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Advances from novel adoptive cellular therapies have yet to be fully realized for the
treatment of children and young adults with solid tumors. This review discusses the
strategies and preliminary results, including T-cell, NK-cell and myeloid cell-based
therapies. While each of these approaches have shown some early promise, there
remain challenges. These include poor trafficking to the tumor as well as a hostile
tumor microenvironment with numerous immunosuppressive mechanisms which result
in exhaustion of cellular therapies. We then turn our attention to new strategies proposed
to address these challenges including novel clinical trials that are ongoing and
in development.
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antigen receptor)
INTRODUCTION

Immunologically “hot” solid tumors (e.g. melanoma) (1) with a tumor microenvironment (TME)
marked by infiltrating CD8+ T-cells (2, 3), high programmed death ligand 1 (PD-L1) expression (4),
or a high tumor mutational burden have shown remarkable responses to immunotherapy including
immune checkpoint inhibitors (ICIs) (5). Unfortunately, these benefits have not extended to “cold”
tumors (e.g. prostate or pancreatic cancer) (1) where T-cells are either entirely absent (“immune
desert”) or sequestered at the periphery (“immune-excluded”) (3, 6). Many pediatric/adolescent and
young adult solid tumors are cold tumors (7, 8) and have failed to respond to ICIs (9).

Several approaches have attempted to harness cellular therapy to cure these tumors. Autologous
hematopoietic stem cell transplant (HSCT) has enabled maximal chemotherapy dosing in
susceptible tumors with varying levels of effectiveness in neuroblastoma (10), Ewing sarcoma
(11), breast cancer (12), retinoblastoma (13), hepatoblastoma (14), and other diseases. Recently
some groups have piloted allogeneic HSCT to treat solid tumors. Though durable responses are rare,
evidence for graft-vs-tumor effect has been observed (15). Finally, as adoptive cellular therapy
(ACT) has proven transformative for leukemia and lymphoma, the development of novel ACT for
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solid tumors has exploded (Figure 1). In this review, we discuss
ACT in solid tumors in clinical development, consider challenges
plaguing the field, and highlight proposed strategies which will
be tested in future clinical trials.
T-CELL BASED THERAPIES

T-cells are critical in immune surveillance for cancer. The T-cell
receptor (TCR) can recognize cancer-specific antigens processed
by major histocompatibility complex (MHC) and presented on
the cell surface. TCR engagement by MHC-presented non-self
antigens leads to activation and T-cell mediated killing (16). T-
cell cytotoxicity in solid tumors has been leveraged using both
native T-cells and autologous T-cells genetically engineered to
express a specific TCR. Future efforts in allogeneic “off-the-shelf”
approaches are being actively studied.

Tumor Infiltrating Lymphocytes (TILs)
Early studies demonstrated that heterogeneous tumor infiltrating
lymphocytes (TILs) collected from a freshly-resected tumor and
expanded in vitro were able to specifically lyse autologous tumor
(17). Subsequent clinical investigations showed transient
responses in patients with metastatic melanoma after TIL
infusion, typically under high IL-2 conditions (17). Early TIL
trials reported responses in 49-72% of patients with melanoma
(18, 19). Pretreatment with lymphodepleting chemotherapy led
to improved TIL persistence (18) and recent advances include
Frontiers in Immunology | www.frontiersin.org 2
selection of TILs that recognize patient-specific tumor antigens
using single cell sequencing (20). Selected autologous TILs have
shown activity in several epithelial malignancies (21, 22).

While advances using TILs continue, the inability to isolate and
effectively expand TILs from some solid tumors remains a challenge.

Engineered TCR-Based ACT
Initial attempts at engineering T-cells for ACT concentrated on
genetic engineering of specific TCRs into autologous T-cells
collected via peripheral blood apheresis with subsequent reinfusion.

Expression of cancer/testis antigens (CTAs) including
melanoma antigen gene (MAGE) family proteins, synovial
sarcoma X breakpoint (SSX) family proteins, and New York
esophageal squamous cell carcinoma (NY-ESO-1) is normally
restricted to the germline. However, solid tumors including
melanoma, SS, myxoid/round cell liposarcoma (MRCL), and
osteosarcoma express CTAs. Robbins and colleagues targeted
NY-ESO-1 using a transduced TCR recognizing the peptide
epitope SLLMWITQC in the context of HLA-A*02. Transgenic
T-cells combined with IL-2 following lymphodepletion led to
responses in 5/11 patients with SS and 2/11 patients with
melanoma (23). A subsequent study showed responses in 6/
12 patients with NY-ESO-1+ SS in an initial cohort (24), with
one complete response (CR) and 14 partial responses (PR) in
the first 42 patients (25). This response rate represents a
potentially significant improvement over previous therapies
for SS (26). These T-cells maintained clonal diversity over
time and persisting cells were primarily of central memory
FIGURE 1 | Multiple cell types available to engineer for adoptive cellular therapy. Myeloid cells, NK cells, and T-cell-based therapies each have advantages and
disadvantages which should be considered within the context of the histology to be targeted.
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and stem cell memory populations (24). Ongoing trials are
further investigating genetically engineered NY-ESO-1
targeting autologous T-cells in solid tumors including SS,
MRCL and non-small cell lung cancer (NCT02992743,
NCT03967223, NCT03709706).

Other successfully targeted CTAs include MAGE-A3 and
MAGE-A4. Seventeen patients were treated in a dose
escalation study of autologous T-cells genetically modified
to express an MHC class II-restricted TCR recognizing
MAGE-A3 combined with IL-2 (27). One patient with cervical
cancer had a CR and several PRs were observed in patients with
esophageal cancer, urothelial cancer, and osteosarcoma. Despite
encouraging responses, the significant neurotoxicity observed in
this and a subsequent trial targeting MAGE-A3 has hampered
development of this strategy (28). In a phase I trial of a TCR
developed in a transgenic murine model and recognizing
residues 112-120 (KVAELVHFL) of MAGE-A3, 3/9 patients
developed significant neurotoxicity (29). Preliminary data for
the SURPASS trial utilizing autologous T-cells transduced with a
MAGE-A4 TCR and CD8a co-receptor reported 2/5 patients
with PRs (30). A MAGE-A4 targeting TCR is also being
evaluated in a phase II study for patients with SS and MRCL
(NCT04044768). Additional TCR-based strategies targeting
CTAs are in development (31).

Viral antigens have also been successfully targeted for treating
solid tumors using ACT. TILs targeting human papillomavirus
(HPV) antigens E6 and E7 have shown efficacy in early phase
clinical trials in HPV-associated carcinomas with responses in 5/
18 patients with cervical cancer and 2/11 with head and neck
cancer (32). Subsequent work identified TCRs recognizing
epitopes of HPV16 E6 and E7 in the context of HLA-A*02:01
and T-cells genetically engineered to express these TCRs led to
responses in two early phase studies (33, 34). Epstein-Barr virus
(EBV) is associated with several solid tumors (e.g., nasopharyngeal
carcinoma [NPC] and post-transplant lymphoproliferative
disorder [PTLD]). EBV-specific cytotoxic T-lymphocytes (CTLs)
were tested to treat PTLD following HSCT (35). EBV-specific
CTLs resulted in PR for 2/10 patients with EBV-associated NPC
(36). A phase 3 trial comparing chemotherapy with EBV-specific
CTLs combined with chemotherapy for NPC is underway
(NCT02578641). TCR-based therapy has also been explored for
Merkel cell carcinoma, a skin cancer associated with Merkel cell
polyomavirus (37). Autologous T-cells with TCRs recognizing an
epitope of Merkel cell polyomavirus, large T antigen and small T
antigen, led to durable regression of metastatic lesions in several
patients (38).

CART-Based ACT
HLA-restriction (limiting patient access) and reliance on tumor
MHC expression have limited TCR-based therapy utility.
Chimeric antigen receptor T-cells (CART) are autologous T-
cells engineered ex vivo to enable MHC-independent tumor cell
killing without HLA restriction. First-generation CAR have 3
components: a specific antibody-derived single chain variable
fragment (scFv), a hinge/transmembrane domain, and a T-cell
signaling (CD3z) domain. Second-generation CAR incorporate
Frontiers in Immunology | www.frontiersin.org 3
one additional co-stimulatory domain, while third-generation
CAR incorporate 2 additional co-stimulatory domains. Fourth-
generation CAR, also known as TRUCKs (T cells redirected for
antigen unrestricted cytokine-initiated killing) include a CAR-
inducible transgene product, often pro-inflammatory cytokines
which may enhance CART cytotoxicity and activate other
immune cells in an immunosuppressive TME (39).

Human epidermal growth factor receptor 2 (HER2) is expressed
on several solid tumor types and has attracted interest as a CART
target. A clinical trial utilizing 1010 of a third-generation CART
incorporating a scFV derived from the humanized monoclonal
antibody trasztuzumab following lymphodepletion for HER2+
solid tumors. A patient with metastatic colorectal cancer
developed fatal respiratory failure 15 minutes after CART
infusion. This was thought to be due to massive cytokine release
upon recognition of HER2 at low levels on lung epithelium and
prompted concerns about the safety of HER2-CART (40). A
subsequent HER2-CART trial in HER2+ sarcomas instead
utilized the FRP5 scFV, omitted lymphodepletion, and selected a
lower starting dose of 104/m2. There were no dose-limiting
toxicities, but also no CART expansion. Doses greater than
106/m2 were associated with greater persistence. 4/17 evaluable
patients had stable disease and 1 patient had a PR after a second
CART infusion (41). To improve CART expansion and persistence,
an ongoing phase I HER2-CART trial (NCT00902044) has
incorporated lymphodepletion and HER2-CART doses up to
108/m2. Thus far two CRs have been reported (42, 43).

Clinical experience with CART targeting the diaganglioside
GD2, which is highly expressed on osteosarcoma, neuroblastoma,
andmany central nervous system (CNS) tumors, also suggests that
lymphodepletion and adequate cell dose are important for CART
expansion and persistence. A phase 1 trial utilizing first-generation
GD2-CART without lymphodepletion in neuroblastoma
demonstrated safety and clinical activity with 3 CRs, but showed
limited expansion and persistence (44, 45). A subsequent trial
(NCT02107963) utilized a third-generation GD2-CART with
lymphodepletion, and demonstrated good expansion (46). A
phase I study of a third-generation GD2-CART with or without
lymphodepletion in relapsed/refractory neuroblastoma showed
increased CART expansion following lymphodepletion (47). A
phase I trial utilizing escalating doses of a second-generation GD2-
CART with lymphodepletion of varying intensity in relapsed/
refractory neuroblastoma showed regression of soft tissue and
bone marrow disease following CART doses of at least 108/m2

(48). GD2-CART have shown promising clinical activity in a
phase 1 trial in H3K27M+ diffuse midline gliomas, which are
universally fatal malignancies (NCT04196413) (49). Based on
preclinical data suggesting that incorporation of IL-15 into
CART further enhances persistence and cytotoxicity (50, 51),
ongoing trials are utilizing GD2-CART and GD2-CAR-NKT
cells engineered to express IL-15 (NCT03721068, NCT03294954).

The checkpoint molecule B7-H3(CD276) is another CART
target of interest given its high expression on multiple solid
tumor types. Preclinical studies have demonstrated encouraging
activity of B7-H3-CART in various xenograft models (52–54).
Clinical trials utilizing B7-H3-CART are underway in pediatric
February 2022 | Volume 13 | Article 846346
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and adult solid tumors (NCT04897321, NCT04483778,
NCT04432649, NCT05211557, NCT04670068) and CNS
tumors (NCT04185038, NCT04385173, NCT04077866).

TRuC™-T-Cell Based ACT
TCR fusion constructs (TRuCs) also enable HLA-independent
cell killing. In contrast to CART, which incorporate only the
intracellular signaling domain of the CD3z chain, TRuCs involve
fusion of the scFv to the N-terminus of any of the other five
subunits in the TCR complex. TRuCs are incorporated into the
TCR on translation, engage the TCR complex upon activation,
and are efficacious in solid tumor xenograft models (55). Anti-
mesothelin TRuCs are being studied in a phase 1/2 clinical trial
(NCT03907852) with preliminary evidence of activity, with 3/7
patients (2 with mesothelioma, 1 with ovarian cancer) achieving
a PR (56).
NK-CELLS

NK-cells are innate immune cells and protect against infections
and cancer (57, 58). Efforts to harness NK-cell biology for ACT
in cancer treatment has gained considerable interest as an
alternative to T-cell based immunotherapeutics. NK-cells
possess qualities which may allow them to overcome the
hostile TME (58–60). While T-cells recognize unique tumor
antigens, NK-cell-mediated cytotoxicity depends on the sum of
activating and inhibitory signals, including tumor cell lack of
MHC class 1 expression or antibody-dependent cell-mediated
cytotoxicity (61). Furthermore, NK-cells can produce
inflammatory cytokines such as IFNg and TNFa which can
activate CD8+ TILs and enhance their cytotoxicity (62).

These properties allow NK-cells to be engineered or
manipulated via different mechanisms from T-cell-centric
immunotherapies. Examples include the administration of
agonist cytokines or engineering NK-cells which constitutively
secrete these cytokines (63). Others have proposed NK-cells which
constitutively secrete chemotactic factors to recruit cytotoxic
lymphocytes to the TME (64). Tri-specific NK-cell engagers
(TriKEs) have been proposed to confer tumor-specificity to NK-
cells and enhance NK-cell activation by engaging stimulatory
receptors such as the IL-15 receptor (65, 66). Additionally, CAR
NK-cells (CAR-NK) designed from stem cell progenitors
represent another way to generate tumor-specific NK-cells.
Attractively, CAR-NK may be less toxic and could be produced
at lower cost than CART (67). Recent experience with CD19-
CAR-NK in B-cell malignancies provides proof-of-concept that
this strategy can be safely and effectively utilized and with potential
for persistence (68). Barriers remain to production and
monitoring of persistence of these cells, but additional
alterations to the NK-cell product and manufacturing strategies
have been proposed to mitigate these issues. Finally, NK-cells also
express immune checkpoint molecules such as PD-1, and either
combination with ICIs or intrinsic downregulation of these
checkpoint molecules have been proposed as mechanisms to
further enhance the efficacy of NK-cell-based approaches (69, 70).
Frontiers in Immunology | www.frontiersin.org 4
MYELOID CELL THERAPIES

Myeloid cells readily infiltrate primary tumors and metastases.
Harnessing this property for ACT shows promise in the
treatment of solid malignancies (71). Myeloid cells are highly
plastic and may acquire a wide spectrum of immune-stimulatory
or immune-suppressive phenotypes in response to the local
milieu. Tumor associated macrophages (TAMs) are polarized
to an anti-tumor M1 phenotype in response to pro-inflammatory
factors such as IFNg, GM-CSF and lipopolysaccharide.
M1 TAMs promote Th1 responses, phagocytosis of tumor
cells, and antigen presentation. Tumor-associated cytokines
such as IL-10, IL-4, IL-13 and TGF-b promote polarization
towards an immunosuppressive M2 phenotype. M2 TAMs
promote tumor progression through mechanisms including
angiogenesis, extracellular matrix (ECM) remodeling and
regulatory T-cell recruitment (72). This M1/M2 classification is
an oversimplification, however induction of an M1-like, anti-
tumor phenotype is important for the success of myeloid-based
ACT. The first myeloid-based ACT utilized macrophages
polarized to the M1 phenotype ex vivo with IFNg. Clinical
trials showed limited efficacy, but these therapies were
generally well-tolerated (73–75).

Subsequent work has focused on engineering myeloid cells
towards a more potent and durable anti-tumor phenotype. Anti-
HER2 CAR-macrophages (CARM) reduced tumor growth
and prolonged survival while reprogramming the immune-
suppressive TME in xenograft models (76). A first-in-human
trial evaluating CARM is now underway in HER2-overexpressing
solid tumors (NCT04660929). Preclinical work has shown that
myeloid cells can also be used to deliver cargo to the TME.
Administration of myeloid cells genetically engineered to express
IL-12, a potent anti-tumor cytokine, resulted in durable cures in a
syngeneic model of embryonal rhabdomyosarcoma through
activation of T-cell responses in the tumor and metastatic
microenvironment (77).
CHALLENGES IN SOLID TUMOR ACT

Significant remaining challenges for optimization of solid tumor
ACT are outlined in this section. Additionally, we will summarize
proposed strategies to overcome these challenges (Figure 2).

Selection of antigens such as GD2 (78) and CTAs (79), which
are expressed on numerous solid tumors, leverages the possibility
that a single ACT could be active across multiple histologies.
However, few antigens are tumor-specific. Thus, identifying a
target antigen which will allow tumor clearance without
unacceptable normal tissue toxicity (on-target/off-tumor effect) is
problematic. In addition to selecting the proper target antigen, low
antigen density and antigen downregulation within heterogeneous
solid TMEs have emerged as additional barriers to ACT (80, 81).

ACT trafficking is also challenging in solid tumors.
Trafficking can be inhibited by physical barriers, loss of MHC
class 1 expression, repellent cytokine gradients, expression of
inhibitory ligands such as PD-L1, and abnormal tumor
vasculature (82). CNS tumors are further shielded by the
February 2022 | Volume 13 | Article 846346
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blood-brain barrier (83). If ACTs cannot traffic to the tumor and
engage their target antigen, they fail to be activated and expand,
leading to rapid loss of ACT.

Finally, the TME present in many solid tumors is hostile to
the ACT. Tumors recruit immunosuppressive TAMs and
myeloid-derived suppressor cells (MDSCs) (84) which express
inhibitory molecules such as PD-L1 (84), secrete inactivating
cytokines such as IL-10 (85), and promote a hypoxic TME (86)
which can thwart ACT cytotoxicity. These tumor-sustaining
programs promote rapid and irreversible ACT exhaustion,
inhibit expansion, and result in failure of tumor clearance.
Further ACT engineering or combination with agents to allow
ACTs to overcome these challenges, will be necessary for ACT
optimization in solid tumors.
DISCUSSION: OVERCOMING THE
IMMUNE-SUPPRESSIVE TME
IN ACT FOR SOLID TUMORS

Aberrant tumor vasculature and ECM deposition impede ACT
trafficking. Regional ACT administration is one strategy to
Frontiers in Immunology | www.frontiersin.org 5
overcome this hurdle. A recent phase I trial demonstrated that
intrapleural administration of mesothelin-CART combined with
pembrolizumab was safe and feasible, and showed potential
efficacy with 2 patients demonstrating metabolic CR on PET
scan (87). Intraventricular CART administration for both
primary brain tumors and CNS metastases is also under
evaluation in early-phase clinical trials and in preclinical
models (88, 89) (NCT04196413). Additionally, methods to
disrupt the blood-brain barrier to allow trafficking of ACT to
CNS tumors, such as focused ultrasound (90) or other
mechanical or pharmacological methods (91) have been piloted.

Further genetic modification of ACTs to overcome and
leverage features of the hostile TME is currently being
explored. Many solid tumor types recruit TAMs by producing
chemokines such as CXCL8 and CXCL2. Preclinical data suggest
that chemokine secretion can be leveraged to enhance CART
trafficking by engineering CART to express chemokine receptors.
For example, CXCR2-modified GPC3-CART had improved
trafficking in a hepatocellular carcinoma model (92), while a
CXCR1/2-modified CD70-CART enhanced CART trafficking
and efficacy in murine GBM, ovarian cancer and pancreatic
cancer models (93). Many groups have also sought to generate a
more “fit” ACT through enhanced cytokine secretion
FIGURE 2 | “Cold” solid tumors present a number of challenges within their tumor microenvironment including reduced trafficking related to abnormal tumor vasculature
and resident inhibitory myeloid cells which recruit regulatory T cells (Treg) and lead to exhaustion of T-cells and NK-cells. Adoptive cellular therapies aim to overcome
these challenges through vascular normalization and extracellular matrix (ECM) remodeling to promote improved trafficking, as well as myeloid cell reprogramming to
diminish the inhibitory contribution of these cells. Additionally, T-cells which are resistant to inhibition or “armored” T-cells, or NK-cells which can augment T-cell responses
may make it possible to overcome the inhibitory tumor microenvironment.
February 2022 | Volume 13 | Article 846346
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[thoroughly reviewed by Bell and Gottschalk (94)]. Additional
modifications include creation of ACT which is resistant to
exhaustion [e.g. DNA methyltransferase 3 alpha knock-out
(95) or PD-1 deletion (96)] or tuning ACT to be effective
despite low antigen density [e.g. c-Jun overexpression (97, 98)].
These modifications of ACTs are now entering clinical trials (e.g.
TGF-bR knockout CART NCT04976218).

Tumor-associated vasculature is characterized by pericyte
loss, resulting in leakiness and adhesion molecule down-
regulation impairing T-cell migration into the tumor (99).
VEGF inhibitors, which promote vascular normalization, may
enhance CD8+ T-cell infiltration into tumors (100). Anti-VEGF
agents have shown synergy with ICIs in select solid malignancies,
resulting in FDA approval of these combinations in
hepatocellular carcinoma and renal cell carcinoma (101).
Preclinical studies suggest that antiangiogenics can also
improve ACT trafficking (102, 103). Combining ACTs with
antiangiogenics warrants further study in clinical trials.

ECM-remodeling agents may enhance the ability of ACTs to
infiltrate tumors. In gastric cancer models, hyaluronic acid
reduced mesothelin-CART infiltration, however these CART
had superior efficacy when combined with infusion of a
secreted form of the human hyaluronidase PH20 (104). CART
engineered to express heparinase, which degrades heparan
sulfate proteoglycans, showed superior anti-tumor activity and
were associated with increased T-cell infiltration in preclinical
models (105).

The solid TME contributes to T-cell exhaustion via multiple
mechanisms, including repeated TCR stimulation and metabolic
stress, thereby reducing the ACT efficacy. Engineering CART to
reduce tonic signaling through incorporation of the 4-1BB
costimulatory domain vs CD28 costimulatory domain showed
reduction in CART exhaustion and enhanced persistence and
efficacy in preclinical studies (106). Induction of transient rest
periods in CART, such as by dasatinib utilization, has shown
exhaustion reversal and improved efficacy (107). A dasatinib-
containing culture platform is being used to manufacture GD2-
CART in ongoing clinical trials (NCT04539366, NCT04196413).
CART combination with ICIs is also under evaluation in clinical
trials (108).

The ability of myeloid cells to orchestrate immune responses
in the TME makes them an attractive therapeutic target.
Low-dose chemotherapy has shown reduction of tumor
Frontiers in Immunology | www.frontiersin.org 6
MDSCs (109–111). MDSC differentiation with ATRA reduced
their immune-suppressive function and enhanced efficacy of
GD2-CART in preclinical models (112). In a pilot trial
studying ipilimumab vs ipilimumab combined with ATRA,
patients receiving ATRA had fewer circulating MDSCs (113).
Inhibiting myeloid cell trafficking through CSF1R inhibition is
another potential avenue to reduce myeloid cell immune-
suppression in the TME. CSF1R-targeting agents are generally
well-tolerated in the clinic, and the multi-TKI CSF1R inhibitor
Pexidartinib is FDA-approved to treat tenosynovial giant-cell
tumor (114, 115). Clinical trials studying CSF1R inhibitors with
ICIs are underway (NCT02777710, NCT02829723,
NCT03502330, NCT04848116, NCT02526017).
CONCLUSION

While ACT has yet to yield the transformative results in solid
tumors that CART have shown for hematologic malignancies,
evidence exists that some patients with solid tumors may
respond to ACT. T-cells, NK-cells, and myeloid cells have each
been engineered to target these tumors, and each have
advantages and unique challenges. Further engineering ACTs
to overcome tumor immune resistance mechanisms and better
understanding how to combine with TME-modifying agents will
be critical to expanding the number of patients with solid tumors
who may derive therapeutic benefit.
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