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Abstract 

The increasing protein sequences from the genome project require theoretical methods to 
predict transmembrane helical segments (TMHs). So far, several prediction methods have 
been reported, but there are some deficiencies in prediction accuracy and adaptability in these 
methods. In this paper, a method based on discrete wavelet transform (DWT) has been 
developed to predict the number and location of TMHs in membrane proteins. PDB coded as 
1KQG is chosen as an example to describe the prediction process by this method. 80 proteins 
with known 3D structure from Mptopo database are chosen at random as data sets (including 
325 TMHs) and 80 sequences are divided into 13 groups according to their function and type. 
TMHs prediction is carried out for each group of membrane protein sequences and obtain 
satisfactory result. To verify the feasibility of this method, 80 membrane protein sequences 
are treated as test sets, 308 TMHs can be predicted and the prediction accuracy is 96.3%. 
Compared with the main prediction results of seven popular prediction methods, the ob-
tained results indicate that the proposed method in this paper has higher prediction accuracy. 

Key words: Membrane protein, Transmembrane helical segments, Discrete wavelet transform, 
Hydrophobicity. 

Introduction 
With the accomplishment of human genome 

project (HGP), post-genome era has come with the 
main character functional genomics and proteomics. 
Along with the HGP, a new subject—bioinformatics 
has developed. However the obtained massive bio-
logical data which is still in the rapid increase and the 
complexity of the life essence challenged young bio-
informatics, so bioinformatics needs constant innova-
tion and development in various aspects of technical 
means, methods and correlative field. 

The study of structure and function of mem-
brane protein is one important subject in bioinfor-
matics. The knowledge of the function of membrane 
protein itself has been expanded enormously and 
deeply, and the more study of it can be used as a 
breakthrough of studying protein structure and func-

tion and the genetic information in DNA sequence. In 
order to explore the relationship between membrane 
protein structure and function, understand various 
work mechanism in membrane protein life activities, 
bioinformatics methods and techniques of developing 
the study of membrane protein are needed. 

In the genome data, a large portion (about 
20%-30%) of proteins in a genome encodes membrane 
protein [1-4], the proportion of such shows the im-
portance of membrane protein in biology. Membrane 
protein, especially transmembrane proteinin has very 
important function in organism, such as photosyn-
thesis, respiration, neural signaling, immune re-
sponse, nutrient absorption and so on, and it is also 
the important drug target. Of the drug target known 
and being researched is about 70% of the membrane 
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protein [5]. For example, G protein-coupled receptors 
(GPCRs) is a kind of transmembrane protein receptors 
with one article of peptide chains and seven trans-
membrane helical segments (TMHs), as shown in 
Figure 1 below. It is a kind of very important molec-
ular receptors and the biggest transmembrane protein 
family in the eukaryotes [6]. GPCRs has the largest 
gene families coding in animal genome. The known 
1% of the fruit flies genes and more than 5% of the 
nematode gene are responsible for coding GPCRs, 
and more than 1% of the gene in human genome is 
used to encode more than 1000 GPCRs [7]. 

 
 

 
Figure 1. Schematic drawing of a G protein-coupled receptor 
structure. 

 
 
The dysfunction of GPCRs can lead to many 

diseases, such as Alzheimer's disease, parkinsonism 
syndrome, dwarfism, achromat, retinitis pigmentosa 
and asthma, etc. Through regulation GPCRs' signal 
transduction can treat depression, schizophrenia, in-
somnia, high blood pressure, kidney function decline, 
cerebrovascular disease, etc. Most of the drugs, 
through targeting effect on GPCRs, achieve remedial 
effect. Currently in the small molecule drugs market 
of the world, more than a third of the drug's effect 
targets are GPCRs [8, 9]. More than 50% of the pre-
scription drugs take effect through GPCRs [10]. In 
addition to GPCRs, there are some other important 
transmembrane protein family, including ion chan-
nels, actin and some of the proteins related to biolog-
ical energy, for example, those proteins related to 
electronic transport system [11]. 

The hydrophobic nature of membrane proteins 
makes it form a stable natural conformation together 
with biological membrane, which goes against meas-
uring its three-dimensional (3D) structure by using 
X-ray crystal diffraction method and nuclear magnetic 
resonance (NMR) technology. Among about 56000 
kinds of protein data bank (PDB), less than 1% of the 

protein of known structure are membrane proteins 
[12,13]. Until now, what we know about 3D structure 
of membrane proteins with high-resolution are a few, 
such as bacteriorhodopsin (bR), photosynthetic reac-
tion center, cytochrome C oxidase, etc. This shows 
that there is a big gap between the number of the 
known membrane protein sequence and the known 
membrane protein structure, which greatly restricted 
the deep research of the function of membrane pro-
tein. With functional genomics and proteomics re-
search developing, the launch of the analysis of 
membrane protein sequence increase rapidly, ur-
gently needing the effective, high accuracy of the al-
gorithm to predict the membrane protein TMHs and 
transmembrane direction to guide the research of 
membrane protein; On the other hand, through the 
comparison of the prediction accuracy of different 
algorithms, the hidden biological significance can be 
revealed, so as to guide the membrane protein bio-
logical experiment. Therefore, the membrane protein 
structure prediction, especially the prediction of 
transmembrane helical segments in membrane pro-
teins has caused strong interest of the researchers. 

So far many transmembrane helical segments 
(TMHs) predicting algorithms for membrane pro-
teins have been proposed. In 1982 Kyte and Doolit-
tle firstly suggested a hydrophobicity analysis 
method of membrane protein sequences [14]. 
Thereafter von Heijne put forward the well-known 
"positive-inside rule" to guide prediction in 1986 
[15]. SOSUI [16], PRED-TMR [17] were based on the 
foregoing two methods. In recent years, some sta-
tistical methods have been developed that like DAS 
[18], TMAP [19], neural networks PHDhtm [20, 21], 
TMHMM [1, 22] and HMMTOP [23, 24] based on 
hidden Markov model, MEMSAT-SVM prediction 
method based on support vector machine [25, 26]. 
Wavelet transform was first introduced into bioin-
formatics research in 1996 [27] and raised extensive 
attention immediately [28-37]. Liò et al [29] pro-
posed a non-parametric method based on a wavelet 
data-dependent threshold technique for change-point 
analysis which was applied to predict TMHs in 
membrane proteins. Continuous wavelet transform 
(CWT) for predicting the number and location of hel-
ices in membrane proteins is presented by Qiu et al 
[31]. Pashou et al [32] applied a dynamic program-
ming algorithm on wavelet-denoised ‘hydropathy’ 
signals to determine membrane spanning segments.  

In this paper, we make full use of the hydro-
phobicity of amino acids and multiresolution feature 
of discrete wavelet transform (DWT) to decompose 
the amino acids of TM proteins into a series of struc-
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tures in different layers, then predicting the location 
of TMHs according to the information of the amino 
acids sequence in different scales. 80 proteins with 
known 3D structure are chosen at random as data 
sets. Firstly, cross-validation method is introduced 
and five commonly used hydrophobic parameters are 
used to predict the position and number of TMHs 
based on two different levels in order to find the best 
hydrophobic parameters, offer help for further mem-
brane protein work and reduce the blindness of 
choosing hydrophobic parameters. Results show that 
the best membrane proteins TMHs is achieved when 
choosing FP and KD hydrophobic parameters. Sec-
ondly, take one membrane protein sequence as an 
example to bat around and do comparison combined 
with the prediction results by the other seven meth-
ods in order to confirm the effectiveness of WavePrd 
method. The above 80 membrane proteins are divided 
into 13 groups according to their function and type. 
The prediction of TMHs of the 13 groups by using KD 
hydrophobicity parameters is satisfying. 308 TMHs of 
80 proteins (including 325 TMHs) can be predicted 
and the prediction accuracy is 96.3%. The prediction 

accuracy of rate of amino acid residues reaches 83.5%. 
Compared with the main prediction results of seven 
popular prediction methods, DAS [18], HMMTOP2.0 
[23, 24], PHDhtm [20, 21], PRED-TMR2 [17], SOSUI 
[16], TMAP [19], TMHMM2.0[1, 22], the obtained re-
sults indicate that the proposed method in this paper 
has higher prediction accuracy. 

Materials and Methods 
Materials 

The test dataset is retrieved from the latest 
MPtopo database [38], which collects a set of mem-
brane protein structure data identified by crystallog-
raphy or other experimental technologies such that 
they can be treated as reliable samples. One group of 
test data sets that contain total 80 protein sequences 
with known 3D structure including 325 TMHS and 
19396 amino acid residues. The data can be obtained 
from http://blanco.biomol.uci.edu/mptopo. Ac-
cording to the function and type of membrane pro-
teins, we divided 80 membrane proteins sequences 
into 13 groups, which are shown in Table 1.  

 
 
 

Table 1. Membrane protein families used in our predictions. 

Family name PDB code 
ABC transporters 1jsq 1l7vA 1pf4    
Bacteriorhodopsin 1ap9      
Channel proteins 1fqyA 1fx8A 1msl 1mxm 1oedA 1oedB 

1oedC 1oedE 1p7b 1rc2A 1rhzA 1rhzB 

Cytochrome bc1 complexes 1bgyE 1bgyJ 1bgyK    
Cytochrome b6f complexes 1um3A 1um3B 1um3D 1um3F 1um3G 1um3H 
Cytochrome c oxidases 1ehkA 1ehkB 1ehkC 1occA 1occB 1occC 

1occD 1occG 1occI 1occJ 1occK 1occL 

1occM 1qleA 1qleB 1qleC 1qleD  

Glycophorin 1afoA      
Light-harvesting complexes 1kzuA 1lghA     
Photosynthetic reaction centers 1eysH 1eysL 1eysM 1prcH 1prcL 1prcM 

2rcrL 2rcrM     

Photosystems 1jboA 1jboB 1jboF 1jboI 1jboJ 1jboK 
1jboL 1jboM     

Respiratory proteins 1a91C 1fftA 1fftB 1fftC 1fumC 1kqgB 
1kqgC 1lovD 1nekC 1nekD 1okcA 1q16C 
1qlaC      

Rhodopsins 1f88 1h2sB 1h68A    
Translocation proteins 1pw4A 1s7b 2cpb    
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Table 2. Five different hydrophobicity values. 

Amino acids FPa KDb PPc EId JTTe 
A 0.62 1.80 0.324 0.62 0.595 
C 0.29 2.50 0.184 0.29 0.205 
D -1.05 -3.50 -1.877 -0.90 -1.276 
E -0.87 -3.50 -2.033 -0.74 -1.291 
F 1.19 2.80 0.804 1.19 1.467 
G 0.48 -0.40 0.147 0.48 0.065 
H -0.40 -3.20 -0.930 0.30 -0.387 
I 1.38 4.50 0.734 1.38 1.888 
K -1.35 -3.90 -2.230 -1.50 -1.245 
L 1.06 3.80 0.612 1.06 1.234 
M 0.64 1.90 0.407 0.64 0.626 
N -0.85 -3.50 -0.944 -0.78 -0.870 
P 0.12 -1.60 -0.516 0.12 -0.746 
Q -0.78 -3.50 -1.300 -0.85 -0.995 
R -1.37 -4.50 -2.085 -2.53 -1.073 
S -0.18 -0.80 -0.216 -0.18 -0.247 
T -0.05 -0.70 -0.129 -0.05 -0.154 
V 1.08 4.20 0.563 1.08 1.280 
W 0.81 -0.90 0.582 0.81 0.891 
Y 0.26 -1.30 0.073 0.26 0.034 
aFauchere and Pliska [42] (1983). bKyte and Doolittle [14] (1982). cPasquier et al. [17] (1999). dEisenberg et al. [43] (1984). eBoyd et al. [44] (1998). 

 
 

Methods 
As is known to all, the feature of protein struc-

ture is the balance between hydrophobic and hydro-
philic and the structure stability depends heavily on 
molecules' hydrophobic effects [39-41]. The determi-
nation of hydrophobic value of amino acid is mainly 
calculated according to distribution coefficient in 
which various amino acid is in organic solvent and 
water. Due to the different laboratory test equipment, 
experimental conditions, organic solvents and calcu-
lation methods, hydrophobicity values obtained are 
also of considerable gap. So when we map the amino 
acid sequence of protein onto a sequence of hydro-
phobicity, we need to optimize a variety of different 
hydrophobic parameters. Here, we list five commonly 
used hydrophobic parameter values, as is shown in 
Table 2. 80 membrane protein sequence data set are 
used to verify their actual effect one by one, so as to 
find out the best hydrophobic parameters, offer help 
for further research work of membrane protein and 
reduce blindness of the selection of hydrophobic pa-
rameters. 

Method of wavelet analysis 
The wavelet transform (WT) is relatively analysis 

methods with the changeable time-frequency win-
dow, which has very good localization properties in 

the time and frequency intra-areas. The discrete 
wavelet transform (DWT) decomposes a function into 
its wavelet coefficients. From a computational point of 
view, it proceeds by recursively applying two con-
volution functions, known as quadrature mirror fil-
ters, each producing an output stream that is half 
length of the original input, until the resolution level 
zero is reached. Mallat brought out the most im-
portant concept multiresolution analysis (MRA) in a 
discrete wavelet theory as well as fast algorithm of 
orthonormal wavelet tranform—Mallat algorithm[45].  

Let ϕ(x) be a scaling function which satisfies the 
following two-scale equation: 

         …(1) 

Where Z is a set of integers, and the coefficients {hn, n 
∈ Z} denote a low-pass filter (H). The wavelet function 
ψ(x) can be constructed using the scaling functionϕ(x) 
as 

       …(2) 

where the coefficients {gn, n ∈ Z} denote a high-pass 
filter (G). 

Assume that the shifted scaling function {ϕ(x-k), 
k ∈ Z} and the shifted wavelet functions {ψ (x-k), k ∈ Z} 
are orthonormal, respectively. Let {cl0} denote a se-
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quence of hydrophobicity values, and we define a 
linear combination f(x) of the sequence with scaling 
functions {ϕ(x-k), k ∈ Z}: 

       …(3) 

According to a wavelet theory, we have another ex-
pansion of f(x): 

      …(4) 

From Eqs (3) and (4) and using orthonormality of 
the scaling and wavelet functions, we can decompose 
the sequence {cl0} into low frequency and high fre-
quency components. 

      …(5) 

and  

      …(6) 

Repeatedly application of this decomposition, we can 
deduce  

      …(7) 

And 

      …(8) 

Conversely, we can derive a reconstruction formula 
form Eqs (3) and (4): 

      …(9) 

Above-mentioned formulas can refer to the literature 
of Mallat [45]. 

In Eqs. (7) and (8), the sequences {ckj+1} and {dkj+1} 
mean low and high frequencies. In this paper, only the 
first formula Eq. (9) is used because as far as most of 
the protein hydrophobicity signals are concerned, low 
frequency domain is especially important and it can 
reflect the general characteristics of signals. However 
the high frequency domain is always connected with 
noise and disturbance, so the basic features of signals 
will be reserved when the high frequency domain is 
discarded by putting {dkj+1} =0. Using Eq. (9), we re-
construct a new sequence { }jkc only from {ckj+1}, that is, 
we utilize low-pass filtering of wavelet transform. In 
wavelet analysis, the low frequency can be easily ob-
tained from a raw function by the decomposition and 
reconstruction formula. So high frequency domain is 

deleted and low frequency region is left for recon-
structing wavelet because we only study the general 
features of protein sequences. In the results, we obtain 
precise filtering signals that can help us to find the 
actual location and number of TMHs in the protein 
sequences. 

In order to predict TMHs of membrane protein 
sequence, with the condition of selecting the suitable 
wavelet basis functions, the best scale level and 
threshold are particularly important. Here 
cross-validation method is introduced, that is, m se-
quences of are selected at random as training set from 
n membrane protein sequences, the remaining n-m 
sequences are treated as test set, generating a set of 
samples. According to this step multiple sample sets 
can be generated to optimize threshold. The threshold 
here is determined by the maximum average predic-
tion accuracy of training set. Using this threshold, we 
are able to predict TMHs among membrane protein 
sequences from test set. Then we experiment at five 
different scale levels utilizing Mallat algorithm using 
cross-validation method. 

Its realization procedure is as follows: 
Step 1 According to their own hydrophobic 

amino acid value, map 80 amino acid sequence of 
membrane protein into a sequence of hydrophobicity 
value. 

Step 2 Six-fold cross-validation method is in-
troduced, namely, 50 sequences are chosen at random 
as the training set from 80 sequences, the rest 30 se-
quences as test set, generating a set of samples, ac-
cording to this step, six groups of random samples are 
generated altogether. 

Step 3 According to the data of training set, an-
alyze and determine wavelet function. 

Step 4 Decompose the original signal into low 
frequency domain and high frequency domain by 
using the Eqs. (7) and (8), then reconstruct wavelet to 
restore the original signal by using the Eqs. (9). Put-
ting dkj+1=0, reconstruct a new sequence { }jkc  by using 
{ckj+1}. 

Step 5 In order to achieve higher prediction ac-
curacy, according to the average length and inherent 
characteristics of biochemistry of each TMH, the 
post-treatment can be generalized in the following 
steps: 
 Step 5.1 Discard those predicted TMHs that 
have less than 7 amino acid residues. 

Step 5.2 If the predicted TMHs is between 30 and 
50 residues, which means the TMHs is too long and is 
not factual, then the TMHs is expanded 10 amino acid 
residues from the two sides respectively and further 
we cut this TMHs into two equal parts to seek for po-
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tential TMHs. 
Step 5.3 If the length of the predicted TMHs is 

greater than 50 residues, then the TMHs is cut into 
three equal parts using the same method above. 

Step 6 According to step 3 to 5, learn samples of 
the training set, and finally determine the optimal 
wavelet basis, scale level and optimal threshold value. 

Step 7 Get prediction result by predicting sam-
ples of the test set, and do statistics and analysis of the 
precision of prediction compared with experimental 
data.  

For convenience, our prediction method is called 
WavePrd. We have implemented it in MATLAB 7.1 in 
windows XP running on a PC with system configura-
tion Intel Pentium(R) Dual-Core processor (2.60 GHz) 
with 4 GB of RAM.  

Selection of evaluation index 
In order to test the accuracy of prediction 

methods, we study TM proteins from two as-
pects—TMHs and amino acid residues [33].  

Because of the restriction of experimental condi-
tion and other extra conditions, we believe that the 
predicted TMHs are regarded as correct when over 
half of the predicted TMHs coincide with the ob-
served TMHs. From the view of statistics, the average 
length of TMHs is 20 a.a. In our approach, we decide 
that predicted TMHs are correct when at least 9 con-
tinuous residues are contained in the observed TMHs. 
There are two important evaluation indexes: (1) Pre-
diction accuracy of TMHs [23]: 100%pQ M C= ∗ × , 
here M=Ncor/Nobs (Ncor stands for the number of 
correctly predicted TMHs, Nobs stands for the num-
ber of observed TMHs), M can be regard as a measure 
index of sensitivity; C=Ncor/Nprd (Nprd stands for 
the total number of predicted TMHs), C is regarded as 
a measure index of specificity. (2) Prediction accuracy 
of residues is another evaluation index. The calcula-
tion fomula is FAAcor=(NAAcor/NAAall) × 100%, 
where NAAcor is the number of correctly predicted 
TMHs residues and NAAall is the total residues.  

Results and Discussion 
Through the analysis of the sample data of the 

training set, combined with a wavelet function main 
properties and five commonly used hydrophobic pa-
rameters characteristics, we choose Daubechies (dbN) 
wavelet and discrete Meyer wavelet (dmey) as mother 
wavelets. Using DWT low-pass filtering in the spatial 
frequency domain, according to the above steps in the 
part of method of wavelet anaysis, we analyze sample 
data and determine db10 and dmey as the optimal 
wavelet bases. 

In the execution of wavelet transform under the 
trend of low frequency, we do verification at five dif-
ferent scale levels. From j=1 to 5, we found that, when 
scale level is 1, 2, 3, the filtering effect is not apparent, 
and when scale level is 5, excessive filter appear, 
which lose much useful information about the origi-
nal sequences. Only when scale level is 4, the filtering 
effect is moderate and signal peak can basically show 
the true TMHs, getting satisfactory results. So through 
the analysis of the sample data of the training set, 
according to the five kinds of hydrophobic parame-
ters, we choose j=4 as the optimal scale level. 

For FP hydrophobic parameter sequences, 
through the analysis of the data of the training set, we 
determine db10 as the optimal wavelet basis and get 
the corresponding optimal threshold at the scale level 
j=4. From six-fold cross-validation results (see Table 
3), threshold 0.422 appeared five times, and the cor-
responding prediction accuracy is higher, getting 
maximum average prediction accuracy of the mem-
brane protein TMHs is 96.1%, with the largest average 
prediction accuracy of residue is 79.1%. 

For sequence of KD hydrophobic parameters, we 
determined db10 as the optimal wavelet basis. At 
scale level j=4, data of each group of training set ob-
tained the corresponding optimal threshold. In 
six-fold cross-validation result (see Table 4), threshold 
0.888 appeared twice, threshold 0.836 appeared three 
times. In the test set, through the comparative analy-
sis, we use the threshold 0.836, get maximum average 
prediction accuracy of the membrane protein TMHs 
being 95.8%, maximum average prediction accuracy 
of residue being 83.1%. 

For sequence of PP hydrophobic parameters, we 
determined dmey as the optimal wavelet basis. At 
scale level j=4, data of each group of training set ob-
tained the corresponding optimal threshold. In 
six-fold cross-validation result (see Table 5), threshold 
0.050 appeared twice. In the test set, we use the 
threshold 0.050, get maximum average prediction 
accuracy of the membrane protein TMHs being 93.3%, 
maximum average prediction accuracy of residue 
being 80.8%. 

For sequence of EI hydrophobic parameters, we 
determined db10 as the optimal wavelet basis. At 
scale level j=4, data of each group of training set ob-
tained the corresponding optimal threshold. In 
six-fold cross-validation result (see Table 6), threshold 
0.384 appeared three times. In the test set, we use the 
threshold 0.384, get maximum average prediction 
accuracy of the membrane protein TMHs being 93.0%, 
maximum average prediction accuracy of residue 
being 73.9%. 

For sequence of JTT hydrophobic parameters, we 
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determined db10 as the optimal wavelet basis. At 
scale level j=4, data of each group of training set ob-
tained the corresponding optimal threshold. In 
six-fold cross-validation result (see Table 7), threshold 
0.411 appeared twice, threshold 0.409 appeared twice 
too. In the test set, through the comparative analysis, 
we use the threshold 0.411, get maximum average 
prediction accuracy of the membrane protein TMHs 
being 94.7%, maximum average prediction accuracy 
of residue being 82.0%. 

 
 

Table 3. Prediction accuracy for each group of training set 
and test set of FP hydrophobic parameters. 

Set number Qp % FAAcor % 
Training set Testing set 

1 96.7 (0.422) 94.7 81.1 
2 96.1 (0.422) 93.8 81.6 
3 96.3 (0.422) 97.1 79.7 
4 95.6 (0.433) 95.4 82.9 
5 95.1 (0.422) 97.3 75.6 
6 96.2 (0.422) 95.1 77.6 

 
 

Table 4. Prediction accuracy for each group of training set 
and test set of KD hydrophobic parameters. 

Set number Qp % FAAcor % 
Training set Testing set 

1 95.4 (0.888) 93.0 85.3 
2 95.6 (0.773) 94.1 86.5 
3 95.5 (0.836) 95.8 81.5 
4 95.9 (0.888) 94.9 84.6 
5 94.6 (0.836) 96.7 82.3 
6 95.5 (0.836) 94.9 85.6 

 
 

Table 5. Prediction accuracy for each group of training set 
and test set of PP hydrophobic parameters. 

Set number Qp % FAAcor % 
Training set Testing set 

1 96.2 (0.022) 90.2 77.8 
2 94.7 (-0.074) 89.5 67.3 
3 95.8 (0.017) 90.8 81.0 
4 94.5 (0.050) 92.0 81.8 
5 93.9 (0.081) 93.2 73.9 
6 93.4 (0.050) 94.5 79.8 

  
 

Table 6. Prediction accuracy for each group of training set 
and test set of EI hydrophobic parameters. 

Set number Qp % FAAcor % 
Training set Testing set 

1 94.0 (0.414) 92.0 78.5 
2 94.9 (0.384) 92.8 76.2 
3 95.9 (0.384) 92.8 74.0 
4 93.6 (0.436) 93.2 81.3 
5 92.8 (0.384) 93.4 71.4 
6 93.4 (0.413) 91.9 76.6 

 
 

Table 7. Prediction accuracy for each group of training set 
and test set of JTT hydrophobic parameters. 

Set number Qp % FAAcor % 
Training set Testing set 

1 95.4 (0.446) 92.2 86.6 
2 95.8 (0.411) 94.0 83.5 
3 95.8 (0.411) 95.4 80.5 
4 94.8 (0.409) 94.6 82.8 
5 94.6 (0.412) 96.7 80.0 
6 94.6 (0.409) 93.0 81.1 

 
 
 
For these hydrophobic sequences mapped by the 

five commonly used hydrophobic parameters, 
through six-fold cross-validation method, we utilize 
the low-pass component of DWT and get different 
prediction accuracy of membrane protein TMHs and 
residue one by one, with the main results being 
shown in Figure 2. 

 
 
 

 
Figure 2. Prediction accuracy for test set of five kinds of hy-
drophobic parameters. 
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From Figure 2, prediction accuracy of the mem-
brane protein TMHs by using FP hydrophobic pa-
rameters is the highest, which is 96.1%, but the pre-
diction accuracy of residue is 79.1%. The second 
highest to predict residue is by using KD hydrophobic 
parameters, which is 83.1% and prediction accuracy of 
the membrane protein TMHs is also high, which only 
differ 0.3% compared with the prediction by FP hy-
drophobic parameters, that is, 95.8%. The third one is 
JTT hydrophobic parameters, with the prediction ac-
curacy of the membrane protein TMHs and residue 
being 94.7% and 82.0% respectively. Lastly, prediction 
accuracy of the membrane protein TMHs and residue 
by EI hydrophobic parameters is the lowest, being 
93.0% and 73.9% respectively. Through comparison, 
we think that choosing FP hydrophobic parameters is 
the best to only predict TMHs. While KD hydrophobic 
parameters is the best when combined with the pre-
diction accuracy of residues. 

We pick PDB ID 1KQG from MPtopo database as 
an example and choose KD hydrophobic parameters 
to describe this method to predict the number and 
position of membrane protein TMHs. Also we predict 
13 groups of membrane protein sequence TMHs by 
using KD hydrophobicity scale values. 

The 3D structure of protein 1KQG is measured 
by X-ray diffraction method, which is shown in Figure 
3 [46]. It consists of three subunits, each subunit being 
transmembrane protein. Transmembrane segments 
traverse fat double as α helix. Here we mainly analyze 
transmembrane protein of γ subunit, which is 
four-transmembrane protein including 217 amino 
acid residues, as is shown in Figure 4.  

By using db10 wavelet basis, its original hydro-
phobic plots and reconstructed wavelet image at five 
different scale level is shown in Figure 5. We know 
that the signal peak after wavelet filter is corre-
sponding to the real TMHs, each summit corre-
sponding to the core of TMH. Through the above 
method, we can get a group of predicted TMHs. It can 
be seen that at the scale level 4, according to the 
wavelet filtering graph for the hydrophobicity se-
quence of 1KQG protein the predicted TMHs are 
correspondent well with the real TMHs. The selection 
of level 4 is based on our comparisons of wavelet fil-
tering at each scale level. The effects of filtering at 

scale level 1, 2 and 3 are not apparent but the hydro-
phobicity signals are excessively filtered at scale level 
5, which further results in the loss of much infor-
mation about the original sequences. The TMHs pre-
diction accuracy reaches 100% and the amino acid 
residues prediction accuracy reaches 98.8% at the 
scale level 4 with optimal threshold 0.836. The con-
trast data in Table 8 show above result more clearly. 
And amino acid sequence of membrane proteins 
1KQG was prediced by the method DAS [18], 
HMMTOP2.0 [23, 24], PHDhtm [20, 21], PRED-TMR2 
[17], SOSUI [16], TMAP [19], TMHMM2.0 [1, 22]. The 
result is shown in Table 8. From the Table 8, we can 
see the four TMHs of membrane proteins 1KQG were 
correspondence of TMHs we have predicted, i.e. All 
TMHs of membrane proteins have been predicted by 
WavePrd. One more TMHs was predicted by DAS; 
Three TMHs were predicted by PHDhtm and the 
third TMHs has 64 residues, i.e. the third and the 
fourth TMH were predicted together and result in big 
error. Good result has been achieved by other meth-
ods, yet TMHs and residues prediction accuracy are 
the highest by WavePrd. 

 

 
Figure 3. The three-dimensional structure of protein 1KQG. 

 

 
Figure 4. Linear sequence of the 1KQG protein and the parts of bold-face denote the real TMHs. 
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Figure 5. The hydrophobicity signal plot and low frequencies at 
five different scale levels for 1KQG protein. (a) j=0; (b) j=1; (c) j=2; 
(d) j=3; (e) j=4; (f) j=5. 

 

Table 8. Location of TMHs of the sequence of 1KQG (top 
row), WavePrd prediction and results from other currently 
used prediction methods. 

 TM1 TM2  TM3 TM4 
Observed 15-37 51-74  112-134 146-175 
WavePrd 17-36 53-70  116-134 149-176 
DAS 18-39 57-75 90-92 118-136 149-175 
HMMTOP2.0 20-38 55-73  116-135 152-176 
PHDhtm 18-45 55-76  117-180  
PRED-TMR2 19-37 55-73  115-135 156-176 
SOSUI 18-40 55-77  115-137 150-172 
TMAP 14-42 51-78  112-134 148-172 
TMHMM2.0 21-40 55-77  117-139 154-176 

 

According to the function and classification of 
membrane proteins, we divided 80 membrane pro-
teins sequences into 13 groups, which was shown in 
Table 9. Mentioned above, the choosing of threshold 
was ascertained by the maximal and average predic-
tion accuracy given by test data. For every group of 
membrane proteins, at the scale level 4, we tried to 
choose a proper threshold to raise prediction accura-
cy. Prediction accuracy in each protein family by us-
ing threshold 0.836 is shown in Table 9. As is men-
tioned above, threshold 0.836 is determined by 
cross-validation and is the optimal threshold obtained 
from the training set samples. Membrane proteins of 
the same family are homologous, so the optimal 
threshold of each group of membrane proteins may be 
different. The values of parenthesis in Table 9 are the 
optimal threshold used in prediction. 

 
 

Table 9. Prediction accuracy of TMHs in each protein 
family based on different thresholds. 

Family name Prediction accuracy % 
Qp a FAAcora Qp b FAAcorb 

ABC transporters  95.3 
(0.836) 

74.8 100 
(0.566) 

75.6 

Bacteriorhodopsin 100 
(0.836) 

70.7 100 
(0.885) 

71.3 

Channel proteins 91.4 
(0.836) 

81.1 91.4 
(0.847) 

81.3 

Cytochrome bc1 com-
plexes 

86.6 
(0.836) 

66.7 86.6 
(0.765) 

68.9 

Cytochrome b6f com-
plexes 

95.7 
(0.836) 

82.5 95.7 
(0.891) 

82.6 

Cytochrome c oxidases 99.2 
(0.836) 

93.7 99.2 
(0.836) 

93.7 

Glycophorin 100 
(0.836) 

91.3 100 
(0.668) 

92.0 

Light-harvesting com-
plexes 

100 
(0.836) 

93.9 100 
(0.915) 

97.9 

Photosynthetic reaction 
centers 

98.4 
(0.836) 

90.6 98.4 
(0.866) 

91.2 

Photosystems 97.0 
(0.836) 

82.6 97.0 
(0.836) 

82.6 

Respiratory proteins 
Rhodopsins 

93.7 
(0.836) 
100 
(0.836) 

91.6 
 79.5 

93.7 
(0.836) 
100 
(0.885) 

91.6 
 79.9 

Translocation proteins 97.0 
(0.836) 

88.1 97.0 
(0.868) 

88.5 

Average 96.5 83.6 96.8 84.4 
aThe average prediction accuracy of every group of membrane proteins with 
the threshold 0.836. bWith the different threshold for every group of mem-
brane proteins , the prediction accuracy will be raised. 
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From Table 9, we can see that to choose different 
threshold for every group of membrane proteins can 
raise the prediction accuracy of TMHs and residues. 
With the threshold 0.566, the prediction accuracy of 
TMHs of ABC transporters is from 95.3% to 100%; 
With the threshold 0.915, the prediction accuracy of 
residues of light-harvesting complexes is from 93.9% 
to 97.9%. From another angle, we can see the TMHs 
and residues average prediction accuracy of the five 
groups of membrane proteins are the best, which are 
cytochrome C oxidases, glycophorin, light-harvesting 
complexes, respiratory proteins and photosynthetic 
reaction centers. For the thirteen groups of membrane 
proteins data, with the threshold 0.836, the maximal 
and average prediction accuracy of membrane pro-
teins TMHs is 96.5% and that of residues is 83.6%. But 
by choosing different threshold for every group of 
membrane proteins of data base, the average predic-
tion accuracy of TMHs and residues is the highest, 
which are 96.8% and 84.4%.  

To access the effect of the method, 80 membrane 
proteins with known 3D structure are selected as test 
sets to be predicted by WavePrd, including 325 
TMHs, 19396 amino acid residues altogether. Through 
analysis, we choose db10 as the optimal wavelet basis. 
The total number of predicted TMHs is 315 at the scale 
level 4 with optimal threshold 0.836, among which 
308 TMHs are identical to real TMHs. The average 
prediction accuracy of TMHs is 96.3% and that of 
residues is 83.5%. The total residues of TMHs is 6580, 
among which 5495 are predicted rightly. The number 
of false positive segments is 7 and the number of false 
negative segments is 17. These results are better than 
that obtained by using other wavelets or levels. We 
predict 80 set of membrane proteins by 7 methods—
DAS [18], HMMTOP2.0 [23, 24], PHDhtm [20, 21], 
PRED-TMR2 [17], SOSUI [16], TMAP [19], 
TMHMM2.0 [1, 22] and the prediction result can be 
found in Table 10. 

From Table 10, the prediction accuracy of TMHs 
by WavePrd is the highest, which is 96.3%. The next 
highest prediction method which is based on hidden 
Markov model are HMMTOP2.0, TMHMM2.0, with 
prediction accuracy being 95.4% and 94.7% respec-
tively. The prediction accuracy of PHDhtm method 
based on neural network is the lowest, which is only 
88.3%, short of 8.0% compared with WavePrd meth-
od. The highest prediction method of residue is 
TMHMM2.0 and HMMTOP2.0 methods, which is 
84.6% and 84.3% respectively. The second highest 
prediction method of residue is WavePrd method, 
with the prediction accuracy being 83.5%. The above 
eight methods do prediction according to single se-
quence information. These comparisons indicate that 

our method is more accurate and effective in predict-
ing the TMHs number and location of membrane 
proteins, which provide important information for 
research of membrane protein structure and function. 

 
 

Table 10. Main results of eight prediction methods.  

Method Nobs Nprd Ncor Qp 

% 
M C FP FN FAAcor 

% 
WavePrd 325 315 308 96.3 94.8 97.8 7 17 83.5 
DAS 325 357 308 90.4 94.8 86.3 49 17 77.6 
HMMTOP2 325 321 308 95.4 94.8 96.0 13 17 84.3 
PHDhtm 325 286 269 88.3 82.8 94.1 17 56 72.5 
PRED-TMR2 325 285 279 91.7 85.9 97.9 6 46 76.8 
SOSUI 325 297 288 92.7 88.6 97.0 9 37 78.9 
TMAP 325 299 291 93.4 89.5 97.3 8 34 81.7 
TMHMM2.0 325 307 299 94.7 92.0 97.4 8 26 84.6 
Nobs, Nprd and Ncor are the number of observed, predicted and correctly 
predicted TMHs, respectively. Qp stands for prediction accuracy of TMHs, M 
and C stand for the measure indexes of sensitivity and specificity. FP and FN 
are the number of wrongly predicted TMHs and the number of not-predicted 
TMHs, respectively. FAAcor is the prediction accuracy of residues.  

 
 

Conclusion 
With the advancement of high-throughput se-

quencing technology and the practice of sequencing 
model organisms' genomes, more and more DNA and 
protein sequences are swarming into biological se-
quence databases with an unprecedented rate. How to 
mine valuable information efficiently from mass bio-
logical sequences is crucial to the research of bioin-
formatics as well as to many significant fields of func-
tional genomics. The study of the structure and func-
tion of TM proteins is increasingly emphasized since 
TM proteins play an extraordinarily important role in 
the life activity of the cells, such as signal transduc-
tion, immune response and membrane transport. 
However, the structural determination of proteins 
needs a considerable number of purified proteins and 
it is a hard task because the peptide chains of the TM 
proteins span a lipid bilayer and sometimes trans-
verse membrane many times [47]. Because trans-
membrane helix combine closely with membrane, first 
of all, the membrane must be disintegrated by eradi-
cator to separate TM proteins. Then, the TM protein 
can be purified and made crystal. This is not only dif-
ficult in technique, but is also expensive. Thus, the 
high-resolution 3D structural determination and 
analysis of TM proteins cannot answer the need of the 
research for TM protein functions. The computer 
prediction and analysis of the TMHs is able to provide 
much important information to disclose the relation-
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ship between the structure and function of TM pro-
teins.  

We make use of multiresolution analysis theory 
to decompose the original signals into low frequency 
and high frequency domains in amino acid hydro-
phobicity scale format. In wavelet analysis, the low 
frequency can be easily obtained from a raw function 
by the decomposition and reconstruction formula. So 
high frequency domain is deleted and low frequency 
region is left for reconstructing wavelet because we 
only study the general features of protein sequences. 
In the results, we obtain precise filtering signals that 
can help us to find the actual location of TMHs in the 
protein sequences. The post-treatment of the filtering 
signals through reconstructing is very important in 
order to reach a high accuracy when we predict TMHs 
of protein sequences. 80 membrane proteins with 
known 3D structure are selected as test sets to be 
predicted by WavePrd. Firstly, six-fold cross- 
validation method is introduced and five commonly 
used hydrophobic parameters are used to predict the 
position and number of TMHs based on two different 
levels in order to find the best hydrophobic parame-
ters, offer help for further membrane protein work 
and reduce the blindness of choosing hydrophobic 
parameters. Results show that the best membrane 
proteins TMHs is achieved when choosing FP and KD 
hydrophobic parameters. Secondly, take one mem-
brane protein sequence as an example to bat around 
and do comparison combined with the prediction 
results by the other seven methods in order to confirm 
the effectiveness of WavePrd method. A group of 
TMHs are predicted for 13 groups of membrane pro-
tein sequences by using KD hydrophobic parameters. 
At last, in order to prove the feasibility of the method, 
80 membrane proteins are selected as test sets. Com-
pared with the main prediction results of seven pop-
ular prediction methods, the obtained results indicate 
that WavePrd method proposed in this paper has 
higher prediction accuracy. 

Although the proposed method has the charac-
teristics of simplicity, visual process, and high accu-
racy, through the analysis of the predicted results of 
data set, we found that compared with the actual 
structure of membrane protein, there still exist some 
differences in the position and number of the pre-
dicted TMHs. They are as follows: too much predic-
tion, that is the position and number of the predicted 
TMHs and the actual structure is not completely cor-
responding; less prediction, i.e. we haven't predicted 
all the position and number of the actual structure of 
TMHs. This is because: (1) While doing wavelet 
transform, we just map the amino acid sequence of 
membrane protein into hydrophobic value sequence. 

Although hydrophobic effect is the most important 
factor to determine the stability of protein structure, it 
is not the only factor. In addition to hydrophobic ef-
fect, there are hydrogen bond, ionic bond and van der 
Waals force and disulfide bond of peptide chain, etc; 
(2) The volume of protein molecules, electric charge 
and many kinds of factors all have the regulation ef-
fects on the protein structure and stability; (3) Ac-
cording to the signal peptide hypothesis, the signal 
peptide can form TMHs in protein synthesis, auxil-
iary peptide chain across the endoplasmic reticu-
lum (ER) membrane, so in forecasting TMHs, it is 
very normal that signal peptide is contained. In addi-
tion, because hydrophobicity is the main sequence 
characteristic of transmembrane helices, and there are 
likely to be long hydrophobic sequence in the hy-
drophobic core of water-soluble globular protein, 
which also can produce false positive results. In view 
of many kinds of factors, we think while we predict 
the position and number of membrane protein TMHs 
by mapping the amino acid sequence into hydropho-
bic value sequence, the deviation within the scope is 
allowed. If the above many factors are considered, the 
prediction accuracy can be improved. In this paper, 
we only predict the location and number of TMHs of 
membrane protein without considering the orienta-
tion of N-terminus of membrane protein. If we con-
sider the physicochemical property of membrane 
protein and analyze membrane protein sequence by 
combining and altering "positive-inside-rule" in par-
ticular, we can better solve the above problems, which 
is our next research direction. 
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