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Abstract

We find that epidemic resurgence, defined as an upswing in the effective reproduction num-

ber (R) of the contagion from subcritical to supercritical values, is fundamentally difficult to

detect in real time. Inherent latencies in pathogen transmission, coupled with smaller and

intrinsically noisier case incidence across periods of subcritical spread, mean that resur-

gence cannot be reliably detected without significant delays of the order of the generation

time of the disease, even when case reporting is perfect. In contrast, epidemic suppression

(where R falls from supercritical to subcritical values) may be ascertained 5–10 times faster

due to the naturally larger incidence at which control actions are generally applied. We

prove that these innate limits on detecting resurgence only worsen when spatial or demo-

graphic heterogeneities are incorporated. Consequently, we argue that resurgence is more

effectively handled proactively, potentially at the expense of false alarms. Timely responses

to recrudescent infections or emerging variants of concern are more likely to be possible

when policy is informed by a greater quality and diversity of surveillance data than by further

optimisation of the statistical models used to process routine outbreak data.

Author summary

The timely detection of epidemic resurgence (i.e., upcoming waves of infected cases) is

crucial for informing public health policy, providing valuable signals for implementing

interventions and identifying emerging pathogenic variants or important population-level

behavioural shifts. Increases in epidemic transmissibility, parametrised by the time-vary-

ing reproduction number, R, commonly signify resurgence. While many studies have

improved computational methods for inferring R from case data, to enhance real-time

resurgence detection, few have examined what limits, if any, fundamentally restrict our

ability to perform this inference. We apply optimal Bayesian detection algorithms and

sensitivity tests and discover that resurgent (upward) R-changes are intrinsically more dif-

ficult to detect than equivalent downward changes indicating control. This asymmetry

derives from the often lower and stochastically noisier case numbers that associate with

resurgence, and induces detection delays on the order of the disease generation time. We
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prove these delays only worsen if spatial or demographic differences in transmissibility

are modelled. As these fundamental limits exist even if case data are perfect, we conclude

that designing integrated surveillance systems that fuse potentially timelier data sources

(e.g., wastewater) may be more important than improving R-estimation methodology and

deduce that there may be merit (subject to false alarm costs) in conservative resurgence

response initiatives.

Introduction

Real-time estimates of the transmissibility of an infectious disease [1,2] are crucial for

informed outbreak responses. Timely detection of salient changes in the effective reproduction

number (R) of the disease of interest, which measures the average number of secondary cases

likely caused by a typical primary case, can provide important evidence for policymaking and

public communication [3,4], as well as improve forecasts of disease burden [5] (e.g., hospitali-

sations and deaths). Two critical changes of interest are resurgence and control. Resurgence,

which we define as an increase from subcritical (R� 1) to supercritical (R> 1) transmissibil-

ity, can warn of imminent waves of infections, signify the emergence of pathogenic variants of

concern and signal important shifts in the behavioural patterns of population [6,7]. Alterna-

tively, control (or suppression) describes a switch from supercritical to subcritical spread and

can indicate the effectiveness of interventions and the impact of depleting susceptibility

(including that due to vaccine-induced immunity) [8,9].

Identifying these transmissibility changes in real time, however, is an enduring challenge

for statistical modelling and surveillance planning. Inferring a transition in R from stochastic

time series of incident cases necessitates assumptions about the differences among meaningful

variations (signal) and random fluctuations (noise) [10–12]. Modern approaches to epidemic

modelling and monitoring aim to maximise this signal-to-noise ratio either by enhancing

noise filtering and bias correction methods [13–15], or by amplifying signal fidelity through

improving surveillance quality and diversity [16–18]. While both approaches have substan-

tially advanced the field, there have been few attempts to explore what, if any, fundamental lim-
its exist on the timely detection of these changes. Such limits can provide key benchmarks for

assessing the effectiveness of modelling or data collection and deepen our understanding of

what can and cannot be achieved by real-time outbreak response programmes, ensuring that

model outputs are not overinterpreted and redirecting surveillance resources more efficiently

[19–21].

While studies are examining intrinsic bounds on epidemic monitoring and forecasting

[22–25], works on transmissibility have mostly probed how extrinsic surveillance biases might

cause R misestimation [14,26–28]. Here we address these gaps in the literature by characteris-

ing and exposing fundamental limits on detecting resurgence and control, from a perfectly

ascertained incidence time series, using effective reproduction numbers. This presents new

and useful insights into the best real-time performance possible and blueprints for how out-

break preparedness might be improved. We analyse a predominant, flexible real-time epi-

demic model [1,2] and discover stark asymmetries in our intrinsic ability to detect resurgence

and control, emerging from the noisier, low-incidence data underlying possible resurgence

events. While epidemic control or suppression change-points are inferred robustly and rap-

idly, the data bottleneck caused by subcritical spread forces inherent delays (potentially 5–10

times that for control and on the order of the mean disease generation time) that inhibit real-

time resurgence estimation.
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We show that these innate constraints on resurgence detection worsen with smaller epi-

demic size, steepness of the upswing in R and spatial or demographic heterogeneities. Given

these limitations to timely outbreak analysis, which exist despite perfect case reporting and the

use of optimal Bayesian detection algorithms [15,29], we argue that methodological improve-

ments to existing models for analysing epidemic curves (e.g., cases, hospitalisations or deaths)

are less important than designing enhanced and integrated surveillance systems [30,31]. Such

systems, which might fuse multiple data streams including novel ones (e.g., wastewater [32])

to triangulate possible resurgences, could minimize some of these fundamental bottlenecks.

We conclude that early responses to suspected resurging epidemics, at the expense of false

alarms, might be justified in many settings, both from our analysis and the consensus that lags

in implementing interventions can translate into severely elevated epidemic burden [33–36].

While such decisions must, ultimately, be weighed against the cost of those interventions, the

bottlenecks we expose, hopefully, bolster the evidence base for decision-making. Using theory

and simulation, we explore and elucidate these conclusions in the next section.

Results

Epidemic resurgence is statistically more difficult to infer than control

We first provide intuition for why resurgence and control might present asymmetric difficul-

ties when inferring transmissibility in real time. We consider an epidemic modelled via a

renewal branching process [37] over times (usually in days) 1�s�t. Such models have been

widely applied to infer the transmissibility of many diseases including COVID-19, pandemic

influenza and Ebola virus disease. Renewal models postulate that the incidence of new cases at

time s, denoted Is, depends on the effective reproduction number, Rs, and the past incidence,

Is� 1
1

as in Eq (1) [2]. Here Iba means the set or time series {Ia, Ia+1,. . .,Ib} and� indicates equality

in distribution.

PðIsjRs; I
s� 1

1
Þ � PoisðRsLsÞ; Ls ¼

Xs� 1

u¼1
wuIs� u: ð1Þ

In Eq (1), Pois represents Poisson noise and Λs is the total infectiousness, which summarises

the weighted influence of past infections. The set of weights wu for all u define the generation

time distribution of the infectious disease with
P1

u¼1
wu ¼ 1 [38]. We assume that all wu are

known. If this distribution changes across the epidemic [39], we can recompute the Λs terms

after that change to model its effects. Applying Bayesian inference techniques (see Methods for

all derivations) [2,40] under the assumption that transmissibility is constant over a past window

of size m days, tðsÞ ¼ fs; s � 1; . . . ; s � mþ 1g, we obtain the gamma (Gam) posterior distri-

bution given the incidence data PðRsjIs1Þ � PðRsjIss� mþ1
Þ � Gamðaþ itðsÞ; ðcþ ltðsÞÞ

� 1
Þ, with

sums across the window of itðsÞ ¼
P

u2tðsÞIu and ltðsÞ ¼
P

u2tðsÞLu.

Here (a, c) are prior distribution (P(Rs)) parameters, which are set so the prior mean of Rs is

above 1 but uninformative. This maximises sensitivity to resurgence since the model, in the

absence of data, favours E[Rs]>1. The approximations above and later emerge from the win-

dow assumption and underpin popular real-time R-inference methods [2,41]. Using this

renewal formulation, we define the relative change in the epidemic size as DltðsÞ ¼
itðsÞ� ltðsÞ
ltðsÞ

.

This measures the perturbation to the past incidence (summarised by λτ(s)) that the most

recently observed incidence, iτ(s), causes over τ(s). Normalising by λτ(s) is sensible as the poste-

rior mean estimate of Rs is roughly
itðsÞ
ltðsÞ

, so Δλτ(s) approximates Rs−1.

This posterior distribution only uses data up until time s and defines our real-time estimate

of R at that time. We can analyse its properties (and related likelihood function PðIss� mþ1
jRsÞ) to
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obtain the Fisher information (FI) on the left side of Eq (2). We derive this expression in the

Methods. This FI captures how informative Is
1

is (here approximated by Iss� mþ1
) for inferring

Rs, with its inverse defining the smallest asymptotic variance of any Rs estimate [10,42]. Larger

FI implies better statistical precision.

FI Rs½ � ¼
ltðsÞ

Rs
; P Rs > 1jIs

1

� �
¼
Xa� 1þitðsÞ

j¼0

ðcþ ltðsÞÞ
j

j!
e� ðcþltðsÞÞ: ð2Þ

As resurgence will likely follow low-incidence periods, we might expect λτ(s) to be small,

while Rs rises. This effect will reduce the FI in Eq (2), making these changes harder to detect.

In contrast, the impact of interventions will be easier to infer since these are often applied

when cases are larger (so λτ(s) will be big) and reduce Rs. This observation applies for any τ(s)
and is fundamental as it delimits the best estimator performance under our renewal model

(Cramer-Rao bound) [43].

We expand on this intuition, using the R posterior distribution to derive (see Methods) the

real-time resurgence probability PðRs > 1jIs
1
Þ �

R1
1
PðRsjIss� mþ1

ÞdRs, as on the right side of Eq

(2). We plot its implications in Fig 1, corroborating our intuition. In panel A we find that

larger past epidemic sizes (λτ(s)) improve our ability to detect transmissibility shifts from fluc-

tuations in incidence (the posterior distributions for Rs overlap less). Panel B bolsters this idea,

showing that when λτ(s) is smaller (as is likely before resurgence) we need to observe larger rel-

ative epidemic size changes (Δλτ(s)) for some increase in PðRs > 1jIs
1
Þ than for an equivalent

decrease when aiming to detect control (where λτ(s) will often be larger). This detection asym-

metry holds for arbitrary window sizes and indicates that data bottlenecks translate into real-

time detection delays. We assess the magnitude of these delays next.

Fundamental delays on detecting resurgence but not control

The intrinsic asymmetry in sensitivity to upward versus downward shifts in R (see Fig 1)

implies that it is not equally simple to infer resurgence and control from incident cases. We

investigate ramifications of this observation by comparing our real-time Rs-estimates to ones

exploiting all the future incidence information available. We no longer consider window-

based approximations (which we only use to extract analytic insights) but instead apply formal

real-time Bayesian inference and detection algorithms [29]. We investigate two foundational

posterior distributions, the filtered, ps, and smoothed, qs, distributions, defined as in Eq (3).

ps ¼ P RsjI
s
1

� �
; qs ¼ P RsjI

t
1

� �
; D psjqsð Þ ¼

Z 1

0

pslog
ps

qs
dRs: ð3Þ

Here ps considers all information until time s and captures changes in Rs from Is
1

in real

time. Estimates of Rs using this posterior distribution minimise the mean squared error (MSE)

given Is
1
. In contrast, qs extracts all the information from the full incidence curve It

1
, providing

the minimum MSE Rs-estimate given It
1

[29]. This smoother MSE is never larger and may be

substantially smaller than the filtered MSE due to its use of additional information (i.e., Itsþ1
)

[29,44]. The differential between ps and qs, summarised via the Kullback-Liebler divergence, D

(ps|qs), measures the value of this additional ‘future’ information.

Bayesian filtering and smoothing are central formalisms across engineering, where real-

time inference and detection problems are common [29,45]. We compute formulae from Eq

(3) via the EpiFilter package (see [15,28]), which uses optimal forward-backward algorithms,

improves on the window-based approach of the last section and maximises the signal-to-noise

ratio in R-estimation. We further obtain filtered and smoothed probabilities of resurgence as
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PðRs > 1jIs
1
Þ ¼

R1
1

psdRs and PðRs > 1jIt
1
Þ ¼

R1
1

qsdRs. The probability that the epidemic is

controlled (i.e., R� 1) is the complement of these expressions. Our main results, which aver-

age the above quantities over many simulated Ebola virus and COVID-19 epidemics, are given

in Fig 2 and Fig A in the S1 Appendix, respectively. The simulated incidence curves are also

provided in Figs B-C in the S1 Appendix and illustrate the expected differences in case num-

bers associated with both upward and downward shifts in R. We uncover striking differences

in the intrinsic ability to infer resurgence versus control in real time.

Upward change-points are significantly harder to detect both in terms of accuracy and tim-

ing. Discrepancies between ps- and qs-based estimates (the latter benchmark the best realisable

performance) are appreciably larger for resurgence than control. While decreases in R can be

pinpointed reliably, increases seem fundamentally more difficult to detect. These limits appear

to exacerbate with the steepness of the R upswing. We confirm these trends with a detailed

simulation study across five infectious diseases in Fig 3. There we alter the steepness, θ, of

transmissibility changes and map delays in detecting resurgence and control as a function of

Fig 1. Relative sensitivity to perturbations in incidence. Panel A plots posterior real-time distributions for time-

varying reproduction numbers Rs, given incidence data Is
1
, at different relative incidence perturbations, DltðsÞ ¼

itðsÞ � ltðsÞ
ltðsÞ

; (increasing from blue to red). Here τ(s) represents some arbitrary window size used in computation (see Eq

(2)). The degree of distribution separation and hence our ability to uncover meaningful incidence fluctuations from

noise, improves with the current epidemic size, λτ(s) (i.e., as this increases from 25–400 overlap among the distributions

decreases). Panel B shows how this sensitivity modulates our capacity to infer resurgence (PðRs > 1jIs
1
Þ) and control

(PðRs � 1jIs
1
Þ ¼ 1 � PðRs > 1jIs

1
Þ). If epidemic size is smaller, larger relative incidence perturbations are required to

detect the same change in Rs (curves have steeper gradient as we traverse from blue to red). Resurgence (likely closer to

the blue line in the top right quadrant) is appreciably and innately harder to detect than control (likely closer to the red

line, in the bottom left quadrant).

https://doi.org/10.1371/journal.pcbi.1010004.g001
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the difference in the first time that ps- and qs-based probabilities cross 0.5 (Δt50) and 0.95

(Δt95), normalised by the mean generation time of the disease. We find that lags in detecting

resurgence can be at least 5–10 times longer than for detecting control and are of the order of

the average intrinsic generation time of the disease.

Fundamental delays worsen with spatial or demographic heterogeneities

In previous sections we demonstrated that sensitivity to changes in R is asymmetric, and that

intrinsic, restrictive limits exist on detecting resurgence in real time, which do not equally

inhibit detecting control. While those conclusions apply generally (e.g., across diseases), they

do not consider the influence of spatial or demographic heterogeneity. We examine this com-

plexity through a simple but realistic generalisation of the renewal model. Often R-estimates

can be computed at small scales (e.g., at the municipality level) via local incidence or more

coarsely (e.g., countrywide), using aggregated case counts [3,13]. We can relate these differing

scales with the weighted mean in Eq (4), where the overall (coarse) R at time s, �Rs, is a convex

Fig 2. Resurgence and control dynamics of Ebola virus. Using renewal models with the generation time from [46],

we simulate 1000 realisations of Ebola virus epidemics (t = 300) with step (A panels) and seasonally (B panels)

changing transmissibility (true Rs in black). Top panels show posterior mean estimates from the filtered (Ep[Rs], blue)

and smoothed (Eq[Rs], red) distributions from every realisation (computed using EpiFilter [15]). Middle panels average

the Kullback-Liebler divergences from those simulations, D(ps|qs), and bottom panels display the overall filtered

(PðRs > 1jIs
1
Þ, blue), and smoothed (PðRs > 1jIt

1
Þ, red) probabilities of resurgence. We find fundamental and striking

delays in detecting resurgence, often an order of magnitude longer than those for detecting control or suppression in

transmission (see lags between red and blue curves in all relevant panels). Note that the initial rise in PðRs > 1jIs
1
Þ of

panel A, which precedes the transition in Rs, is due to the influence of the prior distribution (which has a mean above

1) in a period with very few cases. We present the incidence curves that underlie the simulations here in Fig C in the S1

Appendix.

https://doi.org/10.1371/journal.pcbi.1010004.g002
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sum of finer-scale R contributions from each group (Rs[j] for the jth of p groups) weighted by

the epidemic size of that group (as in Eq (2) we use windows τ(s), of some size m, to derive

analytic insight).

�Rs ¼
Xp

j¼1
Rs½j�aj; aj ¼

ltðsÞ½j�
Pp

k¼1
ltðsÞ½k�

: ð4Þ

Our choice of groupings is arbitrary and can equally model demographic heterogeneities

(e.g., age-specific transmission), where we want to understand how dynamics within the sub-

groups influence overall spread [7]. Our aim is to ascertain how grouping, which often occurs

naturally due to data constraints or a need to succinctly describe the infectious dynamics over

a country to aid policymaking or public communication [48], affects resurgence detection. Eq

Fig 3. Delays in detecting upward and downward changes in R. We characterise the discrepancies between detecting

resurgence and control against the steepness or rate, θ, of changes in transmissibility (Rs), which we model using

logistic functions (panel A, steepness increases from blue to red). We compare differences in the probability of

detecting resurgence (P(Rs>1)) or control (P(Rs�1) under filtered and smoothed estimates (see main text) first

crossing thresholds of 0.5 (Δt50) and 0.95 (Δt95) for five infectious diseases (panel B plots their assumed generation time

distributions from [2,46,47]). We simulate 1000 epidemics from each disease using renewal models and estimate Rs
with EpiFilter [15]. Panels C and D (here colours match panel B, Δt is normalised by the mean generation times of the

diseases) show that delays in detecting resurgence (dots with colours indicating the disease) are at least 5–10 times

longer than for detecting control (diamonds with equivalent colours). Our ability to infer even symmetrical

transmissibility changes is fundamentally asymmetric, largely due to the differences in case incidence at which those

changes usually tend to occur.

https://doi.org/10.1371/journal.pcbi.1010004.g003
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(4) implies that �Rs � 1 ¼
Pp

j¼1
ðRs½j� � 1Þaj. Since resurgence will likely first occur within

some specific (maybe high risk) group and then propagate to other groups [7], this expression

suggests that an initial signal (e.g., if some Rs[j]>1) could be masked by non-resurging groups

(which are, from this perspective, contributing background noise).

As the epidemic size in a resurging group will likely be smaller than those of groups with

past epidemics that are now being stabilised or controlled, this exacerbates the sensitivity

bounds explored earlier via Eq (2). We can verify this further loss of sensitivity by examining

how the overall posterior distribution depends on those of the p component groups as follows,

with⊛ as a repeated convolution operation and Oj as some generic posterior distribution for

the jth group.

Rs½j� � OjðitðsÞ½j�; ltðsÞ½j�Þ; �Rs �⊛
p
j¼1
ajOj: ð5Þ

While Eq (5) holds generally, we assume gamma posterior distributions, leading to statistics

analogous to Eq (2). We plot these sensitivity results at p = 2 and 3 in Fig 4, where group 1 fea-

tures resurgence and other groups either contain stable or falling incidence. We find that as p
grows (and additional distributions convolve to generate �Rs) we lose sensitivity (posterior

Fig 4. Influence of heterogeneities in transmission. We investigate how differences in transmissibility among groups

(e.g., due to demographic or spatial factors) fundamentally limit the ability to detect resurgence from a specific group

(in this example group 1 with reproduction number Rs[1]). Panel A shows that the grouped posterior distribution

becomes less sensitive to a fixed relative change in group 1 incidence, DltðsÞ 1½ � ¼
itðsÞ ½1�� ltðsÞ ½1�

ltðsÞ ½1�
(the level of change

increases from blue to red). Posterior distributions over �Rs (the overall reproduction number across groups) are more

overlapped (and tighter in variance) as p rises, for fixed Rs[1] (top). Panel B plots how overall resurgence detection

probability Pð�Rs > 1Þ depends on the weight (α1, top, 0.05–1) and epidemic size (λτ(s)[1], middle, 20–80, p = 2) as well

as changes in Rs[3] (bottom, 0.5–1.2, p = 3). Decreases in α1 (red to blue) or λτ(s)[1] mean other groups mask the

resurging dynamics in group 1, reducing sensitivity (curves become less steep). In the latter case the Pð�Rs > 1Þ (green

with solid line at median of λτ(s)[1] range) is always more conservative than P(Rs[1]>1) (black with solid median line).

As Rs[3] falls (red to blue) the ability to detect resurgence also lags relative to that from observing group 1 (black).

https://doi.org/10.1371/journal.pcbi.1010004.g004
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distributions overlap more for a given relative change in incidence (DltðsÞ 1½ � ¼
itðsÞ½1�� ltðsÞ½1�

ltðsÞ½1�
).

Reductions in either the weight (α1), epidemic size (λτ(s)[1]) or other Rs[j6¼1], further desensi-

tise the resurgence signals i.e., decrease the gradient of the detection probability curves. This is

summarised by noting that if Rs[1] = maxj Rs[j], then the sensitivity from Eq (2) is only

matched when the resurging group dominates (α1�1) or if other groups have analogous R i.e.,

Rs[1]�Rs[j]. Delays in detecting resurgence can therefore be severe. Heterogeneity on its own,

however, does not force asymmetry between detecting control and resurgence.

Discussion

Probing the performance limits of noisy biological systems has yielded important insights into

the real-time estimation and control of parameters in biochemistry and neuroscience [49–51].

Although models from these fields share dynamic similarities with those in infectious disease

epidemiology, there has been relatively little investigation of how real-time estimates of patho-

gen transmissibility, parametrised by R, might be fundamentally limited. This is surprising

since R is among key parameters considered in initiatives aiming to better systematise real-

time epidemic response [41,52]. Here we explored what limits may exist on our ability to reli-

ably detect or measure the change-points in R that signify resurgence and control. By using a

combination of Bayesian sensitivity analyses and minimum MSE filtering and smoothing algo-

rithms, we discovered striking asymmetries in innate detection sensitivities. We found that,

arguably, the most crucial transitions in epidemic transmissibility are possibly the most inher-

ently difficult to detect.

Specifically, resurgence, signified by an increase in R from below to above 1, can possibly be

detected only 5–10 times later than an equivalent decrease in R that indicated control (Figs 2

and 3, and Fig A in S1 Appendix). As this lag can be of the order of the mean generation time

of the pathogen under study, even when case reporting is perfect and optimised detection algo-

rithms are applied, this represents a potentially sharp bottleneck to real-time responses for

highly contagious diseases. Intuition for this result came from observing that sensitivity to R
change-points will weaken (due to noise masking the signal) with declining epidemic sizes or

case incidence, and increasing ‘true’ R, both of which likely occur in resurgent settings due to

periods of subcritical spread (Eq (2) and Fig 1). The converse applies to control, which is usu-

ally enforced in larger (and less intrinsically noisy) incidence regimes. Furthermore, we found

that these latencies and sensitivity issues would only exacerbate when heterogeneous group-

ings across geography or demography (Eqs (4), (5) and Fig 4) are considered.

An interesting corollary of these results occurs if we consider the detection of an upward

shift in R at large incidence. If this increase affects the majority of cases (i.e., Eq (2) applies),

then we would detect it without significant delay because epidemic curves are now inherently

less noisy. However, if incidence is large and a resurgence occurs in some subset of the cases

(i.e., the upward R-shift is localised to group j and Eq (5) applies) then we would still face the

innate delay of a mean generation time together with further loss of sensitivity due to the cases

in groups other than j acting as background noise. This scenario might realistically occur

when a new pathogenic variant emerges (e.g., the alpha COVID-19 variant appeared during

a high incidence period in the UK [53]) or when specific age groups sustain resurgence (e.g.,

the 20–49 age group for COVID-19 in the USA [7]). These detection delays limit our ability to

rapidly identify and target interventions at resurgent groups. Our work emphasises that the

correlations among incidence, transmissibility parameters underlying this incidence and het-

erogeneous groups contributing to that incidence can fundamentally constrain our response

sensitivity and timeliness.
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Practical real-time analyses often involve grouping or data aggregation [9,13] and are sub-

ject to reporting and other latencies (e.g., if notifications, hospitalisations or deaths are used as

proxies for infection incidence), which introduce additive delays on top of those we uncovered

[14,54]. Consequently, we argue that while case data may provide robust signals for pinpoint-

ing when epidemics are under control (and assessing impacts of interventions), they are insuf-

ficient, on their own, to sharply resolve resurgence at low incidence. This does not devalue

methods seeking to better characterise real-time R changes [1,2,13,28], but instead contextua-

lises how such inferences should be interpreted when informing policy. Given the intrinsic

delays in detecting resurgences, which might associate with critical epidemiological changes

such as variants of concern or shifts in population behaviours [6,7], there might be grounds

for conservative policies (e.g., those of New Zealand and Australia for COVID-19 [55]) that

trade off early interventions against the expense of false alarms. While the value of such poli-

cies ultimately depends on many complex economic, political and socio-behavioural factors,

our study, together with works that show how lags in enacting interventions can induce drastic

costs [33–36], provides a first step towards dissecting some of these trade-offs.

Moreover, our analyses suggest that designing enhanced surveillance systems, which can

comprehensively engage and integrate diverse data sources [30,31] may be more important

than improving models for processing case data. Fusing multiple and sometimes novel data

sources, such as wastewater or cross-sectional viral loads [18,32], may present the only truly

realistic means of minimizing the innate bottlenecks to resurgence detection that we have

demonstrated. Approaches aimed at improving case-based inference generally correct for

reporting biases or propose more robust measures of transmissibility, such as time-varying

growth rates [14,41,56]. However, as our study highlights limits that persist at the gold stan-

dard of perfect case reporting and, further it is known that under such conditions growth rates

and R are equally informative [57], these lines of investigation are unlikely to minimise the

detection limits that we have exposed.

There are three main limitations of our results. First, as we only considered renewal model

epidemic descriptions with assumed generation times, which predominate real-time R studies,

our work necessarily neglects the often-complex contact network structures that can mediate

infection spread [58] or lead to intervention-induced generation time changes [39]. However,

other analyses using somewhat different approaches to ours (e.g., Hawkes processes [59])

show apparently similar sensitivity asymmetries. There is evidence that renewal models may

be as accurate as network models for inferring R [60], while being easier to run and fit in real

time. They are also known to be equivalent to various compartmental models [61]. We do not

examine the influence of generation time changes, as data on those are rarely available for rou-

tine, real-time analyses. However, as the ratio of the resurgence to control lags is 5–10, we

expect this asymmetry to be robust to generation time changes, which are relatively smaller

[39]. Given the flexibility of our model and that the asymmetry we discovered is contingent on

low-incidence data being noisier and typical of resurgence settings, which is a model agnostic

point, we expect that the intrinsic limits we have exposed are general and not model artefacts.

Second, while we analysed one common and important definition of resurgence that

depends on effective reproduction numbers, other more recent definitions of epidemic re-

emergence exist that are linked to complex dynamic characteristics of diseases such as critical

slowing down [62]. Our aim was to understand and expose limitations of the most common

surveillance data types (incidence) and the most prominent epidemic summary statistics

(time-varying or effective reproduction numbers), which are among those informing policy

[41], so we did not examine such metrics. Testing to see if these other characteristics also show

asymmetry could be an interesting follow-up study but would require different modelling

approaches. Last, we did not include any explicit economic modelling. While this is outside
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the scope of this work it is important to recognise that resurgence detection threshold choices

(i.e., how we decide which fluctuations in incidence are actionable) imply some judgment

about the relative cost of true positives (timely resurgence detections) versus false alarms [12].

Incorporating explicit cost structures could mean that delays in detecting resurgence are

acceptable. We consider this the next investigative step in our aim to probe the limits of real-

time performance.

Methods

We derive some of the mathematical formulae central to the main text. Eq (1) describes the

renewal model [37], which simulates the spread of an epidemic, characterising how incidence

at some time s, Is, depends on the effective reproduction number at that time, Rs, and the total

infectiousness, Λs. Inference under this model commonly assumes that an incidence window

of size m defined as tðsÞ ¼ fs; s � 1; . . . ; s � mþ 1g contains all the information about Rs [2].

Consequently, we have the Poisson joint log-likelihood over this window, ls, (see Supplement

of [40]), with grouped sums itðsÞ ¼
P

u2tðsÞIu and ltðsÞ ¼
P

u2tðsÞLu, as follows.

ls ¼ log PðIss� mþ1
jRsÞ ¼ itðsÞlog Rs � RsltðsÞ þ ztðsÞ: ð6Þ

In Eq (6), ztðsÞ ¼
P

u2tðsÞ � Iu!þ Iu log Lu is independent of Rs. The maximum likelihood

~Rs estimate under this model solves
@ls
@Rs
¼ 0 i.e., ~Rs ¼ itðsÞl

� 1

tðsÞ. The Fisher information, FI[Rs],

defines the best achievable precision (i.e., smallest variance) around this estimate [42], and is

computed from Eq (6) as E � @2 ls
@R2

s

h i
[40,42]. This gives

E½
P

u2tðsÞ
Iu �

R2
s

. Substituting E[Iu] = ΛuRs

from Eq (1), then yields the key result in the left side of Eq (2).

Widely used real-time methods, such as EpiEstim [2] and related approaches, often calcu-

late the posterior distribution PðRsjIs1Þ � PðRsjIss� mþ1
Þ. This approximation is a consequence of

the m-window assumption and is conventionally obtained by setting a conjugate gamma prior

distribution i.e., P(Rs)�Gam(a, c−1). Hyperparameters (e.g., a = 1, c = 1/5) are often selected to

ensure this prior distribution is uninformative. Applying Bayes law with the Poisson likelihood

from Eq (6) yields PðRsjIss� mþ1
Þ � Gamðaþ itðsÞ; ðcþ ltðsÞÞ

� 1
Þ.

We can compute the resurgence probability as PðRs > 1jIs
1
Þ �

R1
1
PðRsjIss� mþ1

ÞdRs. This

approximation also proceeds from the window-based formulation. The cumulative distribu-

tion function of the gamma posterior distribution, Fs(x), can be written as below for some x.

Fs xð Þ ¼ P Rs � xjIss� mþ1

� �
¼ 1 �

Xa� 1þitðsÞ

j¼0

xjðcþ ltðsÞÞ
j

j!
e� xðcþltðsÞÞ: ð7Þ

Eq (7) results from standard properties of gamma distributions. We compute the resur-

gence probability as 1−Fs(1), which gives the right side of Eq (2). The above formulae are use-

ful both for providing analytic insight and measuring performance of realistic estimators used

in outbreak analysis, which adhere to this formulation [2,13,41,63].

These equations all feature a dependence on the choice of window size m. As investigated

in [40] large m can mean that we are slower to detect transmissibility changes, while small m
can lead to oversensitivity to noise. We avoid this m-dependence by simply using this

approach to gain general, theoretical insights into detection asymmetries and latencies. Specifi-

cally, in the main text we prove that the lag in inferring resurgence is larger than that when

estimating a corresponding control signal, for arbitrary window sizes (due to smaller historical

incidence across suspected periods of resurgence). We then perform more detailed (but less

tractable) investigations to discern the likely magnitude of these asymmetric lags.
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These investigations (in Figs 2–3 and Fig A in S1 Appendix) apply the EpiFilter method

[15], which largely circumvents window size issues. EpiFilter exploits formal signal processing

theory to minimise the mean squared error in the estimation of Rs. Its sequential predictive

accuracy (i.e., it has small generalisation error) and its ability to detect change-points in real

time have been verified on extensive simulations [15,28], and suggest it as a tool suitable for

exploring fundamental limits on resurgence and control. This difference in methodology is

signified in our notation in Eq (3), which no longer uses window approximations (τ(s)). There

our results are direct outputs of EpiFilter.
Derivations for the inference equations behind the filtering and smoothing in EpiFilter are

in [15,29]. This more general formulation allows us to go beyond the analytic insights from the

EpiEstim type models above and limits the influence of prior distributions on results (which is

particularly strong when incidence is small) since Rs is a-priori uniformly distributed over

some wide range ([0.01, 10] here). Consequently, we examine the problem of resurgence detec-

tion from multiple angles. The prior distributions used in all methods have mean and median

above 1 so that any delays we find in detecting resurgence are the minimum possible.

The trends uncovered in Eq (4), where heterogeneity or grouping is explored, are within

the EpiEstim framework, but will be valid for EpiFilter and general R-estimation methods,

since they result from the properties of convex sums and averages only. Last, while our conclu-

sions may appear limited due to their dependence on renewal models, we note that renewal

models (i) can describe realistic transmission patterns for many diseases with accuracies com-

parable to that of more detailed network-based models [60] (ii) are the dominant model for

measuring real-time outbreak changes [1,41,60] and (iii) are able to equivalently represent the

dynamics of prevailing compartmental models, such as the SEIR model, depending on the

form of the generation time distribution considered [61].

Supporting information

S1 Appendix. This provides additional Figs A-C. Fig A: Resurgence and control dynamics of

COVID-19. We repeat the simulations from Fig 2 but for realisations of COVID-19 epidemics.

Fig B: Incidence curves for COVID-19. We present the simulated counts of daily new cases

that underlie the results of Fig A. Fig C: Incidence curves for Ebola virus disease. We present

the counts of daily new cases that underlie the results of Fig 2 of the main text.
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