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EPISTASIS MATTERS IN QUANTITATIVE GENETICS
Within quantitative genetics, the term “epistasis” is used to broadly
describe situations in which combinations of genetic variants show
nonadditive phenotypic effects (Phillips 1998, 2008; Mackay 2014).
Although most work on epistasis has focused on pairs of variants that
interact (Brem et al. 2005; Bloom et al. 2015), more complicated forms
of epistasis can also occur (Taylor and Ehrenreich 2015a). These in-
clude higher-order interactions between three or more variants (Rowe
et al. 2008; Pettersson et al. 2011; Taylor and Ehrenreich 2014) and
cases in which one variant acts as a hub of interactions with a number
of other variants (Carlborg et al. 2006; Forsberg et al. 2017).

Despite many reports of epistasis, its importance to quantitative
genetics remains under active debate (Huang andMackay 2016). This
is in part because theory suggests that, even if epistasis is present, most
genetic variance will be additive (Hill et al. 2008; Maki-Tanila andHill
2014). Consistent with this argument, purely additive models explain
most of the heritability of many quantitative traits (Bloom et al. 2013)
and have proven quite effective in crop and livestock breeding pro-
grams (Crow 2010). Given that epistasis can be ignored to little det-
riment, what do we gain by studying epistasis?

Epistasis matters for multiple reasons. A central goal of quantitative
genetics is to determine the genetic architectures that underlie
heritable traits (Mackay 2001). By definition, this endeavor entails
identifying nearly all of the genetic effects that appreciably influ-
ence phenotypes, including epistatic effects. Achieving such a pre-
cise understanding of genotype–phenotype relationships advances
our basic knowledge of genetics and can improve our ability to
predict traits, such as disease risk and crop yield, from genome
sequences (Forsberg et al. 2017). Because epistasis often reflects

functional relationships between genes, finding interacting variants
can also shed light on molecular mechanisms that give rise to trait
variability (Aylor and Zeng 2008; Rowe et al. 2008; Cordell 2009;
Huang et al. 2012; Taylor et al. 2016).

Furthermore, epistasis impacts our understanding of why
genetically distinct individuals responddifferently tonew spontaneous
and induced mutations (Nadeau 2001; Queitsch et al. 2002; Mackay
2014; Siegal and Leu 2014; Schell et al. 2016). Such background effects
are common across species and traits, and are known to contribute to
clinically relevant phenotypes (Nadeau 2001; Chandler et al. 2013).
Recent work has shown that genetic background effects often re-
flect complex interactions between new mutations and multiple
segregating variants (Dowell et al. 2010; Chari and Dworkin 2013;
Chandler et al. 2014; Paaby et al. 2015; Taylor and Ehrenreich
2015b; Geiler-Samerotte et al. 2016; Lee et al. 2016; Taylor et al.
2016). Thus, predicting how individuals will respond to new muta-
tions, including genetic changes introduced by genome editing (Cong
et al. 2013; Mali et al. 2013), will likely require accounting for epistasis.

CHALLENGES IN USING GENETIC MAPPING TO
DETECT EPISTASIS
Identifyingepistasis isdifficultbecausemostgeneticmappingstudies are
only capable of detecting the simplest and largest effect interactions
(Taylor and Ehrenreich 2015a). Although selective genotyping ap-
proaches can be used to find interacting variants (Ehrenreich et al.
2010; Taylor and Ehrenreich 2014, 2015b; Lee et al. 2016; Taylor
et al. 2016), usually epistasis is identified by association or linkage
mapping (Marchini et al. 2005; Cordell 2009; Verhoeven et al. 2010;
Bloom et al. 2015; Forsberg et al. 2017).

A common challenge in genome-wide scans for epistasis is multiple
testing (Cordell 2009; Sham and Purcell 2014). The number of tests in a
scan for epistasis will scale almost exponentially with the order of the
interactions being considered (Cordell 2009). For example, assuming
the number of variants in a population equals 10,000, then the number
of tests in genome-wide scans for pairwise, three-way, and four-way
epistasis will be �5·107, �2·1011, and �4·1014. With these large
numbers of tests, stringent statistical approaches must be employed
to minimize false positives (Sham and Purcell 2014).
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A related difficulty that genome-wide scans for epistasis face is
statistical power. Leveraging data from multiple traits (Tyler et al.
2013, 2017), searching for epistatic effects involving variants that also
have additive effects (Storey et al. 2005; Laurie et al. 2014), jointly
modeling additive and epistatic effects (Marchini et al. 2005;
Verhoeven et al. 2010), and identifying variants that respond to genetic
background (Jannink and Jansen 2001) or show effects on phenotypic
variance (Ronnegard and Valdar 2011) are just some of the ap-
proaches that can aid in the detection of interacting variants.
Yet, arguably the best solution to the statistical power problem is
to use large sample sizes in genome-wide scans for epistasis (Bloom
et al. 2013, 2015; Hallin et al. 2016). Notably, both overall sample size in
a study and sample sizes within multi-locus genotype classes must be
considered (Carlborg and Haley 2004). Samples sizes within multi-
locus genotype classes should ideally be balanced, but in some cases
this may not be possible, for example when association mapping is
performed on natural isolates that possess population structure and a
spectrum of allele frequencies (Mackay et al. 2009).

Another factor that may be important to detecting epistasis is how
often involved variants also show additive effects. This question has
bearing on whether efforts to identify epistasis can be simplified into a
two-step process in which additive variants are first identified and then
their interactions are measured. Recent work indicates that interacting
variants also tend to exhibit additive effects (Bloom et al. 2015). How-
ever, in some cases, new mutations appear to interact with “cryptic”
variants that do not typically influence phenotype (Gibson and
Dworkin 2004; Paaby and Rockman 2014), suggesting that major
epistatic effects can involve variants that lack additive effects.

EXPLORING EPISTASIS WITH CROSSES
One of the best opportunities for identifying interacting variants is using
linkage mapping in crosses of genetically diverse isolates from model
species (Carlborg and Haley 2004; Mackay et al. 2009; Taylor and
Ehrenreich 2015a). In many of these organisms, isolates can be made
homozygous by inbreeding [e.g., Drosophila (Mackay et al. 2012) and
mouse (Beck et al. 2000)], sporulation [e.g., budding yeast (Liti et al.
2009; Schacherer et al. 2009)], or the creation of doubled haploids [e.g.,
many plants (Maluszynski et al. 2003)], enabling the generation of
stable genotypes that minimize heterozygosity. Using inbred lines as
the founders of crosses is desirable because it allows unambiguous
cataloging of the variants that will segregate among progeny. RILs
can then be produced from cross progeny in the same way that the
inbred founders were generated (Carlborg and Haley 2004; Mackay
et al. 2009; Taylor and Ehrenreich 2015a).

RILs represent a powerful resource for identifying epistatic effects
because they carry random combinations of the variants that differen-
tiate their founders and have minimal to no population structure
(Carlborg and Haley 2004; Rockman 2008; Mackay et al. 2009;
Taylor and Ehrenreich 2015a). There are many experimental design
choices to make when constructing RIL populations (Verhoeven et al.
2006; Rockman and Kruglyak 2008; Mackay et al. 2009). Assuming
sample size is not limiting, one of the key decisions in constructing a
cross is the number of founders (Kover et al. 2009; Aylor et al. 2011;
Long et al. 2014). While two-parent RIL populations are commonly
used, multiparent RILs can be generated from dozens of founders or
more (Ladejobi et al. 2016).

As highlighted by the rapidly growing “Multiparental Populations”
series in GENETICS and G3: Genes|Genomes|Genetics (de Koning
and McIntyre 2014), there is tremendous interest in using RIL pop-
ulations derived from more than two founders to examine the ge-
netic basis of quantitative traits. A number of crossing designs have

been described for generating multiparent RILs. These include, but
are not limited to, employing multiple rounds of crossing to ensure
that each founder contributes equally to each RIL (Churchill et al.
2004), Nested Association Mapping (NAM) in which one common
founder is crossed to many others (McMullen et al. 2009), and
crossing each founder to two or more of the other founders in a
full or partial diallel design (Verhoeven et al. 2006; Treusch et al.
2015). Multiparent RILs can also be interbred to produce outbred
populations that resemble natural populations but lack population
structure (Svenson et al. 2012). Relative to more traditional two-
parent crosses, multiparent populations have some clear advan-
tages: they sample a greater fraction of the genetic diversity that
exists within a species and can lead to finer mapping resolution (Yu
et al. 2008; Kover et al. 2009; Aylor et al. 2011; Long et al. 2014).

TRADEOFFS IN SEARCHING FOR EPISTASIS USING
MULTIPARENT CROSSES
Regarding epistasis, the main strength of multiparent populations
relative to two-parent crosses is a more complete sampling of the
combinations of interacting variants that segregate in a species. How-
ever, the specific crossing design used to generate multiparent RILs will
influence the epistatic effects that are detectable. For example, themaize
NAM population was generated by mating 25 genetically diverse
founders to the same reference line (B73) and producing RILs from
each two-parent cross (Yu et al. 2008; Buckler et al. 2009; McMullen
et al. 2009). The NAM panel provides a compelling opportunity to
identify interactions involving variants carried by B73 (Yu et al.
2008; Peiffer et al. 2014). However, this population might have more
limited potential to identify other epistatic effects.

Generating multiparent RILs that are equally derived from each
founder can maximize the epistatic effects present in a cross, but has
consequences for multi-locus genotype frequencies at interacting
variants. While two-parent RILs have the advantage that all variants
and two-locus combinations should segregate at �1/2 and �1/4,
respectively, this is not the case for multiparent RILs. For example,
the eight founders of the mouse Collaborative Cross contribute
almost equally to each RIL (Churchill et al. 2004; Aylor et al.
2011; Collaborative Cross Consortium 2012), implying that minor
allele frequencies should be between �1/8 and �1/2 among the
RILs. This variability in allele frequencies can lead to low and un-
balanced multi-locus genotype frequencies at interacting variants,
whichmay result in false negatives in genome-wide scans for epistasis.
In an extreme case where two founder-specific variants interact, each
will occur in roughly an eighth of the RILs and the four multi-locus
genotype frequencies involving the variants will have frequencies of
�1/64, �7/64, �7/64, and �49/64. Despite this issue, multiparent
populations like the Collaborative Cross can be a very useful resource
for studying epistasis, especially when systems level data are available
or information is leveraged across traits (Tyler et al. 2017).

An additional factor to consider when using multiparent pop-
ulations to study epistasis is allelic heterogeneity, which occurswhen
multiple causal variants reside in either the same gene or different,
closely-linked genes (Risch 2000; Long et al. 2014; Matsui et al.
2015; Linder et al. 2016). Many cases of allelic heterogeneity
have been found in both multiparent genetic mapping (Buckler
et al. 2009; Ehrenreich et al. 2012; King et al. 2012, 2014; Peiffer
et al. 2014) and association studies (Lango Allen et al. 2010;
Hormozdiari et al. 2016). With respect to epistasis, this allelic het-
erogeneity may make it more difficult to detect interacting variants
in multiparent populations than in comparably sized two-parent
populations.
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CONCLUSION
Epistasis has important phenotypic effects, but can be difficult to
identify. RILs produced by crossing genetically distinct isolates can
facilitate the detection of interacting variants, but experimental
design criteria must be considered, including how many founders
to employ. Expanding the genetic variation that is present in a cross
by using more founders has both advantages and disadvantages. For
example, RILs produced by crossing two founders will have balanced
multi-locus genotype frequencies, which can provide statistical
power to identify pairwise and higher-order epistasis. However,
comprehensively mapping epistatic effects across a species requires
using a number of founders. These considerations speak to how
epistasis is a complex and incompletely understood phenomenon
that has no single form. Thus, assuming finite resources, the most
appropriate experimental design for studying epistasis may depend
on the specific question one wants to address.
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