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Characterization of aging tumor 
microenvironment with drawing 
implications in predicting 
the prognosis and immunotherapy 
response in low‑grade gliomas
Zijian Zhou1*, JinHong Wei2 & Wenbo Jiang1*

Aging tumor microenvironment (aging TME) is emerging as a hot spot in cancer research for its 
significant roles in regulation of tumor progression and tumor immune response. The immune and 
stromal scores of low‑grade gliomas (LGGs) from TCGA and CGGA databases were determined by 
using ESTIMATE algorithm. Differentially expressed genes (DEGs) between high and low immune/
stromal score groups were identified. Subsequently, weighted gene co‑expression network analysis 
(WGCNA) was conducted to screen out aging TME related signature (ATMERS). Based on the 
expression patterns of ATMERS, LGGs were classified into two clusters with distinct prognosis via 
consensus clustering method. Afterwards, the aging TME score for each sample was calculated via 
gene set variation analysis (GSVA). Furthermore, TME components were quantified by MCP counter 
and CIBERSORT algorithm. The potential response to immunotherapy was evaluated by Tumor 
Immune Dysfunction and Exclusion analysis. We found that LGG patients with high aging TME 
scores showed poor prognosis, exhibited an immunosuppressive phenotype and were less likely to 
respond to immunotherapy compared to those with low scores. The predictive performance of aging 
TME score was verified in three external datasets. Finally, the expression of ATMERS in LGGs was 
confirmed at protein level through the Human Protein Atlas website and western blot analysis. This 
novel aging TME‑based scoring system provided a robust biomarker for predicting the prognosis and 
immunotherapy response in LGGs.

Low-grade gliomas (LGGs) which are subdivided into oligodendroglioma, astrocytoma and oligoastrocytoma, 
represent a group of primary tumors originating from glial cells in the central nervous system and are very com-
mon in young  adults1. Despite the widely-accepted notion that LGGs exhibit inertia in histological malignancy, 
they account for approximately 20% of all primary intracranial tumors and the prognosis of LGG patients can 
be highly variable, with the median overall survival ranging from 5.6 to 13.3  years2–4. The clinical outcomes for 
LGG patients are far away from satisfactory even though maximum surgical resection combined with postop-
erative chemotherapy and radiotherapy are  applied5. Therefore, investigation of the underlying mechanism in 
tumorigenesis and tumor progression is urgently needed, with drawing implications in predicting the prognosis 
and exploring novel treatment for patients suffering from LGGs.

Cancer has been recognized as a type of age-related disease, which mostly attributed to the fact that many 
cancers arise as we  age6. An accumulating number of studies have demonstrated that some common features 
are shared between aging progress and development of tumor, in which cellular senescence is considered to 
profoundly affect the physiological and pathological  processes7,8. As a dynamic evolving environment, tumor 
microenvironment (TME) which refers to the surrounding compositions around tumor cells, includes a series 
of immune cells, stromal cells and cytokines and plays substantial roles in tumor progression and  metastasis9. 
Previous studies reveal that TME appears susceptible to the impact of aging progress, especially the involved 
fibroblasts and immune cells. Moreover, the age-induced changes of these components in TME are considered 
to play a crucial role in tumor progression, which is significantly associated with  prognosis10. While senescent 
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fibroblasts are proved to promote the proliferation of epithelial tumor cells in immunocompromised  mice11, 
tumor aggressiveness may not correlate with age in all types of tumors. The complex interrelationship between 
aging TME and development of tumor need to be further  exemplified10. The astounding success obtained in the 
clinical trials of immunotherapy has shed light on the treatment of cancers. For example, immune checkpoint 
blockade (ICB) therapy (anti-CLTA-4, anti-PD1 and anti-PD-L1) targeting T cells can improve anti-tumor 
immunity and exert durable clinical benefit in patients. Unfortunately, the majority of patients get no or minimal 
clinical benefit due to the lack of precise  selection12. In recent years, the understanding of immune contexts of 
TME has advanced, which contributes to the identification of multiple classifications of patients based on TME 
for predicting and guiding immunotherapeutic  responsiveness13. However, the diverse roles of aging TME in 
immunotherapy have not been well documented.

In this study, we developed an aging TME related signature (ATMERS) in LGGs through comprehensive 
analysis of transcriptomic data from TCGA and CGGA databases. Furthermore, aging TME scoring system 
based on ATMERS was established to predict the prognosis and immunotherapeutic response for LGG patients. 
Furthermore, external datasets were used to verify the performance of aging TME score which serves as an 
independent predictor. Finally, western blot analysis was performed to validate the ATMERS at protein level.

Results
Identification of aging TME related signature. The corresponding clinicopathological information for 
LGG samples of the two datasets was shown in Supplementary Table 1 and Supplementary Table 2, respectively. 
667 LGG patients in the merged dataset were classified into low and high immune score groups according to 
the immune scores and survival information. As shown in Fig.  1a, patients with high immune scores lived 
significantly shorter than patients with low scores (p < 0.001). The robust DEGs between low and high immune 
score groups were displayed in Fig. 1b. Similar results were obtained between low and high stromal score groups 
(Fig. 1c,d, p < 0.001). The robust DEGs above were merged for further analysis. Weighted Gene Co-expression 
Network Analysis (WGCNA) was performed to determine the key module eigengenes which significantly corre-
lated with aging TME based on the expression profiles of extracted DEGs. The soft threshold (power) value was 
set at 10 (scale independence  R2 = 0.86, mean connectivity = 8.49) and the cut height was set at 0.30. We found 
a total of four co-expression modules (Fig. 1e–h), in which the brown module exhibited negative correlation 
with aging TME  (R2 = − 0.1 and p = 0.009 with age,  R2 = − 0.72 and p = 2e−108 with ESTIMATE score) and the 
grey module demonstrated positive correlation with aging TME  (R2 = 0.25 and p = 5e−11 with age,  R2 = − 0.59 
and p = 2e−64 with ESTIMATE score). The two module eigengenes were merged and a total of 241 genes were 
obtained and regarded as ATMERS (Supplementary Table 3).

Classification for LGG samples. Based on the expression patterns of ATMERS, LGG patients were clas-
sified into two clusters (Fig. 2a). Principal component analysis (PCA) verified the subgroup assignment of LGG 
samples (Fig. 2b). Kaplan–Meier survival analysis revealed that C1 exhibited significantly shorter overall survival 
than C2 (Fig. 2c, p < 0.001) and the progression free survival for C1 was significantly shorter than C2 (Fig. 2d, 
p < 0.001), indicating the prognosis for patients in C1 was worse than those in C2. The MCP counter analysis 
demonstrated that most of the crucial immune and stromal cells in the TME of C1 were upregulated than those 
in C2, especially T cells, CD8 T cells, Monocytic lineage, Myeloid dendritic cells and Fibroblasts (Fig. 2e, Supple-
mentary Fig. 1). As depicted in Fig. 2f, the C1 presented significantly higher immune, stromal, and ESTIMATE 
score than C2 (p < 0.001). We found lower tumor purity in C1 compared to C2 (p < 0.001).

Comparison of the prognosis between low and high Aging TME score groups. Univariate cox 
regression analysis was carried out to determine favorable and unfavorable ATMERS which positively or nega-
tively correlated with the prognosis of LGG patients. Consistent with the above results, the GSVA (gene set 
variation analysis) scores for favorable ATMERS of C1 were significantly lower compared to C2 and the GSVA 
scores for unfavorable ATMERS of C1 were significantly higher (Supplementary Fig. 2A). The expression levels 
for favorable ATMERS of C1 were lower than those of C2 and the expression levels for unfavorable ATMERS of 
C1 were higher compared to C2 (Supplementary Fig. 2B).

LGG patients were separated into low and high aging TME score groups according to the scoring system 
based on GSVA method. Kaplan–Meier survival analysis indicated that high aging TME score group exhibited 
significantly shorter overall survival than low aging TME score group in LGG patients from TCGA database 
(Fig. 3a, p < 0.001). The AUC (area under curves) values for the ROC (Receiver Operating Characteristic) curves 
at 1, 2, 3 years were 0.854, 0.826 and 0.814, respectively, demonstrating that the predictive accuracy was pretty 
well (Fig. 3b). Univariate cox regression analysis revealed that the aging TME score significantly correlated with 
prognosis (Fig. 3c). Multivariate cox regression analysis revealed that the aging TME score served as an independ-
ent factor for predicting the prognosis of LGG patients in the TCGA cohort (Fig. 3c, both values were < 0.005). 
Similar results were obtained in LGG patients from CGGA database (Fig. 3d–f). In addition, we found that the 
aging TME scores for younger patients were significantly lower compared to older patients and the aging TME 
scores of patients with grade G2 were lower than those of patients with grade G3 (Supplementary Fig. 3A). 
Stratified analysis was performed to further confirm the prognostic value of the aging score. For example, LGG 
patients were divided into young age group (age < 45) and old age group (age ≥ 45). The young age group was 
further classified into low and high aging TME score groups. We found that LGG patients with low aging TME 
scores presented better prognosis either in the young or old age group (Supplementary Fig. 3B). Similar results 
were acquired when LGG patients were further stratified according to gender or grade (Supplementary Fig. 3B).

The alluvial diagram (Fig. 3g) exhibited the distribution of LGG patients across clusters, aging TME score 
groups, grades and survival status. Moreover, the aging TME scores for C1 were significantly higher than C2 
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Figure 1.  Identification of aging TME related signature. (a) Kaplan–Meier analysis revealed that the overall survival of LGG patients 
in high immune score group was shorter than those in low score group. (b) Volcano plots of DEGs between low and high immune 
score groups. The red dots represented upregulated genes and the green dots represented downregulated genes. The black dots 
represented genes with no significant difference. (c,d) Similar results were obtained between low and high stromal score groups. (e) 
Determination of the scale-independence degree (left) and the mean connectivity index (right) for soft-threshold values ranging from 
1 to 20. (f) Clustering for the module eigengenes. The cut height was set at 0.30 depicted with the red line. (g) Dendrogram of all DEGs 
and modules with different colors. (h) Heatmap showing the key modules which mostly correlated with age and ESTIMATE scores 
of LGGs. The Pearson correlation coefficients and p values were displayed in cells. TME, tumor microenvironment; LGG, low-grade 
glioma; DEGs, differentially expressed genes.
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(Fig. 3h). The proportion of LGG patients with disease free status in the low aging TME score group was sub-
stantially higher than those in the high aging TME score group (Fig. 3i, p < 0.001). The grade for LGGs in the 
low aging TME score group was lower (Fig. 3j, p < 0.001). We found more IDH1 mutant LGG samples in the low 
aging TME score group (Fig. 3k, p < 0.001). LGG patients in the low aging TME score group were more sensitive 
to conventional treatment (Fig. 3l, p < 0.001). All these findings indicated that LGG patients with low aging TME 
scores were more likely to get better prognosis.
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Figure 2.  Classification for LGG samples based on the expression patterns of ATMERS. (a) Consensus 
clustering for LGG samples identified two clusters. (b) PCA verified the subgroup assignment of LGG 
samples. (c) C1 exhibited significantly shorter overall survival than C2. (d) The progression free survival for 
C1 was significantly shorter than C2. (e) Heatmap showing the distinct TME patterns between C1 and C2. 
(f) Comparisons of immune score, stromal score, ESTIMATE score and tumor purity between C1 and C2. * 
means p < 0.05, ** means p < 0.01, and ***means p < 0.001. LGG, low-grade glioma; ATMERS, aging tumor 
microenvironment related signature; PCA, principal component analysis; TME, tumor microenvironment.
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Figure 3.  Comparison of the prognosis between low and high Aging TME score groups. (a–f) Kaplan–Meier 
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Construction of nomogram model. For clinical practice, a nomogram prognostic model combining 
aging TME score and other clinicopathological factors was constructed to improve the predictive performance 
(Fig. 4a). The nomogram was tested by proportional hazard assumption, in which p values for all the variables 
in the nomogram model were more than 0.05 (Supplementary Table 4). As depicted in Fig. 4b, the C-index 
(consistency index) value with 0.927 for aging TME score group (high or low) showed the highest compared to 
other clinicopathological factors. The C-index value for nomogram model was 0.851, which were higher than 
other factors. The calibration curves for the nomogram model indicated good agreement between the predic-
tive values and the actual observations (Fig. 4c). Regarding the ROC curves, the AUC values of the nomogram 
for predicting 1- and 3-year overall survival were 0.786 and 0.840, respectively, which were higher than those 
of other factors (Fig. 4d,e). The results of DCA (decision curve analysis) for the nomogram model confirmed 
its outstanding performance for predicting the prognosis (Fig. 4f, 3-year overall survival). Despite the fact that 
LGG patients with distinct immune or stromal scores tended to have different prognosis (Fig. 1a,c), as shown 
in the ROC curves (Supplementary Fig. 4), the AUC values of the nomogram model or aging TME score were 
evidently higher than those of immune or stromal score when predicting the 1, 2, and 3-year overall survival. 
Moreover, the results of DCA of the nomogram model and aging TME score further confirmed their robust 
performance for predicting the prognosis, compared to immune or stromal score (Supplementary Fig. 4).

Functional enrichment analysis. The expression levels for favorable ATMERS of the high aging TME 
score group were lower than those of the low aging TME score group and the expression levels for unfavorable 
ATMERS between the two groups exhibited reverse patterns (Fig. 5a,b). Molecular functions concerning pro-
gramed cell death, including tumor necrosis factor receptor superfamily binding, tumor necrosis factor receptor 
binding, tumor necrosis factor activated receptor activity and death receptor activity, were significantly enriched 
in the high aging TME score group (Fig. 5c). Moreover, KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathways related to tumorigenesis or progression, such as ECM (extracellular matrix) receptor interaction, focal 
adhesion and apoptosis, were substantially enriched in the high aging TME score group compared to the low 
score group (Fig. 5d).

Immunosuppressive phenotype was identified in the TME of the high aging TME score 
group. As shown in Fig. 6a, the abundance of most of the immune or stromal cells for the high aging TME 
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score group was substantially higher compared to the low score group, which was consistent with the results of 
immune or stromal scores calculated by ESTIMATE algorithm (Supplementary Fig. 5A). CIBERSORT algo-
rithm was utilized to further explore the correlation between aging TME score and infiltrated immune cells in 
TME. We found that the aging TME score positively correlated with the infiltrated immune suppressive cells 
such as T follicular helper cells and macrophages, indicating an immunosuppressive phenotype in the TME 
(Fig. 6b, Supplementary Fig. 5B). Furthermore, we explored the immune molecules negatively regulating the 
anti-tumor immune response to confirm the immunosuppressive phenotype in the high aging TME score group. 
The immune related genes negatively regulating The Cancer-Immunity Cycle were obtained from Tracking 
Tumor Immunophenotype website (http:// biocc. hrbmu. edu. cn/) and the expression profiles of these genes were 
identified between the low and high score groups. Most of these genes were highly expressed in the high aging 
TME score group while the expression levels of EDNRB and SMC3 were higher in the low score group (Fig. 6c, 
Supplementary Fig.  5C). The expression levels of chemokines induced by immune suppressive cells, such as 
IL10, CD274 (PD-L1), TGFB1, TGFB2 and TGFB3 were also significantly elevated in the high score  group14–16 
(Fig. 6d). In addition, common immune checkpoints including PDCD1, CD274, PDCD1LG2, CTLA4, CD80 and 
CD86 were upregulated in the high score group (Fig. 6e). These findings indicated that LGG patients in the high 
aging TME score group exhibited suppressive antitumor immunities, which might contribute to their pessimistic 
prognosis. TIDE (Tumor Immune Dysfunction and Exclusion) website was used to explore the immunotherapy 
response. We found that the immune dysfunction scores for the low aging TME score group were significantly 
lower while the immune exclusion scores were higher compared to the high score group. Importantly, the TIDE 
scores were substantially lower in the low aging TME score group, suggesting the LGG patients with low aging 
TME scores were more sensitive to immunotherapy (Fig. 6f).

Somatic mutation analysis between the low and high aging TME score groups. The TMBs 
(tumor mutation burdens) of the high TME score group were significantly higher than those of the low score 
group (p = 4.1e−13) and we found that the aging TME score positively correlated with the TMBs (R = 0.24, 
p = 1e−07) (Fig. 7a). Kaplan–Meier survival analysis demonstrated that LGG patients with high TMBs and high 
aging TME scores presented the worst prognosis and patients with low TMBs and low aging TME scores got the 
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highest survival rate. Moreover, LGG patients with low TMBs and high aging TME scores tended to get worse 
prognosis than those with high TMBs and low aging TME scores (p < 0.001, Fig. 7b). All these data suggested 
that TMB negatively correlated with the prognosis and aging TME score served as an independent predictor for 
prognosis regardless of TMB. As depicted in Fig. 7c,d, the top 5 genes with the highest mutation frequency in 
low aging TME score group were IDH1, TP53, ATRX, CIC and FUBP1, whereas, EGFR, TP53, TTN, PTEN and 
NF1 were included in high aging TME score group. Hao demonstrated that, based on the TCGA data, the top six 
most frequently mutated genes in LGGs were IDH1 (77.25%), TP53 (48.04%), ATRX (39.22%), CIC (22.75%), 
TTN (17.06%), and PIK3CA (8.43%), while the top six most frequently mutated genes in GBMs (glioblastoma 
multiforme) were PTEN (34.86%), TTN (32.57%), TP53 (31.55%), EGFR (26.97%), MUC16 (18.07%) and NF1 
(12.98%)17. This indicated that the top 5 most mutated genes in high Aging TME score group including EGFR, 
TP53, TTN, PTEN and NF1, were also frequently mutated in GBMs, implying that the LGGs of high Aging TME 
score group might represent more aggressive tumors genetically similar to GBMs. Consistent with our results, 
gene mutations including EGFR, TP53 and PTEN have been reported to significantly correlate with poor sur-
vival in  gliomas18–22.

Validation of ATMERS. In the validation cohort from CGGA database (DataSet ID: mRNAseq_325), LGG 
patients in the high aging TME score group got worse prognosis compared to the low score group (p < 0.001, 
Fig. 8a). The AUC values for the time-dependent ROC curves at 1, 2, 3 years were 0.790, 0.799 and 0.818, which 
confirmed the predictive accuracy of ATMERS (Fig. 8b). Similar results were obtained in the merged validation 
cohort from GEO database (GSE4271, GSE4412, GSE43378 and GSE84010), with the predictive accuracy of 
0.614, 0.691 and 0.684 at 1, 2, 3 years. (Fig. 8c,d). Furthermore, the predictive value of aging TME score derived 
from ATMERS was verified in IMvigor210 cohort (p < 0.001, Fig. 8e). We found that patients with low aging 
TME scores tended to get better response to anti-PD-L1 therapy (p = 0.005, Fig. 8f) and the aging TME scores 
of patients sensitive to anti-PD-L1 immune therapy were significantly lower compared to patients resistant to 
the immune therapy (p = 0.00022, Fig. 8g). Considering that urothelial carcinoma in IMvigor210 cohort repre-
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response/partial response; PD/SD: progressed/stable disease.
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sented a distinct form of cancer, we demonstrated that the TME of LGG shared common features with those of 
urothelial carcinoma regarding the expression patterns of TME related genes (Supplementary Fig. 6). By using 
WGCNA, we found that 229 out of 241 genes in the ATMERS which were identified in LGGs, significantly cor-
related with the TME of urothelial carcinomas. Consistent with the results in LGGs, the high aging TME score 
group exhibited significantly higher scores with respect to TME, compared to the low aging TME score group in 
IMvigor210 cohort. Based on these findings, we suppose that there are major similarities in TME and aging TME 
between LGG and urothelial carcinoma. Therefore, the ATMERS based aging TME scoring system established in 
LGG can be reasonably applied to urothelial carcinoma.

As depicted in Fig. 8h–k, four genes including CA3, HSPB6, FABP5 and SERPINF1 were randomly selected 
from the unfavorable ATMERS and scanned on The Human Protein Atlas website. The expression levels of the 
corresponding proteins were found upregulated in LGG tissues compared to normal brain tissues. Moreover, 
western blot analysis was carried out to further confirm the high expression patterns of the four genes in LGG 
tissues at protein level (Fig. 8l, the original blots are presented in Supplementary Fig. 7).

Discussion
Despite the WHO (World Health Organization) has published a renewed classification method for gliomas by 
integrating histopathological results with molecular phenotypes such as IDH mutation and 1p/19q  codeletion23, 
patients with LGGs show variable clinical prognosis even with the same diagnosis due to high heterogeneity 
of  tumors24. Besides, current therapy strategy including surgery, radiotherapy and chemotherapy could not 
significantly improve the poor prognosis of LGG patients. It remains challenging for the treatment of  LGGs25. 
As a crucial component of tumor, TME is recognized as a dynamic and heterogeneous environment and closely 
correlates with tumor initiation and  progression13. Novel immunotherapy targeting TME such as ICB therapy, has 
achieved astounding successes across diverse tumor  types26–29. Numerous studies have revealed the indispensable 
roles of TME in regulation of tumor immune responses and immunotherapy  response13. The realization of the 
essential roles of TME has revolutionized our understanding of tumor. Many studies have been focusing on the 
local and systemic microenvironment rather than tumor cell only. In recent years, it is well documented that the 
essential populations within TME are susceptible to age-related impact. The significant roles of aging TME in the 
regulation of tumor progression and tumor immune response need to be extensively addressed. Paradoxically, the 
senescent cells and the induced senescence-associated secretory phenotype within TME regulate tumor devel-
opment in both tumor-suppressive and tumor-promoting  ways30,31. Therefore, in-depth investigation of aging 
TME will aid in our understanding of the complexity and diversity of the development of tumor with appealing 
implications in predicting the prognosis and immunotherapy response for patients with tumor.

Despite the fact that Cheng et al. have revealed ten aging-related genes which serve as potential prognostic 
biomarkers for patients with  gliomas32, there are limited studies focusing on the exploration of aging TME, espe-
cially for LGGs. Unlike the aging-related prognostic model which was demonstrated by Cheng et al.32, including 
EEF2, ARNTL, FBXO4, CHEK1, CHEK2, CTSC, MBD2, HMGA2, IGFBP2 and TIMP1, we identified a total of 241 
genes which were defined as ATMERS in LGGs through comprehensive analysis of RNA-seq data from TCGA 
and CGGA databases. To guide the genetic models in gliomas, Liu et al. screened out 29 highly overlapping genes 
with strong prognostic potential by comprehensively reviewing 138 prognostic  models33, in which three genes 
were involved in the ATMERS developed in our study, including LGALS3, BMP2 and KCNB1. Furthermore, 
aging TME scoring system based on ATMERS was developed by using GSVA method to predict the prognosis 
and immunotherapeutic response of LGG patients. Finally, three independent external datasets from distinct 
databases were employed to verify the robust performance of aging TME score which served as an independent 
predictor. In addition, western blot analysis was carried out for the validation of ATMERS at protein level. We 
culminated in several consensuses based on the findings obtained in this study: (1) consistent with previous 
studies, we found that TME significantly correlated with the prognosis of LGG patients; (2) aging TME score 
served as a robust biomarker for the prognosis and therapeutic response to both conventional treatment and 
ICB immune therapy in LGGs; (3) LGGs with high aging TME scores tended to be determined as immunosup-
pressive phenotype; (4) LGGs with high aging TME scores tended to bear high TMBs.

Cellular senescence was firstly raised by Leonard Hayflflick in the 1960s. Senescent cells are arrested in a 
state of irreversible cell cycle after repeated rounds of replication and are resistant to cell death such as apoptosis, 
thus, they can continue to survive and accumulate as we  age34,35. There are so many molecules involved in the 
formation and stabilization of senescence due to the complicated mechanisms. It is in a dilemma to accurately 
determine senescence-related genes. Therefore, we screened out a series of genes which were susceptible to age-
related impact via WGCNA method and then identified ATMERS in combination with TME score. Specifically, 
in order to comprehensively characterize aging TME, our ATMERS included two groups of genes which were 
negatively or positively associated with age and TME, respectively.

We identified two molecular patterns (C1 and C2) based on the expression of ATMERS via consensus cluster-
ing method in LGGs. Interestingly, we found that all the LGG samples of C2 belonged to low aging TME group 
and the aging TME scores for C2 were significantly lower compared to C1, suggesting the consistency between 
consensus clustering method and aging TME scoring system. In addition, the distinct clinical outcomes between 
C1 and C2 indicated the underlying interrelationship between aging TME and the prognosis of LGG patients.

It is well known that aging TME is characterized by senescent cell and senescence-associated secretory phe-
notype (SASP)31. Fibroblasts account for the most common stromal cells within TME, and various soluble factors 
secreted by senescent fibroblasts play a crucial role in the regulation of migration and proliferation of tumor 
cells. For example, the extracellular matrix (ECM) cytokines secreted by aged dermal fibroblasts contribute to 
the decrease in collagen density, which can promote the aggression of melanoma  cells36. Consistent with previous 
studies, functional analysis in our study demonstrated that ECM receptor interaction related KEGG pathway 
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was significantly enriched in high aging TME score group. Moreover, Kaur et al. suggested that activation of 
the WNT signaling pathway induced melanocytes bypassing  senescence37. Similarly, we found that the WNT 
signaling pathway was significantly enriched in low aging TME score group. Furthermore, we found significantly 
positive correlation between age and aging TME score (R = 0.13, p = 0.00085, Supplementary Fig. 8A). The age 
for LGG patients with high aging TME scores were substantially higher than those with low scores (p = 1.9e−11, 
Supplementary Fig. 8B). Moreover, an increasing number of evidence indicated that senescent immune cells 
played an important role in promoting the accumulation of senescent cells during  aging38. It was reported that 
accumulated senescent cells contributed to the progression of many types of  cancers39. In our study, we found 
that both the immune and stromal scores for high aging TME score group were significantly higher, indicating 
an increase in the immune or stromal components within the TME of high score group, which might attribute 
to the accumulation of senescent immune and stromal cells. Additionally, we acquired a total of 6 molecules 
including IL6, AREG, CXCL12, TGFβ, VEGF and CCL2, which can be upregulated upon senescence, influence 
immune cell functions, and play tumor-promoting roles in  TME30. The expression levels of the corresponding 
genes were compared between low and high aging TME score groups. Consistent with the above results, the genes 
were highly expressed in high aging TME score group except for CXCL12 (Supplementary Fig. 9). Collectively, 
all these findings suggested that the aging TME score built in our study not only had outstanding performance 
in predicting prognosis and immunotherapy response, but also could serve as an indicator to characterize and 
quantify the senescent status of TME for individuals to some extent. Considering the complexity and diversity 
of aging TME, we believe that extensive in vivo and in vitro experiments are needed to further prove it.

Studies have shown that age-induced immunosenescence usually occurs in immune cells involved in tumor 
immunity response, which could induce the infiltration of immunosuppressive cell types such as M2 tumor 
associated macrophages (TAMs), and result in the increased predisposition to tumor  progression40. A large 
amount of evidence has pointed that M2-like immunosuppressive macrophages play a key role in promoting 
tumor progression in the aging  context41. Consistent with the previous findings, our results demonstrated that 
LGGs in high aging TME score group presented an immunosuppressive phenotype with more infiltrating M2 
macrophages and higher expression of immunosuppressive genes. In addition, Ladomersky et al. reported a 
robust increase in the expression of PD-L1 in older samples, indicating older patients with lymphoma, glioma 
and leukemia, may be less responsive to immunotherapy like ICB  treatment42,43. Despite the fact that many 
conflicting studies were reported according to the published  data44, we found that LGG patients with high aging 
TME scores were resistant to ICB immune therapy in our study.

There were still some limitations in our study. Firstly, the urothelial carcinomas in the validation dataset 
(IMvigor210 cohort) represented a distinct form of cancer compared to LGG, further investigation regarding 
in vivo and in vitro research would be needed to explore the correlation between the ATMERS identified in 
LGGs and the characteristics of aging TME in other forms of cancer. Secondly, due to limited information of 
the acquired data, only IDH1 mutation status, gender, age and grade were involved in the construction of the 
multivariate cox regression model and the nomogram model in our study. In the future, with the enrichment of 
the datasets with respect to multiple clinicopathological factors including IDH1 mutation status, 1p-19q codele-
tion status, tumor size, extent of tumor resection, a nomogram model based on multi-omics data would be built 
to predict the prognosis more efficiently. Thirdly, it might not be statistically reliable to conclude that the four 
randomly selected genes from unfavorable ATMERS were related to worse prognosis in LGGs, only based on 
the western blotting analysis of five samples, despite the fact that we have verified the prognostic values of the 
genes in RNA-seq data from different independent cohorts. In the future, we would collect more LGG samples 
to explore the correlation between gene expression at protein level and the prognosis of gliomas.

Conclusion
We identified a gene signature which significantly correlated with aging TME, based on which we developed a 
robust aging TME scoring system to predict the prognosis and immunotherapeutic response of LGG patients. 
This novel score could also reflect the status of aging TME and reveal the close relationship between aging TME 
and immunosuppressive phenotype in LGGs. Our study might contribute to the understanding of aging TME 
and guide the development of aging TME-targeted therapy for LGGs in future.

Methods
Data acquisition. The RNA sequencing (RNA-seq) data for a total of 508 LGG samples were obtained from 
TCGA database (The Cancer Genome Atlas, http:// cance rgeno me. nih. gov/). The corresponding annotation file, 
Genome Reference Consortium Human Build 38 (GRCh38), was downloaded from the Ensembl website (http:// 
asia. ensem bl. org/). The microarray dataset (dataset ID: mRNA-array_301) containing 159 LGG samples was 
acquired from CGGA database (Chinese Glioma Genome Atlas, http:// cgga. org. cn/ index. jsp)45,46.

Estimate. The RNA-seq data from TCGA database were firstly transformed to transcripts per million (TPM) 
values. Then log2-scale transfermation was carried out for the RNA-seq data, followed which the RNA-seq data 
from TCGA database were merged with the microarray dataset (dataset ID: mRNA-array_301) from CGGA 
database. Normalization and batch effect correction for the merged data were conducted by using ‘sva’ package 
in  R47. The immune, stromal, ESTIMATE score (the score representing the whole TME) and tumor purity for 
each LGG sample were calculated by ESTIMATE algorithm (Estimation of STromal and Immune cells in MAlig-
nant Tumour tissues using Expression data) through the ‘estimate’ package in  R48. The optimal cut-off value of 
the immune score was determined by the ‘survminer’ and ‘survival’ packages in R, based on which LGG samples 
were classified into high and low-immune score groups. The same method was utilized for the classification of 
LGG patients with distinct stromal scores.

http://cancergenome.nih.gov/
http://asia.ensembl.org/
http://asia.ensembl.org/
http://cgga.org.cn/index.jsp
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Identification of aging TME related signature. The robust DEGs between the low and high-immune 
score groups were determined with |log2 FC (fold change)|> 1 and adjusted p values (FDR, false discovery 
rate) < 0.001 by using the ‘limma’ package in  R49. Similar method was utilized to screen out the robust DEGs 
between the low and high-stromal score groups. The DEGs above were further merged into one gene set which 
was defined as TME related gene signature (TMERS).  WGCNA50 (‘WGCNA’ package in R) was used to deter-
mine the key genes significantly associated with aging TME based on the expression profiles of TMERS in the 
merged data. The soft-threshold values which ranged from 1 to 20, were examined based on the scale independ-
ence and mean connectivity degree of the co-expression network. The optimal soft-threshold value was deter-
mined when the scale independence was higher than 0.85 and the connectivity degree was relatively higher. The 
modules positively or negatively associated with aging TME (age and ESTIMATE score) were regarded as the 
key modules, the genes involved in which were identified as ATMERS.

Classification for LGG samples based on the expression patterns of ATMERS. Firstly, univari-
ate cox regression analysis was carried out to screen out the ATMERS with prognostic values in which p < 0.05 
was regarded as statistically significant. The ‘ConsensusClusterPlus’ package in  R51 was used to determine the 
optimal category of LGG samples based on the expression profiles of prognostic ATMERS. PCA was utilized to 
examine whether the LGG samples could be well distinguished based on the expression profiles of the prognostic 
ATMERS.

Quantification of TME components. The relative abundance of the infiltrating immune cells in TME 
was evaluated based on the CIBERSORT  algorithm52. Moreover, the abundance of several critical immune and 
stromal cells existing in TME were calculated through MCP  counter53. TIDE website (http:// tide. dfci. harva rd. 
edu/) was employed to calculate the TIDE related scores for LGG samples to investigate the immunotherapeutic 
response.

Aging TME scoring system. The genes involved in ATMERS which positively correlated with the progno-
sis of LGG patients were determined as favorable ATMERS and the genes which negatively correlated with prog-
nosis were defined as unfavorable ATMERS. The enrichment score (GSVA score) regarding the two gene sets 
(unfavorable and favorable ATMERS) for each sample was calculated via GSVA method and single sample gene 
set enrichment analysis (ssGSEA) by using GSVA package in R  software54. GSVA method serves as a popular 
method for scoring individual samples based on molecular characteristics or gene sets and acquired transcrip-
tional data. GSVA represents a method that evaluates the enrichment of a specific function activity (negatively 
or positively associated with prognosis of LGG patients) over a sample population in an unsupervised manner. 
According to the method described by Hänzelmann et al.54, GSVA score of the unfavorable and favorable gene 
sets for each sample was calculated in our study. The aging TME score for each LGG sample was produced 
according to this formula: agingTMEscore = GSVAscoreA − GSVAscoreB , where the enrichment score for the 
unfavorable ATMERS was defined as GSVAscoreA and the enrichment score for the favorable ATMERS was 
defined as GSVAscoreB. The optimal cut-off value for the classification of LGG samples was determined by 
‘survminer’ package in R based on which LGG samples were separated into the high and low-aging TME score 
groups.

Construction of a nomogram model. A nomogram combining aging TME score and multiple clin-
icopathological factors was established to predict the prognosis of LGG patients more efficiently by using ‘rms’ 
package in R. The calibration curves, DCA and C-index were introduced to evaluate the predictive performance 
of the nomogram model.

Functional enrichment analysis. The underlying molecular mechanisms between subgroups were 
explored using ‘GSVA’, ‘GSEABase’ and ‘limma’ packages in R, in which the reference files including “c5.go.mf.
v7.4.symbols” and “c2.cp.kegg.v7.4.symbols” which were obtained from GSEA database were utilized. The terms 
with |log2 FC|> 0.1 and adjusted p values (FDR) < 0.05 were screened out. KEGG pathways and molecular func-
tions involved in Gene Ontology (GO) terms were selected for the functional enrichment analysis.

Somatic mutation analysis. The somatic mutation data (maf format) for LGG samples acquired through 
the whole exome sequencing platform were retrieved from TCGA database. The ‘maftools’ package in R was 
employed for the analysis and visualization of somatic variants. The cumulative nonsynonymous mutations in 
per million bases in coding regions were defined as TMBs.

Validation of aging TME score in external data sets. A total of 172 LGG samples extracted from 
CGGA database (dataset ID: mRNAseq_325) were treated as a validation  cohort55,56. A total of 110 LGG sam-
ples from GSE4271, GSE4412, GSE43378 and  GSE8401057–61 were collected from the Gene Expression Omni-
bus database (GEO, https:// www. ncbi. nlm. nih. gov/ geo/). The gene expression profiles by array from GSE4271, 
GSE4412, GSE43378 and GSE84010 datasets were firstly log2-scale transformed and then normalization for 
the four datasets was carried out respectively for further analysis. Finally, the four datasets were merged into 
one dataset, in which batch effect correction was conducted by using ‘sva’ package in  R47.The merged data set 
was treated as another validation cohort. In addition, the performance of aging TME score for predicting the 
immunotherapeutic response was verified by using IMvigor210 cohort according to the Creative Commons 3.0 
 License62.

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.ncbi.nlm.nih.gov/geo


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5457  | https://doi.org/10.1038/s41598-022-09549-3

www.nature.com/scientificreports/

Validation of unfavorable ATMERS at protein level. Four genes including CA3, HSPB6, FABP5 and 
SERPINF1 were randomly selected from the unfavorable ATMERS. The expression patterns of the four genes in 
normal and LGG tissues were extracted from the Human Protein Atlas website (https:// www. prote inatl as. org/)63.

Western blot analysis was carried out to further explore the expression levels of the four genes between 
normal and LGG tissues. Brain tissues obtained from epilepsy patients who received temporal lobe resection 
were treated as the control group. LGG tissues obtained from five patients who received tumor resection were 
treated as the tumor group.

Tissues were separately homogenized and lysed in cold RIPA lysis buffer containing PMSF and protease 
inhibitor at 0–4 °C for at least half hour. The lysates were then centrifuged at 1500g at 4 °C for 15 min to remove 
the debris. The protein in the supernatant was regulated to the same concentration by using Bio-Rad protein assay 
kit. Samples were homogenized with loading buffer containing SDS and then boiled at 100 °C for 5 min. Subse-
quently, equal amounts of protein samples were separately added to the 10% SDS-PAGE and electrophoresed at 
60 V for 90 min. Afterwards, the separated protein samples on the SDS-PAGE were transferred to PVDF mem-
branes at 50 V for 2 h. After incubation with the primary antibodies for 12 h at 4 °C, the PVDF membranes were 
then rinsed with PBS buffer for two times. The primary antibodies involved in the western blot analysis were as 
follows: anti-Carbonic Anhydrase 3 (CA3), anti-Hsp20 (HSPB6), anti-FABP5 and anti-PEDF (SERPINF1).The 
membranes were further incubated with the corresponding secondary HRP conjugated antibodies for two hours 
at 23 °C. After washed with PBS buffer for two times, protein bands at the specific locations were developed by 
ECL (enhanced chemiluminescence) solution. The images were visualized and saved by using ChemiDoc MP 
imaging system.

Statistical analysis. Perl software (version 5.32.1.1) and R software (version 4.1.1) were utilized for the 
statistical analysis and visualization of the results. Chi-square tests were used to compare the categorical vari-
ables between subgroups and Student’s t-tests were utilized to compare the continuous data between subgroups. 
Two-sided p values < 0.05 were considered statistically significant if not specially noted. Kaplan–Meier survival 
analysis was used to compare the overall survival between two groups in which log-rank test was involved in 
the statistical analysis. The Receiver Operating Characteristic (ROC) curves were drawn via ‘survival’, ‘glmnet’, 
‘survminer’ and ‘timeROC’ packages in R. Univariate and multivariate cox analysis were conducted by ‘survival’ 
R package.

Ethics approval and consent to participate. This study has been approved by “Medical Ethics Com-
mittee of Qingdao Municipal Hospital”. We have obtained the approval and consent from the participates. We 
confirm that all experiments were performed in accordance with relevant named guidelines and regulations. We 
Confirm that informed consent was obtained from all participants.

Data availability
The datasets analyzed during the current study are available in TCGA database (The Cancer Genome Atlas, 
http:// cance rgeno me. nih. gov/), CGGA database (Chinese Glioma Genome Atlas, http:// cgga. org. cn/ index. jsp/) 
and GEO database (Gene Expression Omnibus database, https:// www. ncbi. nlm. nih. gov/ geo/). Tissues used for 
western blot analysis were obtained from patients in department of neurosurgery, qingdao municipal hospital.
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