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Shiga toxin (Stx) is the main virulence factor of Shiga toxin-producing Escherichia
coli (STEC), and ruminants are the main reservoir of STEC. This study assessed the
abundance and expression of Stx genes and the expression of host immune genes,
aiming to determine factors affecting these measures and potential gene markers to
differentiate Stx gene expression in the recto-anal junction of feedlot beef cattle. Rectal
tissue and content samples were collected from 143 feedlot steers of three breeds
(Angus, Charolais, and Kinsella Composite) over 2 consecutive years 2014 (n=71) and
2015 (n=72). The abundance and expression of stx1 and stx2were quantified using qPCR
and reverse-transcription-qPCR (RT-qPCR), respectively. Four immune genes (MS4A1,
CCL21, CD19, and LTB), previously reported to be down-regulated in super-shedder
cattle (i.e., > 104 CFU g-1) were selected, and their expression was evaluated using RT-
qPCR. The stx1 gene abundance was only detected in tissue samples collected in year 2
and did not differ among breeds. The stx2 gene was detected in STEC from all samples
collected in both years and did not vary among breeds. The abundance of stx1 and stx2
differed (P < 0.001) in content samples collected across breeds (stx1:AN>CH>KC, stx2:
AN=CH>KC) in year 1, but not in year 2. Expression of stx2was detected in 13 RAJ tissue
samples (2014: n=6, 2015: n=7), while expression of stx1 was not detected. Correlation
analysis showed that the expression of stx2 was negatively correlated with the expression
of MS4A1 (R=-0.56, P=0.05) and positively correlated with the expression of LTB
(R=0.60, P=0.05). The random forest model and Boruta method revealed that
expression of selected immune genes could be predictive indicators of stx2 expression
with prediction accuracy of MS4A1 >LTB >CCL21 >CD19. Our results indicate that the
abundance of Stx could be affected by cattle breed and sampling year, suggesting that
host genetics and environment may influence STEC colonization of the recto-anal junction
of feedlot cattle. Additionally, the identified relationship between expressions of host
immune genes and stx2 suggests that the host animal may regulate stx2 expression in
colonizing STEC through immune functions.
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INTRODUCTION

Shiga toxin-producing Escherichia coli (STEC) cause foodborne
disease that can lead to hemolytic uremic syndrome (HUS) and
hemorrhagic colitis (HC) (Karmali et al., 1983). Approximately,
2.8 million acute illnesses around the world are attributed to STEC
(Majowicz et al., 2014), with 60,000 of these occurring in the US
annually (Scallan et al., 2011). Many infections in humans are
attributed to direct or indirect contact with food or water
contaminated with cattle feces (Mir et al., 2016). Ruminants,
especially cattle are the main reservoir who are asymptomatic
carriers of O157 and non-O157 STEC strains with the recto-anal
junction (RAJ) as the main colonization site (Wang et al., 2016).
Most E. coli strains are commensals within the gut of cattle (Mir
et al., 2016; Wang et al., 2016), and are shed into the environment
through feces. Cattle that shedmore than 104 CFU STEC per gram
of feces are defined as “super-shedders” (SS), which are considered
the primary source of STEC transmission on farms (Matthews
et al., 2006). Although the incidence of E. coli O157:H7 causing
disease in cattle is low, the prevalence of STEC including both
E. coli O157:H7 and non-O157:H7 serotypes is not low in cattle
ranging from 38.5%–75.0% (Cho et al., 2009). Both E. coli O157:
H7 and non-O157:H7 serotypes can cause human disease and
among non-O157 infections, up to 70% of human infections are
attributed to six non-O157 STEC serogroups (O26, O45, O103,
O111, O121, and O145) (Bosilevac and Koohmaraie, 2012).

Shiga toxins are the main virulence factors in STEC and other
pathogenic bacterial species with the prototype toxins being
designated as Shiga toxin 1a (Stx1a) and Shiga toxin 2a (Stx2a)
(Melton-Celsa, 2014). These toxins differ in their virulence and host
specificity (Fuller et al., 2011; Lee and Tesh, 2019; Petro et al., 2019)
with Stx2 beingmost commonly associatedwith severe illness (HUS,
hospitalization, and bloody diarrhea) in humans (Karmali et al.,
1983; Panel et al., 2020). For example, 40% HUS, 41%
hospitalization, and 43% bloody diarrhea cases reported in human
were attributed to the detectable Stx2 (Panel et al., 2020). Therefore,
identifying the abundance of stx1 and stx2 genes in cattle is
important as they could harbor and shed STEC. However,
information on the abundance and expression of stx1 and stx2
genes in vivo (e.g. in RAJ) of feedlot cattle is lacking.We hypothesize
that the expression and abundance of stx genes at the RAJ is
influenced by cattle breed and expression of host immune genes.
Genetic variation in the host was found to be linked to the level of
expression of immune genes in SS (Wang et al., 2018), which also
affected the attachment and the colonization of themucosa by STEC
(Wang et al., 2018). The understanding of abundance and
expression of stx genes in STEC from the main colonization site
and its linkage with host immune gene expression will gain insights
into the host-STEC interactions at the RAJ of feedlot cattle.
MATERIALS AND METHODS

Animal Populations and Sample Collection
The animal trial followed Canadian Council of Animal Care
Guidelines and was approved by the Animal Care and Use
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
Committee, University of Alberta (Animal Care Committee
protocol number AUP00000882). In total, rectal tissue and
contents were collected over 2 consecutive years (2014 and
2015) from 143 cattle representing Angus breed (AN, n=47),
Charolais breed (CH, n=48), and a crossbreed named Kinsella
Composite (KC, n=48) that were reared at the University of
Alberta Roy Berg Kinsella Research Station. Sampling was
performed when animals were slaughtered at a comparable age
(Year 2014: 492 days ± 30 days; Year 2015: 496 days ± 22 days;
P=0.11) in each year. Ten cm2 rectal tissue was collected from
RAJ and 10 ml rectum contents were squeezed from each steer
within 30 min after slaughter at a federally approved abattoir.
The samples were deep-frozen immediately in liquid nitrogen
and stored at -80°C until use.

DNA and RNA Extraction
Tissue and content samples of RAJ were ground into fine
powder in liquid nitrogen and mixed homogeneously before
DNA and RNA extraction. DNA was isolated from 0.1 g
powdered tissue using repeated bead beating and a column
(RBBC) method (Yu and Morrison, 2004) and purified using
the QIAamp DNA Stool Mini Kit (Qiagen, Germany). The
quantity and quality of DNA were assessed based on
absorbance at 260 and 280 nm using the ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington,
USA). Trizol reagent (Invitrogen Corporation, Carlsbad, CA,
USA) was used to isolate total RNA from 0.1 g powdered tissue
following the manufacturer’s protocol. RNA was purified using
the RNeasy MinElute Cleanup kit (Qiagen, Valencia, CA, USA).
Quality and quantity of RNA were assessed using Agilent 2200
TapeStation (Agilent Technologies, Santa Clara, CA, USA) and
Qubit 3.0 Fluorometer (Invitrogen, Carlsbad, CA, USA),
respectively. DNA was extracted from 0.5 g of the RAJ
contents from each steer using the same bead beating method
described above. DNA was obtained from contents of 131 steers
and were used for downstream analysis.

Assessment of Shiga Toxin Gene
Abundance Using qPCR
The DNA extracted from contents and tissues was used to
evaluate the abundance of Stx genes using quantitative PCR
(qPCR) with primers for the detection of all subtypes of stx1
and stx2 (Table 1) and SYBR Green I reagent (Fast SYBR green
master mix; Applied Biosystems, Foster City, CA, USA). The
qPCR was conducted in triplicates for each sample on a
StepOnePlus™ Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA) with the program of one cycle at 95°C
for 20 s followed by 40 cycles of 3 s at 95°C, 30 s at 60°C.
Melting curve analysis with a temperature gradient of 0.1°C/s
from 60 to 95°C with fluorescence signal measurement at 0.1°C
intervals was performed to make sure targeted products were
amplified specifically. The standard curve method was used to
quantify stx1 and stx2 copy numbers. The standard curve was
constructed by genomic DNAs isolated from strain E. coli FUA
1403 and E. coli FUA 1400, which contain stx1 and stx2,
respectively. The formula to calculate the absolute copy
March 2021 | Volume 11 | Article 633573
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number of standard curves is described as follows (Li et al.,
2009):

Absolute copy number
#

gSample

� �

=
Amount gDNA

gSample

� �
∗ 6 : 022 ∗ 1023 #

mol

� �
Length bpð Þ ∗ 660 gDNA

mol ∗ bp

� �

where 6.022 * 1023 represents the Avogadro’s constant (#/mol);
Length (bp) is the length of template DNA; 660 represents the
average mass of 1 bp double-strand DNA. The copy number of
stx1 or stx2 was determined by relating threshold cycle (CT)
values to standard curves based on the following regression
formula (Li et al., 2009): Y = -3.193 * log X + 35.003 (Y, CT

value; X, copy number of 16S rRNA gene) (r2 = 0.996). The
qPCR amplification efficiency was 88%–98%.

Detection of Expression of Stx and Host
Immune Genes Using qRT-PCR
Total RNA (0.1 μg) was further subjected to reverse transcription
to synthesize cDNA using a cDNA Synthesis Kit (Bio-Rad,
Hercules, CA, USA). Single-stranded cDNA was amplified
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
using Oligo(dT)12-18 (Life Technologies, Carlsbad, CA, USA)
and SuperScript™ II RT (Life Technologies, Carlsbad, CA, USA)
was used to synthesize double-strand cDNA. Primers for the
detection of eae expression are shown in Table 1. Quantitative
RT-PCR of stx1, stx2, and eae was then performed using the
double-strand cDNA and primers (Table 2) with the same
thermal cycling program described above in triplicates for each
sample. The expression of stx1, stx2, and eae was quantified by
standard curve method described above.

In addition, four genes reported to be differentially expressed
between SS and non-shedding (NS) cattle (Wang et al., 2016);
chemokine (C-C motif) ligand 21 (CCL21), lymphotoxin beta
(LTB), CD19 molecule (CD19), and 4-domains, subfamily A,
member 1 (MS4A1) were selected to study their relationship with
Stx gene abundance and expression. The same qPCR
amplification conditions were used for the four genes with
their respective primers (Table 1). Four commonly used
housekeeping genes, including bovine GAPDH, 18S rRNA
genes, RPLP0, and the b-actin gene, were also quantified by
qPCR (Wang et al., 2016). As b-actin exhibited the most
consistent Cq value it was used as the house-keeping gene for
evaluating relative gene expression. The relative expression of
each gene (stx1, stx2, and immune genes) was measured by DCq
value, which was calculated as (Wang et al., 2016):
TABLE 1 | Primer sequences, amplicon sizes, and annealing temperature for qPCR assays.

Genes Oligo sequence (5’ to 3’) Amplicon size, bp Reference Annealing temperature (°C)

stx1 F: GTCACAGTAACAAACCGTAACA
R: TCGTTGACTACTTCTTATCTGGA

95 Jothikumar & Griffiths, 2002 60

stx2 F: ACTCTGACACCATCCTCT
R: CACTGTCTGAAACTGCTC

118 He et al, 2020 60

eae F: TGCTGGCATTTGGTCAGGTC
R: CGCTGA(AG)CCCGCACCTAAATTTGC

175 Delmas et al, 2009 60

CCL21 F: GCTATCCTGTTCTCGCCTCG
R: ACTGGGCTATGGCCCTTTTG

222 Wang et al, 2016 60

LTB F: TGGGAAGAGGAGGTCAGTCC
R: TAGCTTGCCATAAGTCGGGC

215 Wang et al, 2016 62

CD19 F: CTCCCATACCTCCCTGGTCA
R: GCCCATGACCCACATCTCTC

127 Wang et al, 2016 64

MS4A1 F: GCGGAGAAGAACTCCACACA
R: GGGTTAGCTCGCTCACAGTT

206 Wang et al, 2016 64

b-actin F: CTAGGCACCAGGGCGTAATG
R: CCACACGGAGCTCGTTGTAG

177 Malmuthuge et al, 2012 60
March 2021
TABLE 2 | The prevalence analysis of stx1 and stx2 for samples collected from the rectal tissue and content in 2014 and 2015.

Sample type Breed Year 1 (2014) Year 2 (2015)

No. (% ) Stx1-positive P value No. (%) Stx2-positive P value No. (%) Stx1-positive P value No. (%) Stx2-positive P value

Tissue AN 0 (0)a 1 23 (100) 1 24 (100) 1 24 (100) 1
CH 0 (0) 24 (100) 23 (100) 23 (100)
KC 0 (0) 24 (100) 24 (100) 24 (100)
AN 18 (78) 0.001*** 22 (96) <0.001*** 1 (6) 0.069 17 (94) 0.272Content
CH 7 (35) 20 (100) 0 (0) 24 (100)
KC 6 (27) 4 (18) 4 (17) 24 (100)
| Volume 11 | Article
aValues presented here were numbers and percentages of Stx-positive samples. Fisher’s exact test was used to examine the differential prevalence of stx1 and stx2 among three breeds
within each sample type. For comparisons, P-values were included along with the level of statistical significance (P ≤ 0.001***).
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DCq = Cqtarget genes − Cqreference gene

with a higher DCq representing the lower expression while a
lower DCq indicating higher expression. The qPCR amplification
efficiency was 88%–98%.
Statistical Analysis
The PROC MIXED model in SAS (ver. 9.13; SAS Institute Inc.,
Cary, NC, United States) was used to analyze the stx1 and stx2
abundance as well as host gene expressions together with all
potential 2- and 3-way interactions among breeds, years, and
sample types. In this statistical model, breed, sample type, and
year were analyzed as fixed effects with steers as the random
effect. Interactions were removed from the model if they were not
significant (P > 0.05). Least square means were compared using
the Bonferroni mean separation method after the removal of
insignificant interactions and the significance was considered at
P <0.05. The difference of prevalence of stx1 and stx2 was
analyzed using Fisher’s exact tests. Non-parametric Mann-
Whitney U test in R (Mangiafico, 2020) was used to assess
differences in host gene expression between Stx2+ (expressed)
and Stx2- (not expressed) groups, with differences considered
significant at P<0.05. Correlation analysis was performed based
on Spearman’s rank correlation coefficient (R) to identify
relationships between expression of stx2 and host genes using
the “ggcorrplot” package in R with significance at P<0.05.

Isomap, a novel method for nonlinear dimensional reduction
(Tenenbaum et al., 2000), was applied to determine the effect of
breed, and sampling year on the expression of immune genes and
stx2 using the “RDRToolbox” package in R. In addition, Davis-
Bouldin-Index (DBIndex) was used to compute Euclidean
metrics to validate the clustering patterns of the expression of
immune genes and stx2, with the value ≤ 1 indicating a well-
separated cluster (Davies and Bouldin, 1979). Correspondence
analysis (CA) was used to identify relationships among
expression patterns using the “FactoMineR” package (Ringrose,
1992; Tekaia, 2016).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Identification of Potential Gene Markers
for Stx Gene Expression Using
Mathematic Models
The random forest model was used to identify predictive
indicators for stx2 expression with the “RandomForest”
package in R. The host gene expression data were divided into
two groups: stx2+ (expressed) and stx2- (not expressed). Two-
thirds of each group was used as training data, and the rest (one-
third) was used for validation. The accuracy rate (number of
samples recognized correctly/total number of samples) was
calculated to determine the model classification performance.
The mean decrease in accuracy was used to assess the importance
of host genes as predictive indicators of stx2 expression.
Variables with high mean decrease in accuracy indicate the
higher contribution as compared to variables with low mean
decrease accuracy (Han et al., 2016). The area under the ROC
curve (AUC) was calculated to assess the robustness of the
prediction model with the criteria being excellent (0.9–1.0),
good (0.8–0.9), fair (0.7–0.8), weak (0.6–0.7), or fail (0.5–0.6)
(Zhang et al., 2016). Moreover, the Boruta method, a random
forest-based feature selection with the ability to remove less
informative features, was used as a supportive approach to
perform this prediction using the “Boruta” package in R
(Kursa and Rudnicki, 2010).
RESULTS

Factors Affecting the Abundance and
Prevalence of stx1 and stx2
Sampling year significantly impacted the abundance and
prevalence of stx genes identified in RAJ samples (P<0.01),
therefore, the effect of breed on the prevalence and abundance
of stx1 and stx2 was analyzed separately for each year. The
prevalence of stx1 and stx2 in tissue samples was not affected by
breed in either year (Table 2). In year 1, the prevalence of stx1 in
contents was higher (P = 0.001, Table 2) in AN (n=18; 78%)
compared to CH (n=7; 35%) and KC (n=6; 27%), and the
TABLE 3 | Abundance of stx1 and stx2 using q-PCR for samples collected from the rectal tissue and content in 2014 and 2015.

Year Breed AN CH KC P-Value

Type T C T C T C Breed Type Breed*Type

2014 stx1 N/D a 4.09
(5.20)

N/D 1.73
(5.79)

N/D 1.40
(5.47)

<0.0001*** <0.0001*** <0.0001***

stx2 6.02
(0.08)

4.92
(1.01)

5.31
(0.05)

5.91
(0.22)

5.70
(0.05)

1.00
(4.65)

<0.0001*** <0.0001*** <0.0001***

2015 stx1 6.78
(0.02)

0.25
(1.11)

6.82
(0.03)

N/D 6.76
(0.03)

N/D 0.31 <0.0001*** 0.28

stx2 5.70
(0.02)

4.58
(1.58)

5.73
(0.03)

4.91
(0.20)

5.67
(0.03)

5.06
(0.31)

0.17 <0.0001*** 0.12
March 2021
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aThe value was presented as Mean (SE) after log10 transformation (gene copy numbers/g sample). T represents tissue samples, C represents contents. For content and tissue samples,
the lowest abundance that can be detected corresponds to 200 (2.3 after log10 transformation) gene copies/g and 40 (1.5 after log10 transformation) gene copies/g, respectively.
Therefore, stx gene abundance that lower than 2.3 log10(gene copies/g) and 1.5 log10(gene copies/g) for content and tissue samples was defined as “underdetermined” (“N/D”) which is
assumed to be “0” in our analysis, respectively. For comparisons among different factors and among interaction effects, P-values were included along with the level of statistical significance
(P ≤ 0.001***).
rticle 633573
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prevalence of stx2 was higher (P < 0.001, Table 2) in AN (n=22;
96%) and CH (n=20; 100%) than in KC (n=4; 18%). However, the
prevalence of stx1 and stx2 in content samples collected in year 2
was not affected by breed (Pstx1 = 0.069, Pstx2 = 0.272,Table 2) with
a tendency for breed to affect the prevalence of stx1.

The abundance of stx1 and stx2 was affected (P < 0.001) by
sample type (tissue vs. contents) for both years (Table 3). An
interaction effect between breed and sample type for the
abundance of stx1 and stx2 was detected in year 1 (Pstx1<0.001,
Pstx2<0.001, Table 3), but not in year 2 (Pstx1 = 0.28, Pstx2 = 0.12,
Table 3). In year 1, the abundance of stx1 in contents was
affected by breed with its abundance higher in AN> CH> KC
(P<0.001, Table 3), while its abundance in rectal tissue was under
the detection limit (Table 3). For stx2, it was detected in both
tissue and content samples in year 1 with no difference in the
abundance of stx2 in tissue samples (Table 3), but with the
higher abundance in rectal contents of AN and CH as compared
to KC steers (P<0.0001, Table 3). For year 2, the abundance of
stx1 or stx2 did not differ among breeds for either tissue or
contents (Table 3), with the abundance of stx1 and stx2 in tissue
being higher compared to that in contents (Pstx1<0.001,
Pstx2<0.001, Table 3), respectively.

Expression of stx1 and stx2 Associated
With the Rectal Tissue of Beef Steers
Expression of bacterial stx1 was not detected, and bacterial
stx2 (defined as stx2+) was only detected in mucosal tissue
from 13 cattle (2014: n=6, 2015: n=7, Table S1). The expression
of stx2 was more common in KC (n=9; 70%) than in AN (n=2;
15%) and CH (n=2; 15%). The non-parametric Kruskal-Wallis
test showed that stx2 expression did not differ among breeds
(DCq AN=5.04; DCq CH=5.11; DCq KC=5.04; P= 0.31), but there
was a trend for difference between sampling years (DCq Year 2014 =
4.94; DCq Year 2015 = 5.15; P = 0.06).

Expression of Selected Immune Genes in
RAJ Tissue From Beef Steers
In year 1, the expression of four selected immune genes was not
affected by breed. In year 2, only expression of CD19 and CCL21
differed among breeds (PCD19 = 0.02, PCCL21 = 0.0035, Table 4).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Therewasnodifference (PMS4A1= 0.36, PCD19 = 0.62, PCCL21= 0.94,
PLTB=0.54, Table 5) in the expression of the four genes between
stx2+ and stx2- steers. Visually, host gene expression patterns from
tissue sampleswere affected by year among all samples (ValueYear =
0.81, Figure 1A) as well as among stx2+ samples (ValueYear =0.75,
Figure 1B). However, host gene expression patterns did not differ
among breeds based on DBIndex clustering value among all
samples (Valuebreed=9.30, Figure S1A) or among stx2+ samples
(Valuebreed=1.64, Figure S1B).

Association Between Expressions of stx2
and Host Immune Genes
Expression of stx2 was negatively correlated with the expression
of MS4A1 (R=-0.56, P=0.05, Table 6) and positively correlated
with the expression of LTB (R=0.60, P=0.05, Table 6). Neither
CD19 nor LTB clustered with Stx2+ samples but CD19 and LTB
were positively correlated (R=0.98, P=0.00, Table 6).
Correspondence analysis revealed that most of the samples (12
out of 13, outlier: KC14.105) grouped together in the CA plot
with MS4A1 and CCL21 (Figure 2). In the correspondence
analysis (CA), Dimension 1 (Dim1) represented up to 94% of
the importance with CD19 and LTB contributing the most to
Dim1, with Dim2 only representing 4.14% of the variation
(Figure 2).

Prediction Model to Discover Potential
Gene Markers for stx2 mRNA Abundance
Further analysis using a random forest model classifier based on
expressions of four host immune genes MS4A1, LTB, CCL21,
CD19 revealed the accuracy for predicting stx2 mRNA
abundance was 96.5% for the training data and 93.6% for the
validation data. The AUC value of 0.908 for the ROC curve also
revealed a high accuracy and a robust prediction (Figure 3A). As
an indicator of stx2 expression, the prediction accuracy of
MS4A1, LTB, CCL21, CD19 was 47.55%, 45.35%, 41.44%,
36.80%, respectively. Further Boruta analysis also revealed that
all four immune genes were attributes for stx2 expression, with
the ranking MS4A1 > LTB = CD19 > CCL21 (Figure 3B).
DISCUSSION

This study characterized the abundance, prevalence, and
expression of the stx1 and stx2 at the recto-anal junction in
feedlot steers of three breeds over 2 consecutive years. Several
TABLE 5 | Expression differences for four host genes between Stx2+ and Stx2-
samples using non-parametric Mann-Whitney U test.

Immune genes Mean Z-score P-Value

Stx2- Stx2+

MS4A1 3.65 3.44 0.92 0.36
CD19 1.90 1.54 0.49 0.62
CCL21 5.02 5.04 0.08 0.94
LTB 1.90 1.30 0.61 0.54
March 2021 | V
olume 11 | Articl
For comparisons between Stx2+ and Stx2- group, P > 0.05 indicates no significant difference.
TABLE 4 | Quantification for relative expressions of four host gene among
breeds and differed RFI using qRT-PCR for rectal tissue samples collected in
2014 and 2015.

Year Immune genes AN CH KC P-Value

2014 MS4A1 2.80 (0.36)a 3.42 (0.29) 3.76 (0.44) 0.13
CD19 -0.14 (0.38) -0.32 (0.52) -0.06 (0.35) 0.91
CCL21 3.88 (0.45) 4.64 (0.35) 4.82 (0.46) 0.26
LTB -0.96 (0.48) -0.97 (0.60) -1.30 (0.44) 0.86

2015 MS4A1 3.76 (0.27) 3.65 (0.25) 4.26 (0.30) 0.26
CD19 3.61 (0.28) 3.50 (0.29) 4.51 (0.24) 0.02*
CCL21 5.94 (0.25) 4.90 (0.21) 5.87 (0.23) 0.0035***
LTB 4.31 (0.44) 4.36 (0.40) 5.47 (0.36) 0.07
aThe value was presented as Mean (SE) of DCq value that was calculated from each tissue
sample under different year, breed, and feed efficiency. For comparisons among different
factors and interaction effects, P-values were included with the level of statistical
significance (P < 0.05*, P ≤ 0.001***).
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studies have quantified the copy number of stx1 and stx2 in cattle
feces using qPCR, with estimates ranged from 0 to 5.6 log10(gene
copies/g) (Imamovic and Muniesa, 2011; Verstraete et al., 2014).
Our estimates of the copy number of stx1 and stx2 in contents are
within these ranges, with 1.24 to 4.13 log10(gene copies/g) (year
1, stx1), 0 to 0.45 log10(gene copies/g) (year 2, stx1), 0.86 to 5.38
log10(gene copies/g) (year 1, stx2), and 4.51 to 5.09 log10(gene
copies/g) (year 2, stx2). However, there was a markable difference
in the copy number of stx in tissue samples when compared to
RAJ contents. Stx genes associated with RAJ tissue samples
ranged from 5.62 to 6.07 log10(gene copies/g) (year 1, stx2),
6.71 to 6.85 log10(gene copies/g) (year 2, stx1), and 5.61 to 5.76
log10(gene copies/g) (year 2, stx2). We speculate that the high stx
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
copy numbers detected from tissues likely represents the higher
possibility of the STEC colonization on RAJ mucosa. Indeed, a
previous study has reported that the abundance of E. coli O157
strain was inconsistent between RAJ tissues and content samples
(Keen et al., 2010), suggesting that Stx carrying bacteria were
associated with the epithelium of RAJ in the steers in addition to
their presence in digesta. Based on our results, digesta samples
only present a proportion of the actual STEC that inhabit in the
RAJ of cattle, with the higher population directly colonizing
epithelial tissue. These suggest that it should include fecal
samples together with rectal mucosa swabs or biopsies to have
more accurate estimation of stx gene abundance in cattle.

Our study further revealed that the abundance and prevalence
of the stx genes was affected by breed and sampling year, and
such effects were stx type dependent. However, a previous study
found no relationship between cattle breed and the presence of
stx at the RAJ (Mir et al., 2016). The inconsistency between our
and previous findings may be due to differences in breed, age
[calf (Mir et al., 2016) vs. steer], and diets of the cattle. In this
study, Angus, Charolais, and Kinsella Composite breeds were
used to examine the abundance and prevalence of stx genes,
while previous studies collected samples from hybrid Angus-
Brahman beef calves (Mir et al., 2016). Steers in our study were
fed a high gain diet and slaughtered at similar body weight, but
still differed in stx1 and stx2 prevalence across breeds, suggesting
the highly individualized response to STEC colonization.
Therefore, host genetics may alter the gut environment through
influences on immunity and the microbiome (Wang et al., 2018),
which may influence the prevalence of STEC and the prevalence
A B

FIGURE 1 | Comparisons of host gene expression patterns using non-parametric method Isomap and DBIndex value for sampling year effect (A) among all samples
(B) as well as among Stx2+ samples. Black dots and red dots refer to samples collected in 2014 and 2015, respectively. DBIndex value was shown on the right
corner of each figure. The lower DBIndex value, the well-separated cluster pattern.
TABLE 6 | Correlation analysis among relative expressions of host genes and
stx2 expression among Stx2+ samples.

Stx2RNA MS4A1 CD19 CCL21 LTB

Stx2RNA R-Value 1.00 -0.56 0.51 -0.44 0.60
P-Value 0.00 0.05* 0.08 0.13 0.03*

MS4A1 R-Value 1.00 -0.55 0.39 -0.56
P-Value 0.00 0.05* 0.19 0.05*

CD19 R-Value 1.00 0.19 0.98
P-Value 0.00 0.53 0.00***

CCL21 R-Value 1.00 0.09
P-Value 0.00 0.78

LTB R-Value 1.00
P-Value 0.00
R-value was defined as the correlation coefficient ranged from -1 to 1. For correlations with
different genes, P-values were included along with the level of statistical significance (P ≤

0.05*, P ≤ 0.001***).
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and abundance of stx genes in the samples. The observed differences
between sampling years suggest that environmental factors together
with host genetics impact the prevalence of the stx genes in the RAJ
of steers. Higher ambient temperatures have been shown to be
associated with increased prevalence of both stx1 and stx2 in the
rectal mucosa of both dairy and beef cattle (Fernandez et al., 2009;
Tahamtan et al., 2010). For our study, the average ambient
temperatures were similar between the two years (3.25°C for 2014
vs. 5.63°C for 2015) and as a result it is unlikely to account for the
difference in detection of stx1 and stx2 between years. Other
ecological factors such as seasonality, water and soil sources, and
factors associated with farm management may also contribute to
varied STEC colonization. Future long term monitoring studies are
needed to determine to what extent these environmental factors
contribute to the prevalence of both stx1 and stx2 in the RAJ
of cattle.

Although the presence of both stx1 and stx2 genes were
detected, only expression of stx2 was found in the RAJ tissue
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
of beef steers. Severe STEC infections that result in HUS are
mostly associated with stx2 as its product is 400 times more toxic
(as quantified by LD50 in mice) than the product of stx1 (Riley
et al., 1983). Stx2-producing E. coli strains were reported to be in
71% (34 out of 48) of children with HUS, while only 40% (four
out of 10) of patients were associated with stx1-producing E. coli
strains (Ludwig et al., 2001). It is noticeable that the prevalence of
stx2 gene expression in steers (8.5% for year 1, 9.7% for year 2) is
similar to the reported super shedder rate [~10% (Matthews
et al., 2006)], suggesting the expression of stx2 might be highly
correlated with super shedding (SS) and cattle with stx2
expression might potentially be SS. Interestingly, all stx2+
samples were from KC steers in 2014,suggesting KC might be
more prominent carriers of STEC and further highlighting the
role of breed.

We further speculate that the stx2+ cattle may have higher
colonization of STEC. As the adherence factor intimin encoded
by eae gene enables STEC colonization (Farfan and Torres, 2012)
FIGURE 2 | Assessment of associations between host immune gene expressions and Stx2+ samples using correspondence analysis. Red triangles and blue dots
refer to host genes and Stx2+ samples, respectively. For example, “AN14.105” means the number of this sample is 105, breed is Angus, and was collected in 2014.
A B

FIGURE 3 | Assessment of Random Forest model using ROC curve and Boruta method. (A) Assessment of classification performance of random forest model
using area under ROC (AUC). Sensitivity (y-axis) represents the fraction of samples with positive Stx2 expression that the test correctly identifies as positive.
Specificity (x-axis) represents the fraction of samples without Stx2 expression that the test correctly identifies as negative. (B) Rank of host immune genes as
markers for Stx2 expression prediction using Boruta method. ○ represents the outliers in each Z-score.
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and the presence of eae is correlated with the formation of
attaching and effacing (A/E) lesions (Wieler et al., 1996) and
E. coli O157:H7 colonization in bovine RAJ (Sheng et al., 2006),
the expression of eae was also assessed in this study. The
expression of eae was detected in nine out of 131 RAJ tissue
samples (Data not shown). Of these, only two samples were stx2
positive. A previous study isolated 326 E. coli strains from 304
fecal samples of clinically healthy wild boars, and found that 10
samples were eae positive belonging to different E. coli strains
(Alonso et al., 2017). Besides, only one stx2+ eae+ E. coli strain
(E. coli O145:H28) was characterized to date and was reported to
be associated with HUS in human (Alonso et al., 2017). Although
the occurrence of eae, alone or in combination with stx2 is
sporadic, diverse E. coli serotypes exist in beef cattle and among
them certain serotypes could be potential human pathogens.
Compared to previous studies only reported expressions of eae
and stx from fecal samples, our study is the first to report
expressions of these two genes on RAJ mucosa. The detection
of stx+, eae+, and stx2+eae+ cattle suggests the importance to
include all serotypes instead of only E. coliO157:H7 for future SS
research in practice to the prevention of SS transmission and the
mitigation of potential human infections. Future study is needed
to isolate E. coli serotypes who carry stx+, eae+, and stx2+eae+
genes and evaluate their abundances in RAJ and feces of beef
steers to verify whether they are SS. Although the abundance of
O157 strains were not quantified in this study, our study
highlights the importance to use marker genes to assess all
STEC populations as opposed to only E. coli O157:H7. In
addi t ion to eae genes , Enterohemorrhagic E. co l i
autotransporters (Eha) A and B autotransporters that can
colonize on bovine epithelia are vital adhesin factors in STEC
and are higher prevalent among STEC strains (97% and 93%,
respectively) (Wells et al., 2009; Easton et al., 2011). Particularly,
EhaA promoted adhesion to primary epithelial cells of bovine
RAJ and should be explored to identify relationships between
EhaA and host immunity for fundamental understanding of
host-STEC interactions and STEC colonization. Other adhesin
factors that play a role in STEC colonization on bovine epithelia
such as hemorrhagic coli pili (HCP), EspP rope-like fibers
(Farfan and Torres, 2012) should also be explored to identify
relationships between STEC adhesin factors and host immune
gene expressions.

Previous studies have identified differences in the expression
ofMS4A1, CD19, CCL21, LTB genes at the RAJ of super-shedder
vs. non-shedders (Corbishley et al., 2014; Wang et al., 2016).
These genes are involved in B cell proliferation (Uchida et al.,
2004), B cell receptor signaling pathway (Karnell et al., 2014),
and the migration of B cells from bone narrow to lymphoid
tissues (Bowman et al., 2000), as well as the induction of the
inflammatory response system (Browning et al., 1995). The
observed higher relative expression of CD19 (a membrane co-
receptor found on all B cells) in KC steers and the higher relative
expression of CCL21 in AN and KC than CH in 2015, suggests
that expression of this gene in cattle is influenced by breed.
Breed-driven gene expression against infections and biological
processes have been explored in bovine tissues and cells.
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Examples include, the reduced expression of the ALDOA
(Fructose-bisphosphate aldolase A) gene in the longissimus
muscle of Wagyu- as compared to Piedmontese-sired
offsprings (Lehnert et al., 2007), and the up-regulation of CD9
(CD9 antigen) and BoLA-DQB (BoLa Class II histocompatibility
antigen, DQB*101 beta chain) in the macrophage of Sahiwal
compared to Holstein cattle in response to Theileria annulate
infection (Glass and Jensen, 2007). In our previous study, the
variation in expression of immune genes between SS and NS,
could be due to the genetic variation (Wang et al., 2016),
suggesting future genome wide association studies (GWAS) are
needed to identify the genotypes and/or SNPs responsible for
expression of immune genes that could directly or indirectly
affect STEC colonization and expression of their virulence genes.

Lymphotoxin beta (LTB) induces the immune response and is
crucial for the initiation of Lymphoid follicle (ILF) development
(McDonald et al., 2005). Lymphoid follicles (ILFs) in the bovine
rectum are regarded as the reservoir of secretory antibodies in
the gut, serving as a frontline defensive system in the
gastrointestinal (GI) tract (Tsuji et al., 2008). The positive
correlation between stx2 expression and relative expression of
LTB suggests that cattle with higher stx2 expression have lower
LTB expression, which may lead to decreased production of
lymphotoxin, reduced ILF development in the RAJ. Impaired ILF
has been associated with a 10 to 100-fold increase in the
colonization of Enterobacteriaceae in ileum of mice (Bouskra
et al., 2008), and 100-fold increase in anaerobic bacteria in the
small intestine of mice (Fagarasan et al., 2002). Also, a previous
study indicated that super-shedders harbor a distinct fecal
microbiota compared to non-shedder (Xu et al., 2014). These
suggest that changes in LTB expression could lead to impaired
ILF function and altered microbiota, which could promote STEC
colonization in cattle. Expression of MS4A1 was negatively
correlated with stx2 expression and MS4A1 was in the
dominant position of stx2+ samples from the correspondence
analysis, suggesting the vital role of MS4A1 in regulating stx2
expression and partially reflecting a strengthened adaptive
immunity in stx2+ cattle. MS4A1 encodes CD20 which is
expressed from late pro-B cells through memory cells with its
function to enable optimal B cell immune response and against
T-independent antigens (Kuijpers et al., 2010). Hence, these
indicate that MS4A1 is the key gene in connecting stx2
expression to host adaptive immunity, and their negative
correlation suggest the establishment of host recognition
mechanisms for stx2 expression.

To our knowledge, this study is the first to explore whether
host gene markers were related to stx expression and potential
STEC colonization using artificial intelligence-based approaches
(Random Forest model and Boruta method). Based on results of
mean decrease accuracy in the Random Forest Model and Boruta
method and the biological functions of these four immune genes,
our results highlight the relationship between host immune
genes and stx2 expression. Of the genes studied, MS4A1 was
the best predictor of stx2 expression and it was in the stx2+
sample cluster in the CA map. We used the non-parametric
dimensionality reduction method, Isomap, to assess the
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relationship between the expression of host genes and stx2, and
results supported the stx2 expression is closely associated with
host gene expression patterns. Isomap was initially developed for
computational visual perception (Tenenbaum et al., 2000) and
then used to investigate ecosystem crosstalk (Mahecha et al.,
2007), human disease phenotypes, and gene expression (Dawson
et al., 2005). Compared to principal component analysis (PCA),
this approach is less restricted since it does not require any
specific distribution (i.e. normal distribution) of data (Shlens,
2014). The clustering patterns generated by PCA were similar to
Isomap results, which could be due to the limited number of
genes analyzed. But the Isomap approach is suitable for
mammalian studies since interactions among genetics,
environment, and microbes are in nature nonlinear (Nicholson
et al., 2004). Regardless, our previous studies have reported 57
differential expressed genes between SS and NS (Wang et al.,
2018) and many genes are interplay in cattle to affect their
immunity and microbiota, the complexity of gene-gene
interactions should be taken into account for future studies.
Further explorations to investigate more DE genes and their
interactions either at the individual or whole transcriptome level
could identify and verify the predictiveness of host genes as
markers of stx2 expression. In addition to the genetic
background that alters the predictiveness of random forest
model, mucosa attached microbes (bacteria and viruses) can
also impact on host immune gene expressions which should also
be considered for the future construction of the prediction
model. Our previous study (Wang et al., 2018) identified
relationships between RAJ mucosa-associated bacteria and
expression of 19 out of 57 DE immune genes identified from
SS compared to NS. Although four immune genes were not part
of these 19 DE genes, future studies to include the expression of
these genes are needed for the better understanding of STEC
colonization and its relationship with host immune genes and
model construction.
CONCLUSION

Taken together, our results revealed that cattle genetic
background (breed) and sampling year could affect the
abundance and prevalence of STEC stx1 and stx2 genes in the
RAJ of feedlot cattle. We identified the relationships between stx2
expression and the expression of host immune genes, and found
that stx2 expression could be driven by expression of particular
host immune genes (e.g.,MS4A1). Our study established a model
to correlate host gene expression to stx2 expression, suggesting
that its expression can be driven by the host. Although Stx
detection from feces is a more direct method, the findings from
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
this study revealed that it may not represent the true population
of STEC colonized in RAJ which can be influenced by the tissue
immune genes. Future studies are needed to elucidate
mechanisms behind host-STEC interactions by applying
methods including genome wide association studies (GWAS)
that determines potential genetic variations related to host-STEC
interactions and also explore digesta and mucosal attached
microbiota variations to develop methods for the potential
precise identification of STEC in cattle.
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