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Abstract. Most traditional image registration algorithms aimed at
aligning a pair of images impose well-established regularizers to guar-
antee smoothness of unknown deformation fields. Since these methods
assume global smoothness within the image domain, they pose issues
for scenarios where local discontinuities are expected, such as the slid-
ing motion between the lungs and the chest wall during the respi-
ratory cycle. Furthermore, an objective function must be optimized
for each given pair of images, thus registering multiple sets of images
become very time-consuming and scale poorly to higher resolution image
volumes.

Using recent advances in deep learning, we propose an unsupervised
learning-based image registration model. The model is trained over a loss
function with a custom regularizer that preserves local discontinuities,
while simultaneously respecting the smoothness assumption in homoge-
neous regions of image volumes. Qualitative and quantitative validations
on 3D pairs of lung CT datasets will be presented.

1 Introduction

Image registration is an invaluable tool for medical image analysis and has
received vast attention in imaging research for the past several decades. Image
registration is used as a tool to find meaningful temporal transformations to
align images taken at different time frames. Traditionally, registration algorithms
assume smooth transformations. This assumption quickly falls apart for many
cases, since different organs move, to a certain degree, independently from one
another. Image misalignment becomes inevitable if smoothness is assumed at
regions where discontinuities are expected, such as organ boundaries [4]. In this
paper, we introduce an unsupervised learning model that learns the relation-
ship between image pairs and a corresponding displacement field. We propose
a regularizer that accounts for local image discontinuities while simultaneously
respecting local homogeneity. This approach drastically decreases registration
time, as the registration task is no longer an optimization task, but becomes a
simple function evaluation.
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2 Related Work

In traditional image registration, the most common approach is to solve an opti-
mization problem, where the objective function is comprised of two terms, an
image dissimilarity term and a regularization term to restrict the solution space.
Common methods include elastic and diffusion models [16], free-form deforma-
tions using b-splines [3], and more recently, kernel methods [11–13]. Because all
of these methods optimize an energy function for every image pair, large-scale
or successive registration tasks becomes very time consuming. Specialized algo-
rithms such as Thirion’s Demons [5,17,22] allow significant reduction in com-
putational time by estimating force vectors that acts to drive the deformation
followed by Gaussian smoothing during the optimization process. Unfortunately,
this algorithm restricts models to be diffusion-based models only.

With the rise of deep learning over the past decade, learning-based
approaches have become extremely popular. Several models are trained in a
supervised manner which required ground truth transformations to be available
[6,15,18]. Although these methods showed promising results, the task of obtain-
ing ground truth transformation fields is cumbersome and highly prone to error.
Thus, recent methods have shifted to an unsupervised approach instead, where
models are trained based on how transformation fields act on images, rather
than strictly on the transformations [1,9,25]. For a survey of learning-based
image registration methods, refer to the article by Haskins et al. [10].

3 Method

Our model follows a framework popularized by Voxelmorph [2]. Let IF and IM

denote fixed and moving images. We find a function gθ(IF , IM ) that produces the
displacement field u, i.e. u = gθ(IF , IM ). The deformation φ can then expressed
as the mapping φ = Id + u where Id is the identity mapping. The deformation
field is applied to IM to produce the warped image IM ◦φ where IF (x) is similar
to [IM ◦ φ](x) for all voxel locations x ∈ Ω. Since φ may map the original
coordinate system to non-integer valued voxel locations, interpolation is required
to warp IM under φ. For our experiments, we use trilinear interpolation due to
its simplicity. An overview of the model is shown in Fig. 1.

3.1 Network Architecture

The function gθ is modeled using a convolutional neural network where θ
denotes the network parameters. The neural network follows a modified ver-
sion of U-Net [19], which contains an encoder and a decoder structure that
mirror each other and are connected by skip connections at each layer (Fig. 2).
The encoder/decoder architecture is motivated by image pyramid techniques
in many computer vision algorithms, where each encoding and decoding layer
operate from coarse to fine representations of the input.
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Fig. 1. Overview of the model. Fixed and moving images IF , IM are passed into a
convolutional neural network which produces the displacement field u(x). The spatial
transformer morphs IM based on the displacement field. The loss is measured over
the dissimilarity between the fixed and morphed moving images, as well as additional
penalty functions defined over u.

The encoder consists of three convolution layers by applying 3 × 3 × 3 con-
volutions with stride 2 for downsampling, followed by LeakyReLU with slope of
0.2 at each layer. Each convolution layer has 32 output channels except the first
layer which contains 16 output channels.

The decoder follows a similar structure as the encoder but in reverse order.
In the first decoding layer, we simply use the output of the final encoding layer
as the input. In subsequent decoding layers, we first upsample the output of
the previous decoding layer. Skip connections are constructed by concatenating
layer outputs with that of the mirroring encoding layer. This effectively uses
representations of the encoding layers to enforce more precise outputs in the
decoding layers. Similar to the encoder, each decoding layer applies 3 × 3 × 3
convolutions followed by LeakyReLU of slope 0.2, but with stride 1 to preserve
resolution at each layer. The output of the final decoding layer is passed into an
additional convolution layer with 3 output channels, where each output channel
contains the coordinate components of the displacement field u.

3.2 Loss Function

We train our model using a loss function in the form

L(IF , IM ,u) = λsimLsim(IF , IM ,u) + λdiscLdisc(u) + λmagLmag(u), (1)

where Lsim measures image dissimilarity, Ldisc is a discontinuity preserving reg-
ularizer, and Lmag is a second loss term that manages the (ir)regularities in the
magnitude of the displacement fields. λsim, λdisc, and λmag are corresponding
regularization constants.

Similarity Loss. To measure image similarity/dissimilarity, we use a local nor-
malized cross correlation which is defined as
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Fig. 2. Network architecture of gθ based on a modified version of U-Net. The network
receives IM and IF to produce the displacement field u. The input and output of the
network are of dimensions D × H × W × 2 and D × H × W × 3 respectively. The
architecture consists of a contractive path (encoder) and a mirroring expansive path
(decoder) connected by skip connections at each layer.

LNCC(IM , IF ) =
∑

x∈Ω

[∑
y∈N (x) (IM (y) − μM (x)) (IF (y) − μF (x))

]2

[∑
y∈N (x) (IM (y) − μM (x))2

] [∑
y∈N (x) (IF (y) − μF (x))2

]

(2)
where x is any voxel in the image domain Ω, and y ∈ N (x) are the neighborhood
points around voxel x, and μM (x) and μF (x) are the average local intensities
around x in the moving and fixed images, respectively. LNCC is maximized when
IF = IM which measures similarity, thus we define the dissimilarity measure as
Lsim = 1 − LNCC.

Discontinuous Loss. In designing the discontinuous loss, we first assume that
there are no topological changes, i.e. no new tissue is introduced nor destroyed.
We then consider the requirements based on these physical scenarios: 1. Homo-
geneous movement, 2. Movement along rigid structures, and 3. Sliding organs.

These scenarios help us define the requirements for our regularizer. Firstly,
the regularizer must preserve smooth local deformations that occur locally within
organ interiors. Secondly, the regularizer must not penalize large local changes
in deformation magnitude as long as the movement is in a similar direction. This
is to mimic the movement of soft tissues or organs against rigid structures such
as the rib cage or the spinal column. Finally, the regularizer must be able to
account for movements in the opposite directions along organ boundary. This
final requirement is perhaps the most significant as there are many scenarios
where sliding organs exist. Common examples include the sliding of the lungs
against the chest wall during the respiratory cycle, and the movement of organs
against one another in the abdominal region. Figure 3 visually summarizes pos-
sible desired behaviors of a discontinuous displacement field.
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Fig. 3. Desired behaviors of the discontinuous displacement field. Figure 4(a) demon-
strates local homogeneity which is expected within organs. Figure 4(b) allows displace-
ment vectors of different magnitudes as long as they are in a similar direction, which
represents soft tissue moving against rigid structures. (c) depicts sliding boundary con-
ditions as displacement vectors on opposite sides of the boundary travel in opposite
directions.

Let u be represented by a collection of displacement vectors {ui}i=1,...,N ,
where N is the number of voxels in the image. Now consider two arbitrary vectors
ui and uj , respectively corresponding to locations xi and xj in the image domain.
The area of the parallelogram spanned by ui and uj is maximized when ui and
uj is orthogonal to one another, and minimized when they are parallel. Thus the
three conditions are encouraged for any regularizer in the form

Ldisc =
N∑

i,j=1

g(P(ui, uj)) (3)

where P the unsigned area of the parallelogram spanned by ui and uj , and
g : R → R is a strictly increasing function satisfying g(0) = 0. P is computed as

P(ui, uj) = ‖ui × uj‖2 (4)

where × denotes the cross product. We propose the regularizer

Ldisc =
N∑

i,j=1

1
2

log
(
1 + P(ui, uj)2

)
k(xi, xj) (5)

where k(xi, xj) is a decreasing weight function that depends on the proximity
between the locations xi and xj . For our experiments, we choose the C4 Wend-
land kernel [26] for k(xi, xj).

Magnitude Loss. During preliminary stages of our experiments, we noticed
that deformations in large dark image regions (background of CT image, for
instance) behave erratically. We found that imposing an additional magnitude-
based regularizer is needed to suppress this unpredictable behavior. Thus we add
the following term to our loss function

Lmag(u) = max
i

(‖ui‖2). (6)
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This effectively discourages large magnitudes of u. Evidently, this additional
term may become problematic for coarse registration where large-scale move-
ment may be expected. However, since this is aimed towards addressing local
discontinuities, it is safe to assume that deformations remain relatively small.

4 Experiments

4.1 Setup

Our model is implemented using PyTorch 1.3.0 and trained using an NVIDIA
GeForce GTX 1080Ti with 11 GB of graphics memory. CPU tests are performed
on an Intel Xeon E5-1620 at 3.7 GHz. We trained our model using Adam opti-
mizer [14] with λsim = 100, λdisc = λmag = 1, and learning rate 10−4.

The model is evaluated over 4DCT datasets provided by DIR-Lab [7,8] and
the POPI-model [23]. The DIR-Lab Reference 4DCT datasets contain ten sets of
image volumes of sizes 256×256 and 512×512 with various number of axial slices
(average of 100 and 128 for the two respective resolutions). To account for these
variations, we only keep the middle 96 axial slices of the 256 × 256 volume, and
the middle 112 axial slices of the 512 × 512 volumes. Each set of image volumes
are taken over 10 time steps over the period of a single respiratory cycle. Since
the input is a pair of image volumes, IF is chosen as the image volume with a
randomly chosen case number and time step, and IM is selected based on the
same case number with a different time step. By choosing eight cases as training
data, this allows 8 × 10 × 9 = 720 training samples and 2 × 10 × 9 = 180 test
samples, despite only having ten available cases. The POPI-Model contains six
image volumes of sizes 512 × 512 with 140 to 190 axial slices. For consistency,
we only keep the middle 136 axial slices and use five of the six cases as training
data. We follow the same approach as DIR-Lab in choosing IF and IM .

4.2 Results

We first compare our discontinuity-preserving model with one that assumes
global smoothness. As a baseline, we trained a second model using the DIR-lab
dataset with an identical configuration, with the exception where the discontin-
uous loss Ldisc is replaced with a total variation loss LTV defined as

LTV =
∑

i

‖∇ui‖2 (7)

where the summation is over all voxels indexed by i. Figure 4 shows a compar-
ison between our model trained using LTV and Ldisc. One can quickly identify
sudden changes in the displacement field near the lung’s boundaries especially
near the lung/vertebrae interface. Additional registration results are shown in
Fig. 5. We compare our results (Table 1) quantitatively to the following methods:
Free-Form Deformations (FFD) [20], isotropic parametric Total Variation (pTV)
[24], and Sparse Kernel Machines (SKM) [12]. For comparison, we fixed frame
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Fig. 4. Results obtained using LTV (a) and Ldisc (b). Columns 1 and 4 show an overlay
of u over IM . Columns 2 and 5 show a magnified local region where transformation
discontinuities are expected. Columns 3 and 6 are heatmaps of the displacement field’s
local magnitudes.

Fig. 5. Qualitative results of proposed model. From left to right: fixed image IF , moving
image IM , registered image IM ◦φ, absolute error before registration |IF −IM |, absolute
error after registration |IF − IM ◦ φ|, heatmap of displacement field u.
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Table 1. Target Registration Error (TRE) in millimeters (mm) against FFD [20], pTV
[24], and SKM [12] on the DIR-Lab and POPI 4DCT Model. Baseline model is the
same configuration but trained with LTV in place of Ldisc.

Frame DIR-Lab 256 DIR-Lab 512 POPI

FFD pTV SKM Base Ours FFD pTV SKM Base Ours FFD pTV SKM Base Ours

0 1.01 0.92 1.06 1.10 1.04 0.79 0.62 0.59 0.77 0.65 0.79 0.72 0.66 0.77 0.76

2 0.99 0.89 0.85 0.94 0.91 0.81 0.63 0.57 0.73 0.64 0.81 0.71 0.65 0.73 0.74

3 1.29 1.34 1.32 1.26 1.24 1.14 0.99 1.01 0.97 1.00 1.14 1.12 1.17 1.08 1.11

4 1.26 1.27 1.25 1.23 1.26 1.11 0.92 0.93 0.96 0.95 1.11 1.01 1.07 1.04 1.07

5 1.27 1.29 1.35 1.29 1.31 1.11 1.00 1.01 0.99 1.02 1.11 1.11 1.13 1.10 1.16

6 1.31 1.17 1.18 1.27 1.25 1.20 0.90 0.89 1.02 0.92 1.20 1.03 1.00 1.11 1.06

7 1.36 1.19 1.22 1.25 1.30 1.20 0.95 0.93 1.00 1.01 1.20 1.06 1.05 1.09 1.13

8 1.10 1.05 0.94 1.04 1.07 0.88 0.73 0.67 0.78 0.79 0.88 0.84 0.75 0.88 0.90

9 1.09 0.97 0.99 1.07 1.09 0.92 0.70 0.75 0.78 0.80 0.92 0.81 0.83 0.86 0.89

Table 2. Comparison of registration time between learning-based model and inverse
model. For the learning-based model, we used our proposed model for evaluation. For
the inverse model, we perform pairwise registration with diffusion regularizer over 1,000
iterations. The inverse model is evaluated using the AIRLab framework [21]. The CPU
time for the classical model over DIR-Lab 512 and POPI Model is not computed, as
they were much higher than the corresponding GPU time. Time is measured in seconds.

Learning-based Inverse Model

GPU CPU GPU CPU

DIR-lab 256 0.33 15.70 82.57 5724.36

DIR-lab 512 1.38 63.14 532.41 –

POPI Model 1.67 76.45 702.86 –

1 as the fixed image, and register all remaining frames to the reference. Finally,
we compare the time required to register a pair of images using our approach
versus a classical registration algorithm using minimization (Table 2). Classical
registration is applied using the AIRLab framework [21] via diffusion regularizer.

5 Conclusion and Future Work

We presented an unsupervised learning-based model for discontinuity preserv-
ing image registration. Although the training set was relatively small, our model
performed on par with existing methods while begin able to handle locations
where discontinuities may occur. Furthermore, our model significantly reduced
computation by several orders of magnitude, allowing successive registration to
be performed within a relatively short time frame. A drawback of the model
is its sensitivity to noise. In particular, since Ldisc is computed by comparing
local displacement vectors with neighboring displacement vectors individually,
there are no mechanisms to discourage local chaotic behaviors in the displace-
ment field. A possible remedy is to extend the current model to incorporate
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additional information, such as segmentation masks and edge information. This
allows image discontinuities to be defined rather than relying on only image
intensities to predict boundary regions.

Acknowledgments. This research was supported by an NSERC Discovery Grant for
M. Ebrahimi. We acknowledge the support of NVIDIA Corporation for the donation
of GPUs used in this research.
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