri-grams. Because of the way max-
pooling is applied, the order of tri-grams is immaterial.

Once a representation is composed for each word, we
then use a bi-directional LSTM to model the word sequence.
It is important that we also include actual word embeddings
(in addition to those obtained through character embedding
compositions) as well as ‘word-type’ embeddings as input.
The latter embeddings serve a similar purpose to that of
the ‘character types’ and can correspond to one of the
five following types: all lowercase, mixed-cased, capitalized
first letter, all uppercase or other. We now transition to a
word-level perspective. Formally, the input to the network
is a sequence of word indexes w1, . . . , wn into the word
vocabulary Vword and the corresponding embedding matrix
is denoted as Eword ∈ R

|Vword|×d. In addition, we denote
z̄1, . . . , z̄n as a sequence of enumerated ‘word types’ corre-
sponding to the embedding matrix Ewtype ∈ R

5×α . The bi-
directional LSTM with a hidden/output unit size of π can
then be composed as

−→
h i = LSTM→ (

ui ∥∥ Eword
[wi]

∥∥ Ewtype
[z̄i]

,
−→
h i−1

)
,

←−
h i = LSTM← (

ui ∥∥ Eword
[wi]

∥∥ Ewtype
[z̄i]

,
←−
h i+1

)
,

hi = −→
h i ‖ ←−

h i for i = 1, . . . , n,

where ui is character based embedding for wi, Eword
[j] and

Ewtype
[j] are jth rows of Eword and Ewtype, respectively,

and LSTM→ and LSTM← represent an LSTM unit
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composition in the forward and backward directions,
respectively. The concatenated output vector hi ∈ R

2π

represents the entire context centered at the ith word. The
output at each timestep necessarily has its own softmax
output layer in order for the network to be able to tag each
word with an IOB label typically used for NER. The output
at each position i = 1, . . . , n is

qi = Wouthi + bout,

where Wout ∈ R
m×2π and bout ∈ R

m are network param-
eters and m = 3, the number of NER tags (‘B-GENE’,
‘I-GENE’ and ‘O’). In order to get a categorical distribution,
we apply the softmax formulation to qi such that

pi
j = eqi

j

∑m
l=1 eqi

l

,

where pi is the vector of probability estimates serving as
a categorical distribution over gene IOB tags for the word
at position i. We optimize by computing the standard
categorical cross-entropy loss at each output layer. Since
each instance may be of a different sequence length, the
final loss is computed as the ‘mean’ over all n losses, one
per word. The per-example loss � is therefore computed as

� = −1
n

n∑
i=1

m∑
j=1

yi
j log

(
pi

j

)
,

where yi ∈ R
m is the correct label for word i encoded as a

one-hot vector. Next, we discuss the training procedure and
model configuration.

Training and Model Configuration The NER model
is trained on the training data and additionally on the
GNormPlus corpus that includes re-annotations of the
BioCreative II GM/GN corpus [26]. The core training data
consists of 5668 sentence-level training examples while
the GNormPlus corpus constitutes an additional 6389.
We chose an embedding size of α = 32 with κ = 50
filters for the character-based CNN composition. These
hyperparameters were chosen based on the results of a
hyperparameter search conducted by Chiu et al. [6] and
further tweaked during initial experiments. At the word
level, we used word embedding vectors of size d = 200
pre-trained on the PubMed corpus [28]. The forward and
backward LSTM are each implemented with a hidden unit
size of π = 200. The network was trained using Stochastic
Gradient Descent (SGD) with an exponential decay rate
of 0.95 for a maximum of 10 000 iterations. On each
iteration, we trained the network using a mini-batch [19] of
20 random examples. We checkpointed every 100 iterations
and saved only the checkpoint with the best F1 on the

development set. We also deployed ‘early stopping’ such
that training is stopped if there are no improvements for 10
checkpoints. We train 10 such models (each with a different
seed) as part of an ensemble where each model is trained
on a smaller random subset of only 50% of the original
training set. We observed that the ensemble was less prone
to overfitting (during initial experiments) when each model
of the ensemble was only exposed to a smaller subset of the
training data.

Augmented Gene Annotations An issue with the gene
annotations in the training data is that they are not com-
prehensive. In fact, only genes participating in at least one
relationship are annotated with mention-level offsets and
gene IDs. This issue manifests in the following two distinct
ways:

1. Mixed signals are introduced during learning (for the
NER model) given it is possible for the same entity
to appear as a target (annotated with ‘I-GENE’) for
identification in one training example but not others
(they are instead annotated with O) where it may
not participate in an interaction. Due to the nature of
a pipeline system, downstream bottlenecks can often
occur as a result of low recall at the front-end of
a pipeline. If we fail to identify a gene mention, for
example, we will miss any relations it may participate
in regardless of the competency of the RC component.

2. Data generated to train the RC component will not
contain enough meaningful negative examples given
gene mentions in the original training dataset are
limited to those participating in interactions. From a
manual observation of the data, we find that most
examples generated are positive with many of the
negative instances resulting from self-interactions.

From our original system submission [35], we found that
models trained on only the provided annotations worked
reasonably well despite the highlighted issues. As a strategy
to overcome these issues and to improve end-to-end recall,
we augment gene annotations provided in the training
set using the PubTator tool [37] (which uses GNormPlus
[38] as the backend for gene annotations). We simply
run PubTator on the training corpus and insert genes it
finds to corresponding spans of text in the training data
that have consecutive ‘O’ labels. The augmented corpus is
instead used for training the supervised model (not only for
NER, but RC as well). When doing this, we make sure to
apply corrections such that the label sequence conforms to
IOB rules.

Post-processing step Before proceeding to the gene nor-
malization component, we perform a post-processing step
to the output of the NER system in an attempt to maximize
recall. Specifically, we use the gene lexicon provided with
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the BioCreative II Gene Normalization training data [26]
as a knowledge source. The gene lexicon provides mappings
of gene mentions to potential Entrez Gene IDs (keeping in
mind that a gene mention may map to more than one unique
ID). For a document input, we search for occurrences of
gene mentions from the lexicon (note that we prioritize
longer gene mentions over shorter ones) and add them
as additional mentions to our supervised NER system’s
annotations barring those that overlap with our NER gene
spans. In the gene normalization step (to be discussed next),
we filter out gene mentions for which there are no plausible
gene ID mappings. As such, the lower precision at the
NER level due to this recall oriented post-processing step
is reconcilable as we can weed out obviously bad gene
mentions during gene normalization; hence, precision can
be compromised for the sake of improved recall for the NER
component.

3.3 Entrez Gene ID Normalization (GN)

For the gene normalization component, we initially experi-
mented with a naive look-up approach using the gene lexi-
con from BioCreative II normalization task [26] as well as
mappings provided with the training corpus. This served as
a reasonable baseline; however, it does not take context into
consideration during the mapping process. A gene mention
may be incorrectly mapped to one of its many homologs
resulting in increased false positives. The final version of
our gene normalization system is knowledge-based and
more sophisticated in that it takes into consideration both
the gene mention and the context. This system relies on
the National Center for Biotechnology Information (NCBI)
gene database [23] to identify the candidate gene IDs for a
particular mention and further narrows it down to a ‘best
guess’ based on the document in which it occurred. We
define two utility functions that serve as the basis for this
system. Before we proceed, we recall that the full citation
(title and abstract) represents a single input instance for our
task. Hence, the context for confirming the mapping is the
Medline citation of the full article.

The first function, ‘gene_name_lookup’, takes as input
a mention span and returns a list of candidate gene
IDs sorted by relevance. This is achieved by querying
the NCBI gene database via the E-utilities Application
Programming Interface (API) (an example query for the
gene span ‘Utp21’: https://eutils.ncbi.nlm.nih.gov/entrez/e
utils/esearch.fcgi?db=gene&term=Utp21&retmax=100&
sort=relevance). This provides a ranked list of candidate
genes for a given gene mention.

The intuition here is that the top few in this list are either
the correct gene or at least homologs of the correct gene.
We now define the second function, ‘gene_pmid_lookup’,

which takes as input a PubMed article ID (PMID) and
returns a list of candidate gene IDs for the article. We
achieve this by making another query to the NCBI gene
database using the PMID of the current document as query
input (an example query for the PMID 18725399: https://e
utils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&
term=18725399[PMID]). This allows us to narrow down
the list of candidate gene IDs to ones that have already been
identified as appearing in the document.

Algorithm 1 Gene Normalization

Input a: gene mention
Input b: document PMID

X ← gene_name_lookup(a)

Y ← gene_pmid_lookup(b)

Z ← pubtator_pmid_lookup(b)

for x ∈ X do
if x ∈ Y then

return x
end if

end for
for x ∈ X do

if x ∈ Z then
return x

end if
end for
return NULL

The final ‘gene_normalization’ algorithm takes as input
a gene mention and a PMID and returns either a gene
ID or ‘NULL’. The latter indicates that no match can be
found, in which case we simply ignore the span entirely
for the remainder of the pipeline. From initial experiments,
we found that relying only on the NCBI gene database
to inform us of the possible genes for a document is too
limiting and hurts recall considerably. This is because,
while it is very precise, the database is not a comprehensive
source of knowledge (at least for our purpose) and should
not be relied upon as such. Hence, there is reason to
believe that augmenting it with another high-precision
system such as PubTator would improve overall recall.
Let ‘pubtator_pmid_lookup’ be a function that takes as
input a PMID and returns a list of candidate genes for
an article—not unlike ‘gene_pmid_lookup’. The difference
is that ‘pubtator_pmid_lookup’ returns the output of
PubTator for the article without any information about
word-level offsets; in other words, only a list of document-
level gene IDs is returned. A natural union works well in
our experiments, but we find a slight advantage in using
‘gene_pmid_lookup’ as the primary source of knowledge

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db$=$gene&term$=$Utp21&retmax$=$100&sort$=$relevance
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db$=$gene&term$=$Utp21&retmax$=$100&sort$=$relevance
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db$=$gene&term$=$Utp21&retmax$=$100&sort$=$relevance
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db$=$gene&#x0026;term$=$18725399[PMID]
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db$=$gene&#x0026;term$=$18725399[PMID]
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db$=$gene&#x0026;term$=$18725399[PMID]
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Figure 2. Network architecture of the RC model (adapted from Tran and Kavuluru [36, Figure 1]).

with ‘pubtator_pmid_lookup’ serving as a secondary
fallback. The final version of the procedure is defined in
Algorithm 1.

3.4 RC of Gene Pairs (RC)

To extract PPIm pairs, we propose using a deep neural
network architecture based on CNNs for RC. The proposed
model was originally introduced by Kim et al. [17] for text
classification and later adapted by us for narrative-based
prediction of mental conditions [36]. An overview of the
architecture modified to suit the RC task is presented in
Figure 2. Since the architecture is identical (with exception
of the output layer) to our prior work [36], we simply
refer readers to the original study for the exact model
formulation; the remainder of this section will instead focus
on the training and configuration aspect of the model.

Training and Model Configuration When generating
training examples for this model, we use the ‘augmented’
training corpus as described in Section 3.2 with the addi-
tional gene mentions. For this task, each pair of candi-
date genes in an article constitutes a separate candidate
interaction. Hence, for each pair of candidate genes, we
generate a distinct training instance by performing well-
known entity-binding—we replace mentions of the pair
with special tokens GENE_A and GENE_B (with their own
embeddings) in the corresponding document text. We adapt
this idea of entity-binding from prior efforts [16, 21] on
classifying DDIs, which obtained competitive results on
a popular DDI dataset. For a gene pair (A, B), we also
generate an additional instance for the reverse case (B, A)

given directionality does not matter. Note that we run both
cases of a candidate pair during testing and take the average
output score for classification. We also generate examples
for the exception case when the candidate pair involves
the same gene, i.e. A = B, in which case GENE_S is used
for entity binding of the single gene ID. We also replace
mentions of other genes in the narrative with a special
GENE_N token in either case. In total, we generated 2972
instances from the 597 articles in the training set. At test
time, we only predict pairs as positive where the mean
probability is above 50% for the instance generated from
(A, B) and its reverse case (B, A). In case no pairs meet the
threshold, we make a single positive prediction by choosing
the pair with the highest probability (even if it is ≤50%).

We now describe the configuration of the RC model.
As with the NER model, we used word embeddings of
size 200 pre-trained on the PubMed corpus [28]. For the
convolutional component, we used window sizes of 3, 4 and
5 with 200 convolutional filters. The model was trained for
30 epochs using RMSProp [34] (an SGD variant) using mini
batches [19] with a batch size of 8 and a learning rate of
0.001. Since each instance is a collection of sentences and
the window size is at most 5, we pad four zero-vectors at the
beginning and the end of the input text as well as between
sentences. We additionally apply dropout at a rate of 50%.
During training, we checkpoint model parameters at each
epoch and only keep the checkpoint resulting in the highest
F1 on the development set. We train 10 such models as
part of an ensemble. Each model of the ensemble is trained
and tuned on a random split of 80 to 20% and seeded
with a different value for random parameter initialization.
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Table 1. System performance on the official test set

HomoloGene ID Matching Method Micro-P (%) Micro-R (%) Micro-F (%) Macro-P (%) Macro-R (%) Macro-F (%)

1

✗

Task baseline 10.91 47.41 17.74 19.29 47.16 23.21
2 Tran and Kavuluru [35] 37.39 25.09 30.03 26.86 27.35 25.87
3 Chen et al. [5] 40.00 30.84 34.83 28.68 33.53 28.90
4 Our system 38.22 37.34 37.78 39.68 40.94 38.46

5

�

Task baseline 14.68 51.97 22.90 21.36 51.57 26.02
6 Tran and Kavuluru [35] 46.53 31.09 37.27 32.87 34.15 31.94
7 Chen et al. [5] 43.18 33.41 37.67 30.87 35.86 31.09
8 Our system 46.67 45.69 46.17 48.53 49.94 47.03

The neural network was configured based on insights from
our prior work [36] with this particular architecture and
further tuned during initial experiments.

4 Results and discussion

Officially, systems submitted for this task are evaluated on
micro-F1 with macro-F1 being a secondary metric intro-
duced after the original challenge. There are two match-
ing criteria that are considered when evaluating: exact
gene ID matching and HomoloGene Gene ID matching.
In the latter case, genes of the same homology group are
considered equivalent for the purpose of evaluation. This
allows room for errors in the gene mapping aspect of the
system and is therefore a less stringent measure compared
to ‘exact matches’. To identify homologous genes, the NCBI
HomoloGene (https://www.ncbi.nlm.nih.gov/homologene)
database is used as a reference. In this context, the macro-
F1 metric is based on computing the example-based F1 for
each test article and averaging it over all test articles; this
is different from the standard macro-F1 in a multi-class
setting where it is the average of the F1 score over all classes.

The end-to-end performance of our system on the official
test set is recorded in Table 1. Results of the top-performing
participants of the original challenge are displayed in order
of ascending micro-F1. Our original system submission
[35] during the challenge placed second on exact matching
(Table 1, row 2) and on HomoloGene ID matching (Table 1,
row 6) at a micro-F1 of 30.03 and 37.27%, respectively. As
observed in Table 1, we were able to improve drastically
on previous results by at least 7 points in micro-F1 for
both exact and HomoloGene ID matching. The gains are
almost entirely due to the improved recall of the new system
although minor gains in precision were also observed. We
also included the results of Chen et al. [5] for compari-
son as their system placed first on both matching criteria.
Our improved system attains competitive test results for
this dataset at 37.78% micro-F1 on exact matching and
46.17% micro-F1 on HomoloGene ID matching.

In Table 2, we study the iterative gains achieved by
incrementally applying proposed changes to our original
system [35]. In order to draw conclusions based on statis-
tical significance, we apply the following experiment. First,
we train a set of 30 models each with randomly initialized
weights for both the NER and the RC component. Recall
that both components make predictions based on ten-model
ensembles. We repeatedly evaluate the end-to-end system on
the test set 30 times; each evaluation run involves a different
ten-model ensemble for each component sampled from their
respective pool of 30 trained models. We record the mean-
F1 and 95% confidence intervals from these experiments in
Table 2. Based on the results of this experiment, we can con-
clude that performance gains from the proposed changes
are statistically significant (with exception of the retrained
NER/RC component on HomoloGene ID matching). Next,
we discuss these changes in detail.

We start by implementing changes to the NER and RC
components such that they are trained on the augmented
training corpus (recall that this corpus includes the original
gene annotations as well as genes identified by GNormPlus).
This results in fewer mixed signals for NER component
while supplying the RC component with meaningful neg-
ative examples. From this, we see a notable improvement
in micro-precision of at least 5 points on exact matching
and 6 points on HomoloGene ID matching at a minor cost
of recall in either case (rows 2 and 8 of Table 2); due to the
nature of harmonic means and the fact that the performance
already skews toward precision, improvements to micro-
F1 are marginal. Next, we change the NER component
by adding an NER post-processor that takes the output of
the NER component and annotates unmatched gene names
using the gene lexicon as a dictionary. From this we observe
minor improvements (rows 3 and 9 of Table 2) to both
precision and recall corresponding to an increase of at least
one micro-F1 that is consistent for either matching criteria.
A suspected bottleneck of our system is that it has an
overly strict gene mapping criterion in that only genes that
are annotated in the NCBI gene database for a particular
PMID are allowed. The system is precise, but does not

https://www.ncbi.nlm.nih.gov/homologene
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Table 2. Iterative component-level analysis on the official test set

HomoloGene ID Matching Method Micro-P (%) Micro-R (%) Micro-F (%)

1

✗

Our base system [35] 35.115 ± 0.488 25.380 ± 0.551 29.461 ± 0.540
2 + Retrained NER/RC 40.848 ± 0.148 24.211 ± 0.094 30.403 ± 0.112
3 + Improved NER 42.368 ± 0.126 25.210 ± 0.079 31.611 ± 0.090
4 + Improved GN 37.425 ± 0.303 37.221 ± 0.205 37.317 ± 0.194
5 Lexicon-based GN + Our NER/RC 12.149 ± 0.156 13.826 ± 0.132 12.925 ± 0.106
6 GNormPlus-based NER/GN + Our RC 37.069 ± 0.206 35.637 ± 0.176 36.333 ± 0.082

7

�

Our base system [35] 44.335 ± 0.684 31.871 ± 0.708 37.077 ± 0.713
8 + Retrained NER/RC 50.406 ± 0.161 29.991 ± 0.092 37.543 ± 0.113
9 + Improved NER 52.393 ± 0.139 31.186 ± 0.081 39.099 ± 0.094
10 + Improved GN 45.989 ± 0.365 45.863 ± 0.278 45.927 ± 0.251
11 Lexicon-based GN + Our NER/RC 13.592 ± 0.183 15.594 ± 0.141 14.517 ± 0.121
12 GNormPlus-based NER/GN + Our RC 40.067 ± 0.178 38.632 ± 0.231 39.329 ± 0.095

comprehensively cover all genes at the document level.
Hence, we implemented a final change such that document-
level PubTator (GNormPlus) annotations are used as a
secondary recourse when considering the scope of genes to
allow for a particular article. This final change is responsible
for the most dramatic improvement (rows 4 and 10 of
Table 2) to micro-recall at 12 points on exact matching and
14 points on HomoloGene ID matching. This comes with a
cost to micro-precision at 5 points on exact matching and 6
points on HomoloGene ID matching. We arrive at relatively
balanced precision and recall measures, an observation that
is consistent on either matching criteria, resulting in an
increase of at about 6 points on exact matching and 7 points
on HomoloGene ID matching with respect to micro-F1.

We additionally include results based on other variants
of our system for comparison. For example, we report
performance for a variant in which the NER and RC
component are fixed while replacing the GN component
with a method based on gene lexicon mapping and a fuzzy
string matching that allowed genes to be mapped to gene
IDs within a 90% similarity threshold. This corresponds to
rows 5 and 11 of Table 2 in which we observe very poor
performance. For HomoloGene ID matching, the result is
worse than the baseline reported in Table 1. This is expected
as article context is not used to infer the correct gene
ID from many possible gene IDs that are homologous in
nature. On the other hand, using GNormPlus with the
retrained RC component results in surprisingly high per-
formance. This is contrary to our initial experiments on a
held-out validation set wherein GNormPlus performs much
worse at a micro-F1 of 26.75%—granted this was prior to
system improvements as described in this study. This could
be an indicator that GNormPlus is better at annotating
genes on the test set than the training set. Nevertheless,
relying on GNormPlus as the core NER and GN component
would result in 36.33 and 39.33% micro-F1 scores on exact

and homologous matching, respectively (rows 6 and 12
of Table 2); while these scores are high, this restricts any
further improvement to strictly the RC component and the
pipeline wide improvements achieved by our system are still
superior (rows 4 and 10 of Table 2).

To gain further insight on the inner workings of the final
system, we provide a visualization of intermediate decisions
made on a concrete example in Figure 3. The target article,
identified by PMID 23897824, was manually chosen from
the set of test examples based on its potential for discussion
as well as practical considerations (such as length). High-
lighted in yellow are spans of text initially identified by the
NER system; further corrections to these annotations by
consulting the gene lexicon are highlighted in blue. Gene
ID annotations are tagged (in green) for each named entity
span for which the gene normalization component finds a
suitable match. The color red is reserved for spans and genes
that were missed entirely by the system. We also include an
example-based evaluation on both matching criteria for the
final prediction. For HomoloGene ID matching, we group
genes that are homologous accordingly.

One clear observation to be made is that most occur-
rences of the gene Shank3 are captured by the supervised
NER system. Since Shank3 and its variants do not occur
in the training set, this example demonstrates the ability of
the system to generalize to unseen examples. Occurrences of
the same gene without the numeric suffix are not captured
however, which can be an indication that the character-level
composition plays an influential role and that there is bias
for word tokens that are a mix of alphabetic and numeric
characters. We can also observe that the NER component
was unable to detect the gene α-fodrin, more commonly
known as SPTAN1. This is due to the system’s lack of
support for non-ASCII characters; here, we believe a simple
preprocessing step to convert non-ASCII characters to a
more processable form prior to training and testing will
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Figure 3. Visualization of decisions made by the final system on article with PMID 23897824.

alleviate such issues. The final evaluation of this example
shows that missing such genes can be detrimental to overall
recall. The post-NER correction step introduces its share of
false positives including ‘ligand’ and ‘novel’; nonetheless,
it is responsible for detecting the only mention of the
gene Sharpin, which is a participant of a PPIm relation
according to the ground truth. The result is a net gain as the
false positives introduced are not normalized by the gene
normalization component at this stage and are therefore
ignored for the rest of the pipeline. Another observation is
that Shank/ProSAP individually refer to protein names but
in this context may refer to a group of proteins; the first
instance of this mention is ignored while the NER system
detects only ‘ProSAP’ in the second mention. In this case,
‘ProSAP’ appears to be a source of error as it is ultimately
mapped to gene ID 59312, which is Shank3 but of the
variety that occurs in the Norwegian rat. This is in contrast
to other instances of Shank3 that are correctly identified as
of the human variety (gene ID 85358). Despite genes 59312
and 85358 being homologous, incorrectly identifying the
precise gene ID predictably results in a false positive when
evaluating on exact matches. This issue disappears when
matching on HomoloGene IDs, as shown in the right panel
of Figure 3. To bridge the gap between exact and homolo-
gous gene ID matching performance, one option to reduce
false positives is by consolidating the gene ID mappings
for subsets of unique gene IDs that are homologous; for

example, the use of a voting mechanism for deciding the
correct variant for all members of the subset. However, it
is necessary to consider the trade-off since such a system
would not perform well on articles without narrow focus
on any particular species of animal.

Conclusion

In this paper, we proposed an end-to-end deep learning
system that consists of NER, gene normalization, and RC
for the BioCreative VI Precision Medicine track’s task on
relation extraction. We proposed changes to our original
system entry for the challenge and analysed the incremen-
tal performance gains of these changes. Furthermore, we
demonstrated that the proposed system performs compet-
itively for this task by significantly improving upon top
results achieved in the original challenge. We believe this is
an important progression in supporting efforts in precision
medicine. A drawback of the system is the lack of built-in
mechanisms for interpretability of decisions, which can be
rectified by adding an attention layer to highlight contextual
words or phrases that are central to this new problem
domain. On the other hand, the lack of comprehensive
gene annotations also poses a non-trivial challenge when
attempting to build an end-to-end system for this task.
The system as proposed relies heavily on numerous exter-
nal tools and knowledge bases to circumvent the lack of
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comprehensive gene annotations. As human-expert anno-
tations are expensive and time consuming, this aspect may
continue to surface in future datasets of a similar nature.
Our future efforts will focus on dealing with this aspect in
a more direct fashion while realizing a true end-to-end deep
neural network that is able to model all components jointly.
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