
Computational and Structural Biotechnology Journal 18 (2020) 1301–1310
journal homepage: www.elsevier .com/locate /csbj
Review
Deep learning methods in protein structure prediction
https://doi.org/10.1016/j.csbj.2019.12.011
2001-0370/� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: quan.le@ucd.ie (Q. Le).
Mirko Torrisi b, Gianluca Pollastri b, Quan Le a,⇑
aCentre for Applied Data Analytics Research, University College Dublin, Ireland
b School of Computer Science, University College Dublin, Ireland

a r t i c l e i n f o
Article history:
Received 15 October 2019
Received in revised form 19 December 2019
Accepted 20 December 2019
Available online 22 January 2020

Keywords:
Deep learning
Protein structure prediction
Machine learning
a b s t r a c t

Protein Structure Prediction is a central topic in Structural Bioinformatics. Since the ’60s statistical meth-
ods, followed by increasingly complex Machine Learning and recently Deep Learning methods, have been
employed to predict protein structural information at various levels of detail. In this review, we briefly
introduce the problem of protein structure prediction and essential elements of Deep Learning (such
as Convolutional Neural Networks, Recurrent Neural Networks and basic feed-forward Neural
Networks they are founded on), after which we discuss the evolution of predictive methods for one-
dimensional and two-dimensional Protein Structure Annotations, from the simple statistical methods
of the early days, to the computationally intensive highly-sophisticated Deep Learning algorithms of
the last decade. In the process, we review the growth of the databases these algorithms are based on,
and how this has impacted our ability to leverage knowledge about evolution and co-evolution to achieve
improved predictions. We conclude this review outlining the current role of Deep Learning techniques
within the wider pipelines to predict protein structures and trying to anticipate what challenges and
opportunities may arise next.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Proteins hold a unique position in Structural Bioinformatics. In
fact, the origins of the field itself can be traced to Max Perutz and
John Kendrew’s pioneering work to determine the structure of
globular proteins (which also led to the 1962 Nobel Prize in Chem-
istry) [1,2]. The ultimate goal of Structural Bioinformatics, when it
comes to proteins, is to unearth the relationship between the resi-
dues forming a protein and its function, i.e., in essence, the rela-
tionship between genotype and phenotype. The ability to
disentangle this relationship can potentially be used to identify,
or even design, proteins able to bind specific targets [3], catalyse
novel reactions [4] or guide advances in biology, biotechnology

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2019.12.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2019.12.011
http://creativecommons.org/licenses/by/4.0/
mailto:quan.le@ucd.ie
https://doi.org/10.1016/j.csbj.2019.12.011
http://www.elsevier.com/locate/csbj


Fig. 1. A generic pipeline for ab initio Protein Structure Prediction, in which evolutionary information in the form of alignments, 1D and 2D PSA are intermediate steps.
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and medicine [5], e.g. editing specific locations of the genome with
CRISPR-Cas9 [6].

According to Anfinsen’s thermodynamic hypothesis, all the
information that governs how proteins fold is contained in their
respective primary sequences, i.e. the chains of amino acids (AA,
also called residues) forming the proteins [7,8]. Anfinsen’s hypoth-
esis led to the development of computer simulations to score pro-
tein conformations, and, thus, search through potential states
looking for that with the lowest free energy, i.e. the native state
[9,8]. The key issue with this energy-driven approach is the explo-
sion of the conformational search space size as a function of a pro-
tein’s chain length. A solution to this problem consists in the
exploitation of simpler, typically coarser, abstractions to gradually
guide the search, as proteins appear to fold locally and non-locally
at the same time but incrementally forming more complex shapes
[10].

A standard pipeline for Protein Structure Prediction envisages
intermediate prediction steps where abstractions are inferred
which are simpler than the full, detailed 3D structure, yet struc-
turally informative - what we call Protein Structure Annotations
(PSA) [11]. The most commonly adopted PSA are secondary struc-
ture, solvent accessibility and contact maps. The former two are
one-dimensional (1D) abstractions which describe the arrange-
ment of the protein backbone, while the latter is a two-
dimensional (2D) projection of the protein tertiary structure in
which any 2 AA in a protein are labelled by their spatial distance,
Fig. 2. Growth of known structures in the Protein Data Bank (left) and known seque
quantised in some way (e.g. greater or smaller than a given dis-
tance threshold). Several other PSA, e.g. torsion angles or contact
density, and variations of the aforementioned ones, e.g. half-
sphere exposure and distance maps, have been developed to
describe protein structures [11]. Fig. 1 depicts a pipeline for the
prediction of protein structure from the sequence in which the
intermediate role of 1D and 2D PSA is highlighted.

It should be noted that protein intrinsic disorder [12–14] can be
regarded as a further 1D PSA with an important structural and
functional role [15], which has been predicted by Machine Learn-
ing and increasingly Deep Learning methods similar to those
adopted for the prediction of other 1D PSA properties [16–22],
sometimes alongside them [23]. However, given its role in protein
structure prediction pipelines is less clear than for other PSA, we
will not explicitly focus on disorder in this article and refer the
reader to specialised reviews on disorder prediction, e.g. [24–26].

The slow but steady growth in the number of protein structures
available at atomic resolution has led to the development of PSA
predictors relying also on homology detection (‘‘template-based
predictors”), i.e. predictors directly exploiting proteins of known
structure (‘‘templates”) that are considered to be structurally sim-
ilar based on sequence identity [27–30]. However, a majority PSA
predictors are ‘‘ab initio”, that is, they do not rely on templates.
Ab-initio predictors leverage extensive evolutionary information
searches at the sequence level, relying on ever-growing data banks
of known sequences and constantly improving algorithms to detect
nces in Uniprot (right). The y-axis is shown in logarithmic scale for the Uniprot.
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similarity among them [31–33]. Fig. 2 shows the growth in the
number of known structures in the Protein Data Bank (PDB) [34]
and sequences in the Uniprot [35] - the difference in pace is evi-
dent, with an almost constant number of new structures having
been added to the PDB each year for the last few years while the
number of known sequences is growing close to exponentially.
1.1. Feed forward neural networks

A Feed Forward Neural Network (FFNN) is an artificial neural
network [36] containing no cycles. In particular layered FFNN are
FFNN whose nodes can be partitioned into groups (layers) that
are ordered and in which the outputs of layer i are inputs to and
only to layer iþ 1. The first layer is known as Input layer, the last
as Output layer and any layer in between is a Hidden layer whose
units form an intermediate representation of an instance. Layered
FFNN, which may be trained from examples using the back-
propagation algorithm [36] and have been proven to have univer-
sal approximation properties [37], have been used to predict 1D
PSA since the ’80s [38–40]. These networks have typically been
used in their so-called ‘‘windowed” version, in which each segment
of a fixed number of amino acids in a sequence is treated as the
input for a separate example, the target for the segment being
the PSA of interest for one of the amino acids in the segment (usu-
ally the central one).
1.2. Deep Learning

Deep Learning [41] is a sub-field of Machine Learning based on
artificial neural networks, which emphasises the use of multiple
connected layers to transform inputs into features amenable to
predict corresponding outputs. Given a sufficiently large dataset
of input–output pairs, a training algorithm can be used to automat-
ically learn the mapping from inputs to outputs by tuning a set of
parameters at each layer in the network.

While in many cases the elementary building blocks of a Deep
Learning system are FFNN or similar elementary cells, these are
combined into deep stacks using various patterns of connectivity.
This architectural flexibility allows Deep Learning models to be
customised for any particular type of data. Deep Learning models
can generally be trained on examples by back-propagation [36],
which leads to efficient internal representations of the data being
learned for a task. This automatic feature learning largely removes
the need to do manual feature engineering, a laborious and poten-
tially error-prone process which involves expert domain knowl-
edge and is required in other Machine Learning approaches.
However, Deep Learning models easily contain large numbers of
internal parameters and are thus data-greedy - the most successful
applications of Deep Learning to date have been in fields in which
very large numbers of examples are available [41]. In the remain-
der of this section we summarise the main Deep Learning modules
which are used in previous research in Protein Structure
Prediction.

Convolutional Neural Networks (CNN) [42] are an architecture
designed to process data which is organised with regular spatial
dependency (like the tokens in a sequence or the pixels in an
image). A CNN layer takes advantage of this regularity by applying
the same set of local convolutional filters across positions in the
data, thus brings two advantages: it avoids the overfitting problem
by having a very small number of weights to tune with respect to
the input layer and the next layer dimensionality, and it is transla-
tion invariant. A CNN module is usually composed of multiple con-
secutive CNN layers so that the nodes at later layers have larger
receptive fields and can encode more complex features. It should
be noted that ‘‘windowed” FFNN discussed above can be regarded
as a particular, shallow, version of CNN, although we will keep
referring to them as FFNN in this review to follow the historical
naming practice in the literature.

Recurrent Neural Networks (RNN) [43] are designed to learn
global features from sequential data. When processing an input
sequence, a RNN module uses an internal state vector to sum-
marise the information from the processed elements of the
sequence: it has a parameterised sub-module which takes as
inputs the previous internal state vector and the current input ele-
ment of the sequence to produce the current internal state vector;
the final state vector will summarise the whole input sequence.
Since the same function is applied repeatedly across the elements
of a sequence, RNN modules easily suffer from the gradient vanish-
ing or gradient explosion problem [44] when applying the back
propagation algorithm to train them. Gated recurrent neural net-
work modules like Long Short Term Memory (LSTM) [45] or Gated
Recurrent Unit (GRU) [46] are designed to alleviate these problems.
Bidirectional versions of RNNs (BRNN) are also possible [47] and
particularly appropriate in PSA predictions, where data instances
are not sequences in time but in space and propagation of contex-
tual information in both directions is desirable.

Even though the depth of a Deep Learning model increases its
expressiveness, increasing depth also makes it more difficult to
optimise the network weights due to gradients vanishing or
exploding. In [48] Residual Networks have been proposed to solve
these problems. By adding a skip connection from one layer to the
next one, a Residual Network is initialised to be near the identity
function thus avoids large multiplicative interactions in the gradi-
ent flow. Moreover, skip connections act as ‘‘shortcuts”, providing
shorter input–output paths for the gradient to flow in otherwise
deep networks.
2. Methods for 1D Protein Structural Annotations

First generation PSA predictors relied on statistical calculations
of propensities of single AA towards structural conformations, usu-
ally secondary structures [49–52], which were then combined into
actual predictions via hand-crafted rules. While these methods
predicted at better than chance accuracy, they were quite limited
- especially on novel protein structures [53], with per-AA accura-
cies usually not exceeding 60%.

In a second generation of predictors [54], information from
more than one AA at a time was fed to various methods, including
FFNN to predict secondary structure [38,39], and least squares, i.e.
a standard regression analysis, to predict hydrophobicity values
[55]. This step change was made possible by the increasing number
of resolved structures available. These methods were somewhat
more accurate than first generation ones, with secondary structure
accuracies of 63–64% reported [38].

The third generation of PSA predictors has been characterised
by the adoption of evolutionary information [56] in the form of
alignments of multiple homologous sequences as input to the pre-
dictive systems, which are almost universally Machine Learning, or
Deep Learning algorithms. One of the early systems from this gen-
eration, PHD [56], arguably the first to predict secondary structure
at over 70% accuracy, was implemented as two cascaded FFNN tak-
ing segments of 13 AA and 17 secondary structure predictions as
inputs, containing 5,000–15,000 free tunable parameters, and
trained by back-propagation.

Subsequent sources of improvement were more sensitive tools
for mining evolutionary information such as PSI-BLAST [32] or
HMMER [57], and the ever increasing nature of both the databases
of available structures and sequences, with PSIPRED [58], based on
a similar stack of FFNN to that used in PHD, albeit somewhat larger,
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achieving state of the art performances at the time of development,
with sustained 76% secondary structure prediction accuracy.

2.1. Deep Learning methods for 1D PSA prediction

Various Deep Learning algorithms have been routinely adopted
for PSA prediction since the advent of the third generation of pre-
dictors [11], alongside more classic Machine Learning methods
such as k-Nearest Neighbors [63,64], Linear Regression [65], Hid-
den Markov Models [66], Support Vector Machines (SVM) [67]
and Support Vector Regression [68].

PHD, PSIPRED, and JPred [69] are among the first notable exam-
ples in which cascaded FFNN are used to predict 1D PSA, in partic-
ular secondary structure. DESTRUCT [70] expands on this approach
by simultaneously predicting secondary structure and torsion
angles by an initial FFNN, then having a filtering FFNN map first
stage predictions into new predictions, and then iterating, with
all copies of the filtering network sharing their internal
parameters.

SPIDER2 [59] builds on this approach adding solvent accessibil-
ity to the set of features predicted and training an independent set
of weights for each iteration. The entire set of PSA predicted is
used, along with the input features of the first stage, to feed the
second and third stage. Each stage is composed of a window-
based (w = 17) 3-layered FFNN with 150 hidden units each [59].

SSpro is a secondary structure predictor based on a Bidirectional
RNN architecture followed by a 1D CNN stage. The architecture
was shown to be able to identify the terminus of the protein
sequence and was quite compact with only between 1400 and
2900 free parameters [47]. Subsequent versions of SSpro increased
the size of the training datasets and networks [71]. Similar archi-
tectures have been implemented to predict solvent accessibility
and contact density [72]. The latest version of SSpro adds a final
refinement step based on a PSI-BLAST search of structurally similar
proteins [30], i.e. is a template-based predictor.

A variant to plain BRNN-CNN architectures are stacks of Recur-
rent and Convolutional Neural Networks [73,27,74,31,75]. In these
a first BRNN-CNN stage is followed by a second structurally similar
stage fed with averages over segments of predictions from the first
stage. Porter, PaleAle, BrownAle and Porter+ (Brewery) are Deep
Learning methods employing these architectures to predict sec-
ondary structure, solvent accessibility, contact density and torsion
angles, respectively [60,11]. The latest version of Porter (v5) is
composed by an ensemble of 7 models with 40,000–60,000 free
parameters each, using multiple methods to mine evolutionary
information [31,76]. The same architecture has also been trained
on a combination of sequence and structural data [27,28], and in
a cascaded approach similar to that of DESTRUCT and SPIDER2 in
which multiple PSA are predicted at once and the prediction is iter-
ated [77].

SPIDER3 [61] substitutes the FFNN architecture of SPIDER2 with
a Bidirectional RNN with LSTM cells [45] followed by a FFNN, pre-
dicts 4 PSA at once, and iterates the prediction 4 times. Each of the
4 iterations of SPIDER3 is made of 256 LSTM cells per direction per
layer, followed by 1024 and 512 hidden units per layer in the
FFNN. Adam optimiser and Dropout (with a ratio of 50%) [78] are
used to train the over 1 million free parameters of the model. SPI-
DER2 and SPIDER3 are the only described methods which employ
seven representative physio-chemical properties in input along
with both HHblits and PSI-BLAST outputs.

2.2. Convolutional neural networks

RaptorX-Property is a collection of 1D PSA predictors released
since 2010 and based on Conditional Neural Fields (CNF), i.e.
Neural Networks possessing an output layer made of Conditional
Random Fields (CRF) [79]. The most recent version of RaptorX-
Property is based on Deep Convolutional Neural Fields (DeepCNF),
i.e. CNN with CRF output [80,23]. This version has 5 convolutional
layers containing 100 hidden units with a window size of 11 each,
i.e. roughly 500,000 free parameters (10 times and 100 times as
many as Porter5 and PHD, respectively). The latest version of
RaptorX-Property depends on HHblits instead of PSI-BLAST for
the evolutionary information fed to DeepCNF models [23].

NetSurfP-2.0 is a recently developed predictor which employs
either HHblits or MMsEqs. 2 [76,81], depending on the number
of sequences in input [62]. NetSurfP-2.0 is made of two CNN layers,
consisting of 32 filters with 129 and 257 units, respectively, and
two BRNN layers, consisting of 1024 LSTM cells per direction per
layer. The CNN input is fed to the BRNN stage as well. NetSurfP-
2.0 predicts secondary structure, solvent accessibility, torsion
angles and structural disorder with a different fully connected
layer per PSA.

In Fig. 3 we report a scatterplot of performances of secondary
structure predictors vs. the year of their release. Gradual, continu-
ing improvements are evident from the plot, as well as the transi-
tion from statistical methods to classical Machine Learning and
later Deep Learning methods. A set of surveys of recent methods
for the prediction of protein secondary structure can be found in
[82–85] and a thorough comparative assessment of high-
throughput predictors in [86].
3. Methods for 2D Protein Structural Annotations

A typical pipeline to predict protein structure envisages a step
in which 2D PSA of some nature are predicted [11]. In fact, most
of the recent progress in Protein Structure Prediction has been dri-
ven by Deep Learning methods applied to the prediction of contact
or distance maps [87,88].

Contact maps have been adopted to reconstruct the full three-
dimensional (3D) protein structure since the ’90s [89–91].
Although the 2D-3D reconstruction is known to be a NP-hard prob-
lem [92], heuristic methods have been devised to solve it approx-
imately [89,93,94] and optimised for computational efficiency [90].
The robustness of these heuristic methods has been tested against
noise in the contact map [95].

Distance maps and multi-class contact maps (i.e. maps in which
distances are quantised into more than 2 states) typically lead to
more accurate 3D structures than binary maps and tend to be more
robust when random noise is introduced in the map [29,96].
Nonetheless, one contact every twelve residues may be sufficient
to allow robust and accurate topology-level protein structure mod-
eling [97].

Predicted contact maps can also be helpful to score and, thus,
guide the search for 3D models [98].

One of the earliest examples of 2D PSA annotations are b� sheet
pairings, i.e. AA partners in parallel and anti-parallel b� sheet con-
formations. Machine/Deep Learning methods such as FFNN [99],
BRNN [100] and multi-stage approaches [101] have been used
since the late ’90s to predict whether any 2 residues are partners
in a b� sheet. Similarly, disulphide bridges (formed by
cysteine� cysteine residues) have been predicted by the
Edmonds-Gabow algorithm and Monte Carlo simulation annealing
[102], or hybrid solutions such as Hidden Markov Models and
FFNN [103], and multi-stage FFNN, SVM and BRNN [104], alongside
classic Machine Learning models such as SVM [105], pure Deep
Learning models such as BRNN [106], and FFNN [107].

The prediction of a contact map’s principal eigenvector (using
BRNN) is instead an example of 1D PSA used to infer 2D character-
istics [108]. The predictions of b� sheet pairings, disulphide bridges
and principal eigenvectors have been prompted by the need for



Fig. 3. Performances of secondary structure predictors over the years. ‘‘stat” are predictors based on statistical methods other than Neural Networks. ‘‘ML” are predictors
based on shallow Neural Networks or Support Vector Machines. ‘‘DL-CNN” are Deep Learning methods based on Convolutional Neural Networks. ‘‘DL-RNN” are Deep Learning
methods based on Recurrent Neural Networks. Data extracted from accompanying publications of predictors referenced in this article.
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‘‘easy-to-predict”, informative abstractions which can be used to
guide the prediction of more complex 2D PSA such as contact or dis-
tance maps. Ultimately, however, most interest in 2D PSA has been
in the direct prediction of contact and distance maps as these con-
tain most, if not all, the information necessary for the reconstruc-
tion of a protein’s tertiary structure [89,29,96], while being
translation and rotation invariant [91] which is a desirable property
for the target of Machine Learning and Deep Learning algorithms.

Early methods for contact map prediction typically focused on
simple, binary maps, and relied on statistical features extracted
from evolutionary information in the form of alignments of multi-
ple sequences. Features such as correlated mutations, sequence
conservation, alignment stability and family size were inferred
from multiple alignments and were shown to be informative for
contact map prediction since the ’90s [109,110]. Early methods
often relied on simple linear combinations of features, though
FFNN [111] and other Machine Learning algorithms such as Self-
Organizing Maps [112] and SVM [113] quickly followed.
3.1. Modern and deep learning methods for 2D PSA prediction

2D-BRNN [72,124] are an extension to the BRNN architecture
used to predict 1D PSA. These models, which are designed to pro-
cess 2D maps of variable sizes, have 4 state vectors summarising
information about the 4 cardinal corners of a map. 2D-BRNN have
been applied to predict contact maps [72,124,108,125], multi-class
contact maps [29], and distance maps [96]. Contact map predic-
tions by 2D-BRNN have also been refined using cascaded FFNN
[126]. Both ab initio and template-based predictors have been
developed to predict maps (as well as 1D PSA) [29,96]. In particu-
lar, template-based contact and distance map predictors rely both
on the sequence and structural information and, thus, are often
better than ab initio predictors even when only dubious templates
are available [29,96].

More recently, growing abundance of evolutionary information
data and computational resources has led to substantial break-
throughs in contact map prediction [127]. More sophisticated sta-
tistical methods have been developed to calculate mutual
information without the influence of entropy and phylogeny
[128], co-evolution coupling [129], direct-coupling analysis (DCA)
[130] and sparse inverse covariance estimation [131]. The ever-
growing number of known sequences has led to the development
of more optimised and, thus, faster tools [132] able to also run
on GPU [133]. PSICOV [131], FreeContact [132] and CCMpred
[133], which are notable results of this development, have allowed
the exploitation of ever growing data banks and prompted a new
wave of Deep Learning methods.

MetaPSICOV is a notable example of a Deep Learning method
applied to PSICOV, FreeContact and CCMpred, as well as 1D fea-
tures (such as predicted 1D PSA) [134]. MetaPSICOV is a two-
stage FFNN with one hidden layer with 55 units. MetaPSICOV2,
the following version, is a two-stage FFNN with two hidden layers
with 160 units each and also a template-based predictor [114].

DeepCDpred is a multi-class contact map ab initio predictor
which attempts to extend MetaPSICOV [115]. In particular, PSICOV
is substituted with QUIC - a similarly accurate but significantly fas-
ter implementation of the sparse inverse covariance estimation -
and the two-stage FFNN with an ensemble of 7 deeper FFNN (with
8 hidden layers) which are trained on different targets and, thus,
result in a multi-class map predictor.

RaptorX-Contact is one of the first examples of contact map pre-
dictor based on a Residual CNN architecture [116]. RaptorX-
Contact has been trained on CCMpred, mutual information, pair-
wise potential extraction and RaptorX-Property’s output, i.e. sec-
ondary structure and solvent accessibility predictions [23].
RaptorX-Contact uses filters of size 3� 3 and 5� 5, 60 hidden units
per layer and a total of 60 convolutional layers.

DNCON2 is a two-stage CNN trained on a set of input features
similar to MetaPSICOV [117]. The first stage is composed of an
ensemble of 5 CNN trained on 5 different thresholds, which feeds
a following refining stage of CNN. The first stage of DNCON2 can
be seen as a multi-class contact map predictor.
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DeepContact (also known as i_Fold1) aims to demonstrate the
superiority of CNN over FFNN to predict contact maps [118].
DeepContact is a 9-layer Residual CNN with 32 filters of size
5� 5 trained on the same set of features used by MetaPSICOV.
The outputs of the third, sixth and ninth layers are concatenated
with the original input and fed to a last hidden layer to perform
the final prediction.

DeepCov uses CNN to predict contact maps when limited evolu-
tionary information is available [119]. In particular, DeepCov has
been trained on a very limited set of input features: pair frequen-
cies and covariance. This is one of the first notable examples of 2D
PSA predictors which entirely skips the prediction of 1D PSA in its
pipeline.

PconsC4 is a CNN with limited input features to significantly
speed-up prediction time [120]. In particular, PconsC4 uses pre-
dicted 1D PSA, the GaussDCA score, APC-corrected mutual infor-
mation, normalised APC-corrected mutual information and cross-
entropy. PconsC4 requires only a recent version of Python and a
GCC compiler with no need for any further external programs
and appears to be significantly faster (and more accurate) than
MetaPSICOV [120,114].

SPOT-Contact has been inspired by RaptorX-Contact and
extends it by adding a 2D-RNN stage downstream of a CNN stage
[121]. SPOT-Contact is an ensemble of models based on 120 convo-
lutional filters – half 3� 3 and half 5� 5 – followed by a 2D-BRNN
with 800 units – 200 LSTM cells for each of the 4 directions – and a
final hidden layer composed of 400 units. Adam, a 50% dropout rate
and layer normalization are among the Deep Learning techniques
implemented to train this predictor. CCMpred, mutual and
direct-coupling information are used as inputs as well as the out-
put of SPIDER3, i.e. predictions of solvent accessibility, half-
Sphere exposures, torsion angles and secondary structure [61].

TripletRes [122] is a contact map predictor that ranked first in
the Contact Predictions category of the latest edition of CASP, a
bi-annual blind competition for Protein Structure Prediction
[135]. TripletRes is composed of 4 CNN trained end-to-end. More
Fig. 4. Improvements in quality of 3D predictions for free m
in detail, 3 coevolutionary inputs, i.e. the covariance matrix, preci-
sionmatrix and coupling parameters of the Potts model, are fed to 3
different CNN which are then fused in a unique CNN downstream.
Each CNN is composed of 24 residual convolutional layers with a
kernel of size 3� 3� 64. The training of TripletRes required 4 GPUs
running concurrently - using Adam and a 80% dropout rate. Triple-
tRes successfully identified and predicted both globally and locally
multi-domain proteins following a divide et impera strategy.

AlphaFold [123] is a Protein Structure Prediction method that
achieved the best performance in the Ab initio category of CASP13
[135]. Central to AlphaFold is a distance map predictor imple-
mented as a very deep residual neural networks with 220 residual
blocks processing a representation of dimensionality
64� 64� 128 – corresponding to input features calculated from
two 64 amino acid fragments. Each residual block has three layers
including a 3� 3 dilated convolutional layer – the blocks cycle
through dilation of values 1, 2, 4, and 8. In total the model has
21 millions parameters. The network uses a combination of 1D
and 2D inputs, including evolutionary profiles from different
sources and co-evolution features. Alongside a distance map in
the form of a very finely-grained histogram of distances, AlphaFold
predicts U and W angles for each residue which are used to create
the initial predicted 3D structure. The AlphaFold authors con-
cluded that the depth of the model, its large crop size, the large
training set of roughly 29,000 proteins, modern Deep Learning
techniques, and the richness of information from the predicted his-
togram of distances helped AlphaFold achieve a high contact map
prediction precision.

Constant improvements in contact and distance map predic-
tions over the last few years have directly resulted in improved
3D predictions. Fig. 4 reports the average quality of predictions
submitted to the CASP competition for free modelling targets, i.e.
proteins for which no suitable templates are available and predic-
tions are therefore fully ab initio, between CASP9 (2010) and
CASP13 (2018). Improvements especially over the last two editions
are largely to be attributed to improved map predictions [127,136].
odelling (ab initio) targets between CASP9 and CASP13.



Table 1
Deep Learning methods for 1D PSA prediction, along with models adopted and tools to gather evolutionary information, respectively. Secondary structure (SS), solvent
accessibility (SA), torsion angles (TA), contact density (CD) and disordered regions (DR) are the PSA predicted.

Predictor PSA Model Evolutionary Information

SPIDER2 [59] SS, SA Multi-stage FFNN PSI-BLAST
SSpro/ACCpro5 [30] SS, SA BRNN-CNN PSI-BLAST
Brewery [60] SS, SA, TA, CD Multi-stage BRNN-CNN PSI-BLAST, HHblits
SPIDER3 [61] SS, SA, TA, CD BLSTM PSI-BLAST, HHblits
RaptorX-Property [23] SS, SA, DR CNF PSI-BLAST, HHblits
NetSurfP-2.0 [62] SS, SA, TA, DR BLSTM HHblits, (or) MMseqs2

Table 2
Modern and Deep Learning methods for 2D PSA prediction, along with models adopted and tools to gather evolutionary information, respectively. Contact maps (CM), multi-class
CM and distance maps (DM) are the PSA predicted.

Predictor PSA Model Evolutionary Information

MetaPSICOV2 [114] CM Multi-stage FFNN HHblits, JackHMMer
DeepCDpred [115] multi-class CM Multi-stage FFNN HHblits
RaptorX-Contact [116] multi-class CM Residual CNN HHblits
DNCON2 [117] CM Multi-stage CNN HHblits, jackHMMer
DeepContact [118] CM Residual CNN HHblits, jackHMMer
DeepCov [119] CM CNN HHblits
Pconsc4 [120] CM CNN HHblits
SPOT-Contact [121] CM Residual CNN 2D-BLSTM HHblits, PSI-BLAST
TripletRes [122] CM Multi-stage residual CNN HHblits, jackHMMer, HMMER
AlphaFold [123] DM Residual CNN HHblits, PSI-BLAST
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4. Summary and outlook

Proteins fold spontaneously in 3D conformations based only on
the information present in their residues [7]. Protein Structure pre-
dictors are systems able to extract from the protein sequence infor-
mation constraining the set of possible local and global
conformations and use this to guide the folding of the protein itself.
Deep Learning methods are successful at producing higher abstrac-
tions/representations while ignoring irrelevant variations of the
input when sufficient amounts of data are provided to them
[137]. Both characteristics together with the availability of rapidly
growing protein databases increasingly make Deep Learning meth-
ods the preferred techniques to aid Protein Structure Prediction
(see Tables 1 and 2). The highly complex landscape of protein con-
formations make Protein Structural Annotations one of the main
research topics of interest within Protein Structure Prediction
[11]. In particular, 1D annotations have been a central topic since
the ’60s [1,2] while the focus is progressively shifting towards
more informative and complex 2D annotations such as contact
maps and distance maps. This change of paradigm is mainly moti-
vated by technological breakthroughs which result in continuous
growth in computational power and protein sequences available
thanks to next-generation sequencing and metagenomics [76,81].

Recent work on the prediction of 1D structural annotations
[11,31,75,61], contact map prediction [117,122], and on overall
structure prediction systems [123,138], emphasises the importance
of more sophisticated pipelines to find and exploit evolutionary
information from ever growing databases. This is often achieved
by running several tools to find multiple homologous sequences
in parallel [32,76,81] and, increasingly, by deployingMachine/Deep
Learning techniques to independently process the sequence before
fusing their outputs into the final prediction. The correlation
between sequence alignment quality and accuracy of PSA predictors
has been empirically demonstrated [139–141]. How to best gather
and process homologous sequences is an active research topic, e.g.
RawMSA is a suite of predictors which proposes to substitute the
pre-processing of sequence alignments with an embedding step in
order to learn a representation of protein sequences instead of
pre-compressing homologous sequences into input features [142].
The same trend towards end-to-end systemshas been attempted
in the pipeline from processed homologous sequences to 3D struc-
ture, e.g. in NEMO [143], a differentiable simulator, and RGN (Recur-
rent Geometrical Network) [144], an end-to-end differentiable
learning of protein structure. However, state-of-the-art structure
predictors are still typically composed of multiple intelligent sys-
tems. The last mile of Protein Structure Prediction, i.e. the building,
ranking and scoring of structural models, is also fertile ground for
Machine Learning and Deep Learning methods [145,146]. E.g. MUL-
TICOM exploits DNCON2 - a multi-class contact map predictor - to
build structural models and to feed DeepRank - an ensemble of
FFNN to rank such models [138]. DeepFragLib is, instead, a Deep
Learning method to sample fragments (for ab initio structure pre-
diction) [147]. The current need for multiple intelligent systems is
supported by empirical results, especially in the case of hard predic-
tions. Splitting proteins into composing domains, predicting 1DPSA,
and optimising each component of the pipeline is particularly useful
especially when alignment quality is poor [148].

Today, state-of-the-art systems for Protein Structure Prediction
are composed by multiple specialised components [123,138,11] in
which Deep Learning systems have an increasing, often crucial
role, while end-to-end prediction systems entirely based on Deep
Learning techniques, e.g. Deep Reinforcement Learning, may be
on the horizon but are at present still immature. Progress in this
field over the last few years has been substantial, even dramatic
especially in the prediction of contact and distance maps
[127,136], but the essential role of structural, evolutionary, and
co-evolutionary information in this progress cannot be under-
stated, with ab initio prediction quality still lagging that of
template-based predictions, proteins with poor alignments being
still a weak spot and prediction of protein structure from a single
sequence being a challenge that is far from solved [149], although
some progress has recently been observed for proteins with shal-
low alignments [150]. More generally, given that our current struc-
ture prediction pipelines rely almost exclusively on increasingly
sophisticated and sensitive techniques to detect similarity to
known structures and sequences, it is unclear whether predictions
truly represent low energy structures unless we know they are
correct. The prediction of protein misfolding [151,152] presents a
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further challenge for the current prediction paradigm, with
Machine Learning methods only making slow inroads [153]. Nev-
ertheless, as more computational resources, novel techniques and
ultimately, critically, increasing amounts of experimental data will
become available [137], further improvements are to be expected.
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