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To facilitate genome-based representation and analysis
of proteomics data, we developed a new bioinformatics
framework, proBAMsuite, in which a central component is
the protein BAM (proBAM) file format for organizing pep-
tide spectrum matches (PSMs)1 within the context of the
genome. proBAMsuite also includes two R packages, pro-
BAMr and proBAMtools, for generating and analyzing pro-
BAM files, respectively. Applying proBAMsuite to three
recently published proteomics datasets, we demon-
strated its utility in facilitating efficient genome-based
sharing, interpretation, and integration of proteomics
data. First, the interpretation of proteomics data is signif-
icantly enhanced with the rich genomic annotation infor-
mation. Second, PSMs can be easily reannotated using
user-specified gene annotation schemes and assembled
into both protein and gene identifications. Third, using the
genome as a common reference, proBAMsuite facilitates
seamless proteomics and proteogenomics data integra-
tion. Finally, proBAM files can be readily visualized in ge-
nome browsers and thus bring proteomics data analysis to
a general audience beyond the proteomics community. Re-
sults from this study establish proBAMsuite as a useful
bioinformatics framework for proteomics and proteo-
genomics research. Molecular & Cellular Proteomics 15:
10.1074/mcp.M115.052860, 1164–1175, 2016.

Mass-spectrometry-based shotgun proteomics technology
has undergone rapid advancements during the past decade.
Recent studies have demonstrated deep proteome coverage
with the identification of more than 10,000 proteins (1–5).
Moreover, large-scale integrative proteogenomic studies have
started to harness the complementary strengths of the pro-
teomics and genomics technologies (6–8). To facilitate the
exchange and sharing of the rapidly growing body of pro-
teomics data, the Human Proteome Organization Proteomics
Standards Initiative has defined community standards for
data representation, including standard data formats for re-
porting peptide and protein identification results (9). However,
although peptide and protein identification relies primarily on
protein databases derived from the reference genome se-
quence, genomic locations of identified peptides are not re-
ported by commonly used mass spectrometry data analysis
software, which limits genome-based interpretation and anal-
ysis of proteomics data and hinders effective proteogenomic
data integration.

First, without knowing genomic locations of the identified
peptides, some important questions are left hanging. For
example, peptides that map to multiple proteins introduce
ambiguity in protein inference. Those mapping to the same
genomic locus can benefit from a gene-level instead of a
protein-level inference; however, it is unclear how many and
which peptides map to multiple proteins derived from the
same genomic locus. As another example, exon–exon junc-
tion peptides are important for the understanding of alterna-
tive splicing and protein isoform complexity, but it is difficult
to determine how many and which peptides span more than
one exon with existing data formats. Furthermore, although a
major goal in proteomics is to achieve a comprehensive cov-
erage of the coding genome, calculating the sequence cov-
erage ratio for the whole coding genome is cumbersome with
existing data formats.

Second, with proteins serving as the data organization
unit in a data analysis report, it is difficult to perform data
integration across multiple proteomics studies. Studies may
use different reference protein databases with inconsistent
protein annotations for database searching, thus data inte-
gration usually requires re-searching of the raw data against
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a common reference database. In addition, although gene-
centric reports are required by many downstream pathway
and network analysis tools, additional efforts are required to
derive them from protein-centric reports.

Moreover, it remains difficult to communicate proteomics
data to the genomics community. Integrating a protein-centric
report with data generated from genomics or transcriptomics
analyses is a barrier to proteogenomic analysis. As proteog-
enomics is rapidly becoming an attractive and important re-
search field (10–13), it is critical to have a new data format and
supporting tools that enable smooth integration across pro-
teomics, genomics, and transcriptomics data.

Recently, several software tools have been published to
facilitate the visualization of peptides in genome browsers,
including iPiG (14), CAPER (15), and PG Nexus (16), among
others (17–19). These tools address a critical need of genome
browser-based visualization of proteomics data; however, al-
though a genome-based representation of proteomics data
introduces novel data analysis and interpretation opportuni-
ties that go beyond visualization; these opportunities have
barely been explored. In a recent study, the sequence align-
ment/map (SAM) file format developed in the next-generation
sequencing field was adopted in the tool PG Nexus (16) to
allow covisualizing proteomic data with genomes and tran-
scriptomes. Nevertheless, although a primary goal of the SAM
format is to provide a well-defined interface between se-
quence alignment and downstream analyses (20), this impor-
tant feature has not been exploited in PG Nexus. Moreover,
there has been no attempt to incorporate proteomics-specific
information into the SAM format.

To provide an integrated solution to facilitate genome-
based representation and analysis of proteomics data, we
developed proBAMsuite. A central component of proBAM-
suite is the protein BAM (proBAM) file format for storing and
analyzing peptide spectrum matches (PSMs) within the con-
text of the genome. proBAM is built upon the success of the
SAM format and its compressed binary version, BAM (20),
with necessary modifications to accommodate information
specific to proteomics data such as PSM scores, charge
states, and protein modifications. proBAMsuite also includes
two R packages, proBAMr and proBAMtools, for generating
and analyzing proBAM files, respectively. Applying proBAM-
suite to three recently published proteomics datasets, we
demonstrate its utility in facilitating efficient genome-based
sharing, interpretation, and integration of proteomics data.

MATERIALS AND METHODS

Definition of the proBAM File Format—The proBAM format is
adapted from the BAM format and contains a header section and an
alignment section. A full description of the BAM format is available at
http://samtools.github.io/hts-specs/SAMv1.pdf. The fundamental dif-
ference between proBAM and BAM is that PSMs replace sequence
reads as the basic data unit in the proBAM format. Moreover, novel
mandatory fields are introduced in the alignment section to accom-
modate unique features of proteomics data. For instance, we intro-

duce the “XM” field to store peptide modification information, the
“XS” field to store PSM scores, and the “XC” field to store peptide
charge state information. All fields follow the “TAG:TYPE:VALUE”
format, which is similar to those in a BAM file. In the future, additional
fields can be easily added to accommodate specific needs from the
proteomics community. proBAM allows for five bitwise flag values to
describe peptide mapping information. A detailed description of the
proBAM format is available in Supplemental Table S1, which includes
the list of all mandatory fields, the definition and value format for each
of the new fields introduced in proBAM, and the five FLAG values.

Generation of proBAM Files—The pipeline for generating proBAM
files from proteomics data is illustrated in Supplemental Fig. S1. We
developed the R package pepXMLTab (http://www.bioconductor.org/
packages/release/bioc/html/pepXMLTab.html) to convert the “spec-
trum query” section of a pepXML file to a data frame and to filter the
PSMs based on a user-specified PSM false discovery rate (FDR)
threshold. Other proteomics data formats (e.g. mzIdentML) can be
converted to pepXML first using tools such as the ProteoWizard (21).
We developed the R package proBAMr (http://www.bioconductor.
org/packages/release/bioc/html/proBAMr.html) to map peptides
back to the genome (Supplementary File 1). proBAMr generates SAM
files, which are subsequently converted to the binary BAM format and
indexed for fast access using SAMtools (20).

The mapping procedure of proBAMr consists of three steps (Fig. 1).
First, the peptide from a PSM is mapped to corresponding protein
sequence, and its starting and ending positions in the protein se-
quence are recorded. Second, the coding sequence of the peptide is
retrieved from the protein coding sequence according to the starting
and ending positions. Finally, genome coordinates for the PSM are
determined based on the gene structure and genomic location of the
protein coding gene. Peptides mapped to reverse sequences in
the “decoy” database are also kept in the proBAM file to facilitate the
estimation of protein and gene-level FDRs. These peptides are
mapped to the genomic locations of their corresponding forward
sequences in the reverse direction. A very small number of peptides
may not be correctly linked to a genomic location using this proce-
dure, usually because the presumed encoding sequence is not con-
sistent with the peptide sequence. This likely reflects incorrect anno-
tation of related regions.

Running time of the mapping procedure depends largely on the
number of identified PSMs in a pepXML file and the protein sequence
database used. For the Clinical Proteomic Tumor Analysis Consor-
tium colorectal cancer dataset (CPTAC_CRC), the Technische Uni-
versitat Munchen_ National Cancer Institute 60 cell line dataset
(TUM_NCI60), and the Vanderbilt University Colorectal Cancer 10 cell
line dataset (VU_CRC10) , the median runtime for a single pepXML file
was 43, 91, and 140 min, and the Random-access memory (RAM)
usage was 0.4, 0.4, and 0.7 GB, respectively. The mapping of PSMs
from different pepXML files can be easily parallelized.

proBAMtools—We developed an R package, proBAMtools (http://
bioinfo.vanderbilt.edu/proteogenomics/), to perform various analyses
based on the proBAM files. proBAMtools includes functions for ge-
nome-based proteomics data interpretation, protein and gene infer-
ence, count-based quantification, and data integration (Fig. 1, Sup-
plemental Fig. S1, Supplementary File 1).

Protein and Gene Inference—proBAMtools uses a previously pub-
lished parsimony procedure (22) to generate a minimal list of identified
proteins or genes (Fig. 2). The procedure relies on bipartite graph
modeling. What distinguishes the proBAM approach from the previ-
ous approach is the utilization of genomic location information in the
construction of the bipartite graph. Specifically, using the Range
infrastructure developed by the genomics community (23), the pro-
BAM-based approach can connect peptides to different types of
genomic elements such as exons, transcript isoforms, or genes
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based on their overlapping relationship on the genome. Conse-
quently, inference can be made at both the protein level and the gene
level. Moreover, inference can be made based on different versions of
genome annotations. After the parsimony analysis, a minimum of two
peptides is required to identify a protein or gene group. Because the
PSMs of decoy peptides are kept in proBAM files and are included in
protein and gene inference, protein- and gene-level FDRs can be
calculated using the target-decoy strategy.

Count-Based Quantification—proBAMtools generates count tables
on the basis of genomic structure of the genes. Both spectral count
and peptide count tables are provided at protein isoform and gene
levels, respectively, and both overall counts and gene-specific or
isoform-specific counts are reported (Fig. 2). The overall spectral
count for a gene or an isoform, respectively, sums up all PSMs
associated with the gene or the isoform, whereas the gene-specific or
isoform-specific spectral count, respectively, sums up only PSMs
associated specifically with the gene or the isoform. The same con-
ditions also apply to peptide counting. Count data are provided for
individual genes and proteins. By integrating these data with the
minimal protein or gene group lists resulting from the parsimony

analysis, count tables can be generated for the confidently identified
genes or proteins.

Reannotation of PSMs—proBAMtools uses a three-step proce-
dure to reannotate PSMs according to a user-specified gene an-
notation scheme by filtering out PSMs that are not supported by the
gene annotation scheme (Supplemental Fig. S2A). First, PSMs map-
ping to regions out of the coding DNA sequences (CDSs) of the
user-specified annotation scheme are removed. Second, PSMs
mapping to regions inconsistent with the gene structures of the
user-specified scheme are removed. Finally, PSMs with peptides
out of frame in the user-specified scheme are removed. All remain-
ing PSMs can be associated with the user-specified gene annota-
tion scheme.

Proteomics Data Integration—Figure 3 depicts the data integration
procedure implemented in proBAMsuite. proBAM files are generated
from individual studies using proBAMr based on user-specified PSM
FDRs. Because PSMs in all resulting proBAM files are mapped to the
genome and thus aligned in the same coordinate system, they easily
can be combined into one proBAM file. All PSMs in this combined
proBAM file can be reannotated according to a user-specified gene
annotation scheme as described above. Protein and gene inference
as well as count tables can be generated using proBAMtools.
Notably, protein- and gene-level FDRs may increase dramatically
with increased sample size. Therefore, if the protein- and gene-level
FDRs are unacceptable, reanalysis using a strengthened PSM FDR
or other additional filters (e.g. count per protein or gene) should be
performed.

Proteomics Datasets and Peptide Identification—Three recently
published proteomics datasets were used in this study, including the
CPTAC_CRC dataset (8), the TUM_NCI60 dataset (4), and the VU_
CRC10 dataset (24).

For the CPTAC_CRC dataset (8), we downloaded the idpDB file from
the CPTAC data portal (https://cptac-data-portal.georgetown.edu/
cptac/s/S022). This file was generated from a custom assembly
based on RNA-Seq derived protein databases. For each sample, we
generated one proBAM file, which included both normal and variant
peptides. For visualization in the proteogenomics browser (http://
bioinfo.vanderbilt.edu/proteogenomics), two aggregated proBAM
files were generated. One includes all normal and variant peptides
identified from all samples, whereas the other includes only variant
peptides from all samples.

For the TUM_NCI60 dataset (4), we downloaded raw files from
ftp://129.187.44.58/share/nci60/raw/ProteomeProfiles/. Only data
from “Proteome Profiles” was used in this study, resulting in 61
datasets from 59 cell lines. The downloaded .mz5 files were con-
verted into mzML files. We used the GENCODE v19 human protein
database (ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_
19/) to identify peptides. MyriMatch version 2.1.138 (25) was used for
database search. MyriMatch employed precursor tolerances of 10
ppm and allowed fragments to vary by up to 0.6 m/z. Semi-tryptic
peptides were considered equally with fully tryptic peptides, and
matches allowed for isotopic error in precursor ion selection.
Searches conducted on-the-fly peptide sequence reversal and ap-
plied static �57 modifications to cysteines and dynamic �16 oxida-
tions to methionines. MyriMatch also added pyroglutamine modifica-
tions to the N termini of peptides starting with Gln residues. A
minimum peptide length of 6 was required. After database searching,
we used the R package pepXMLTab to generate tabular files contain-
ing the PSMs with FDR less than 0.01 in individual pepXML files.
proBAM files were generated for individual cell lines and then aggre-
gated by tissue origin to create nine proBAM files for visualization in
the proteogenomics browser. For the demonstration of proBAM-
based switching of gene annotation scheme, the dataset was also
searched against the RefSeq human protein sequence database

FIG. 1. Overview of the proBAMsuite. Peptide-spectrum matches
(PSMs) resulting from proteomics database search are mapped to the
genome and the mapping information is stored in the proBAM format,
which facilitates genome-based interpretation, integration, and visu-
alization of proteomics data. Two R packages, proBAMr and pro-
BAMtools, were developed for generating and analyzing the proBAM
files, respectively. The mapping procedure of proBAMr is described in
the Methods section. proBAMtools includes functions for genome-
based proteomics data interpretation and integration (see Supple-
mental Fig. S1 for details).
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(download from The University of California Santa Cruz (UCSC) table
browser as of October 24, 2013) using MyriMatch as described
above.

For the VU_CRC10 dataset, previously published proteomics data
from 10 colorectal cancer cell lines (24) were searched against a
customized protein sequence database generated from paired RNA-
Seq data using customProDB (26). MyriMatch version 2.1.138 was
used for database search and was configured to consider both fully
tryptic and semi-tryptic peptide matches with a precursor mass/
charge (m/z) tolerance of 1.5 and a fragment m/z tolerance of 0.5.
Carboxamidomethylation of cysteines was included as static modifi-
cation while methionine oxidation and N-terminal pyroglutamines
were included as a dynamic modification in the searches. A minimum
peptide length of 6 was required. Then pepXMLTab was used to
generate tabular files that contain the PSMs with FDR less than 0.01
in each pepXML file. By including variations and novel junctions in the
customized databases, we were able to identify variant peptides and
novel junction peptides from the proteomics datasets. For each cell
line, a proBAM file was generated, which includes normal peptides,
variant peptides, and novel junction peptides.

RESULTS

Data Sharing and Visualization—The proBAM file format
facilitates public sharing and re-use of mass-spectrometry-
based proteomics data. We demonstrate its utility using
three proteomics datasets: 1) CPTAC_CRC: proteomics
data for 91 samples representing 86 The Cancer Genome
Atlas colorectal cancer (CRC) tumors generated by the Van-
derbilt Proteome Characterization Center in the National Can-
cer Institute Clinical Proteomic Tumor Analysis Consortium
(CPTAC) (8); 2) TUM_NCI_60: proteomics data for 61 samples
representing 59 NCI-60 cell lines generated at the Technical
University of Munich (4); and 3) VU_CRC_10: proteomics data
for 10 CRC cell lines generated at the Vanderbilt University
School of Medicine (24). We converted PSMs from these
studies to the proBAM format using the proBAMr package.
The compact size of proBAM files facilitates easy data ex-
change. For example, the aggregated proBAM file of the

FIG. 2. Schematic overview of proBAM-based protein and gene inference and peptide and spectra counting. A peptide-centric
representation of proteomics data (green background box) is generated from proBAM (orange background box) using functions provided in
proBAMtools. A hypothetical example for two genes is presented in the workflow (yellow background box). Gene 1 has two protein isoforms
whereas Gene 2 has only one protein isoform. Peptide spectrum matches (PSMs) and peptides associated with Gene 1 are visualized in three
different colors based on whether they are shared by both protein 1 and 2 (orange) or specific to one protein (light blue or dark blue). The table
(lower left) summarizes the spectral and peptide counts for each protein or gene, including both protein- or gene-specific counts and overall
counts. Meanwhile, the parsimony procedure, demonstrated at lower right, is applied to generate the minimum protein and gene group lists.
The major improvement is that proBAMtools assigns peptides by overlapping the mapped peptides with gene structures, thus enabling both
protein and gene level inference.
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CPTAC_CRC dataset is 64 MB, which is more than 100 times
smaller in size compared with the original idpDB report (8.7
GB) from IDPicker3 (27). All three datasets have been pre-
loaded in a JBrowse (28)-based genome browser (http://
bioinfo.vanderbilt.edu/proteogenomics), which offers easy
access of these data to a broad audience both within and
outside the proteomics community. As shown in Supplemen-
tal Fig. S3, peptide evidence for alternative transcript iso-
forms, exon–exon junctions, and mutations can be easily
retrieved and visualized.

Genome-Based Proteomics Data Interpretation—One unique
feature of the proBAMsuite is the enabling of genome-based
interpretation of proteomics data. Whereas existing data for-
mats only report sequence coverage for individual proteins,
the proBAM format stores the genomic locations of peptides
and thereby allows proBAMtools to calculate sequence cov-
erage at the genome, chromosome, and individual gene lev-
els. Using the aggregated TUM_NCI_60 dataset as an exam-
ple, proBAMtools reported coverage of 12% for the whole
human coding genome. All chromosomes were evenly cov-
ered in their coding regions in general, although chromo-
somes 4 and Y had relatively lower coverage (p � 0.027 and
0.046, respectively, z-test, Fig. 4A and Supplemental Fig. S4).
The low Y chromosome coverage might be due to the fact
that 24 out of the 59 cell lines are female origin. Proteomics
evidence was found for 79% of the protein-coding genes,
but only 5% of the genes had sequence coverage over more
than 50% of their coding regions. The percentages of genes
with 0–5%, 5–20%, and 20–50% of sequence coverage
were 27%, 32%, and 15%, respectively (Fig. 4B). We next
investigated how sample size affects sequence coverage

for the whole coding genome. Using a resampling strategy
(Fig. 4C, Supplementary Note, and Supplemental Fig. S5),
we observed a clear benefit of adding more samples to
increase the coding genome coverage, although the in-
crease became relatively smaller when the sample sizes
were larger than 20 (Fig. 4C). Combining the VU_CRC_10
dataset increased the coding genome coverage from 12%
to 15%, and further combining the CPTAC_CRC dataset
increased the coverage to 18%. Such information and the
ability to perform these analyses are particularly useful in
projects aiming at a complete genome-wide proteome char-
acterization (29, 30).

In a typical proteomics study, many identified peptides can
be attributed to more than one protein. These multiple-map-
ping or shared peptides introduce ambiguity and complicate
protein inference (22, 31). Shared peptides likely originate
from two different sources-different transcript isoforms en-
coded by the same gene or different genes with high se-
quence similarity, such as homologous genes in a conserved
gene family or genes with a common conserved protein do-
main. In the first scenario, shared peptides would map to the
same genomic location, whereas in the second scenario,
shared peptides map to different loci. proBAMtools can clas-
sify all identified peptides into different categories based on
whether they map to one or multiple positions in the genome.
Across all cell lines in the TUM_NCI_60 dataset, we found that
90.2–93.4% of the distinct peptide sequences were mapped
to a unique genomic location, 4.5–6.6% mapped to two lo-
cations, 1.2–1.8% mapped to three locations, and 2.1–3.8%
mapped to three or more locations (Fig. 4D and Supplemental
Table S2). This result suggests that shared peptides resulted

FIG. 3. proBAM based proteomics data integration procedure. In proBAM files, PSMs are aligned to the genome regardless of the protein
database used in each proteomics study. The integration procedure therefore involves: 1) merging the proBAM files from individual studies;
2) choosing a genome annotation scheme and a PSM FDR for protein and gene inference; 3) calculating protein and gene FDRs (repeating step
2 with a more stringent PSM FDR enables refinement of gene and protein FDRs); 4) generating count tables for individual studies; and 5)
generating an integrated count table for all confidently identified protein and gene groups.
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primarily from different transcript isoforms encoded by the
same genes, which prompted us to implement gene-level
inference of proteomics data in proBAMtools to reduce am-
biguity (see next section).

Exon–exon junction peptides can provide direct evidence
for alternative splicing but cannot be recognized easily with

existing data formats. proBAMtools can distinguish within
exon peptides from exon–exon junction peptides. Among the
peptides mapped to a unique genomic location, the fraction of
junction peptides was 19–27% (25.8% in the merged pro-
BAM file) across cell lines in the TUM_NCI_60 dataset (Fig.
4D). This partially explains the low peptide identification rates

FIG. 4. Proteome coverage and the genomic location of identified peptides of the TUM_NCI_60 dataset. (A) Coding DNA sequence
(CDS) coverage for individual chromosomes. The red line represents the average genome CDS coverage. (B) The distribution of 20,738 genes
across different CDS coverage categories. Genes are divided into five categories based on the level of CDS coverage: no coverage, very low
coverage (0–5%), low coverage (5–20%), medium coverage (20–50%), and high coverage (�50%). (C) Cumulative distribution of whole
genome CDS coverage as a function of sample size. Each dot represents a random subset of samples. The black line represents a smoothed
fit. (D) Classification of identified peptides according to genomic location information. Peptides are separated into those mapped to multiple
genomic locations (blue and yellow) and a unique genomic location (pink and red). The latter group is further separated into exon–exon junction
peptides (red) and within exon peptides (pink).
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when using solely the six-frame translated human genome
database for proteomics search (32). The majority of the
exon–exon junction peptides spanned two exons (26,851 out
of 27,564, 97.41% in the merged proBAM file), whereas a
small number spanned more than two exons (Supplemental
Table S2).

Gene-Level Inference versus Protein-Level Inference—pro-
BAMtools supports both protein-level inference and gene-
level inference. Using the cell line HCT116 in the TUM_NCI_60
dataset as an example, after the parsimony procedure and
single-hit group removal, we identified 740 protein groups and
743 gene groups. Although 712 (96%) of the gene groups
contained only one gene, only 272 (37%) protein groups
contained one protein. Similar results were obtained in all cell
lines, suggesting that most of the proteins cannot be unam-
biguously identified and that gene-level inference reduces
ambiguity.

When reporting identified proteins and their supporting
peptides, a minimal list of proteins, including both distinct and
differentiable proteins, are usually provided to explain all ob-
served peptides (31). A single spectrum associated with mul-
tiple protein groups could complicate the spectral-counting-
based quantification procedure. Some simple algorithms
count these spectra multiple times (22), whereas more ad-
vanced algorithms adjust spectral counts of shared peptides
by leveraging information from unique peptides (33). Although
promising, apportioning a large number of spectra on the
basis of relatively small sets of differentiating spectra remains
a challenge and may lead to overfitting. Using gene-level
assembly provides an alternative to alleviate the shared pep-
tide problem. For the cell line HCT116, we identified a total of
7,866 distinct peptides and 14,550 spectra (Fig. 5A). The
peptide counts for individual protein groups summed to
7,707. Adding the 871 peptides from the removed single-hit
protein groups resulted in a total of 8,578 peptides, which was
9% more than the total number of identified peptides. In
contrast, the peptide counts of individual gene groups
summed to 7,495. Adding the 861 peptides from the removed
single-hit gene groups resulted in a total of 8,356 peptides,
which was 6% more than the total number of identified pep-
tides. Similarly, protein-level and gene-level inferences over-
estimated the total number of identified spectra by 14% and
12%, respectively. Analysis using data from all cell lines in the
TUM_NCI_60 dataset showed that gene-level inference
yielded significantly lower aggregated peptide and spectrum
counts compared with protein-level inference (p � 0.01,
paired t test, Fig. 5B). These results suggest that gene-level
quantification helps reduce the number of shared peptides
and thus reduces the complexity in spectral counting.

Easy Reannotation of PSMs—PSMs in a proBAM file are
aligned against the genome regardless of the protein database
used for peptide identification, allowing easy reannotation of
the PSMs using different gene annotation schemes. To illustrate
this point, we searched the TUM_NCI_60 dataset against two

reference databases, RefSeq and GENCODE, respectively.
Using proBAMtools, we converted the GENCODE-based
search results to RefSeq annotation and vice versa. The proc-
ess retained 98.9% of PSMs converting from GENCODE to
RefSeq and 99.2% from RefSeq to GENCODE (Fig. 6A, Sup-
plemental Table S2). The reannotation process eliminated
only a very small number of both target and decoy PSMs;
therefore, PSM FDRs were maintained at a comparable level.
For example, after converting the GENCODE-based search
results to RefSeq annotation, the PSM FDR changed from
0.47% to 0.44%. It is worth noting that the reannotation
process does not introduce new peptide identifications.
Switching from a conservative database (e.g. RefSeq) to a
comprehensive database (e.g. GENCODE) can usually main-
tain the original identifications, but switching in the reverse
direction would eliminate identifications that are supported
only by the comprehensive database.

Proteomics Data Integration—In a typical proteomics anal-
ysis pipeline, MS/MS spectra were first searched against a
database to identify PSMs, and then protein identification and

FIG. 5. Evaluation of the overcounting problem in protein-level
or gene-level inferences. (A) Comparison of the peptide and spec-
tral count sums for gene groups in gene-level inference and those for
protein groups in protein-level inference, using data from cell line
HCT116 in the TUM_NCI_60 dataset. Gray bars represent the actual
total number of identified peptides (left) or spectra (right), respec-
tively. Dark-colored regions of red and blue bars represent peptides
or spectra that were removed because they mapped to single-hit
proteins or gene groups. Gene-level inference yielded slightly lower
count sums when compared with protein-level inference. (B) Similar
to A, each violin plot summarizes data from all cell lines in the
TUM_NCI_60 dataset. Gene-level inference yielded lower aggregated
peptide count and spectra count compared with protein-level infer-
ence (p � 0.01, paired t test).
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quantification were derived based on the PSMs. Integration of
different datasets occurs either at the PSM level or the protein
level. Using genomic sequence as a common reference, pro-
BAM provides a natural solution for proteomics data integra-
tion at the PSM level, thus avoiding the problems such as
incomparable protein identifiers (IDs). We used four CRC cell
lines that were profiled in both the TUM_NCI_60 and the
VU_CRC_10 datasets to demonstrate the utility of proBAM-
based proteomics data integration. The TUM_NCI_60 dataset
was searched against the GENCODE protein database,
whereas the VU_CRC_10 dataset was searched against cus-
tomized ENSEMBL66 databases derived from matched RNA-
Seq data. After combining individual proBAM files into a sin-
gle proBAM file, PSMs were reannotated based on the
GENCODE annotation. R scripts for data integration including
the running time for each step can be found in Supplementary
File 2, using cell line COLO205 as an example. As shown in
Fig. 6B, the numbers of identified protein and gene groups
were notably increased for both COLO205 and HT29. Similar

results were obtained for HCT116 and HCT15 cell lines (Sup-
plementary Note and Supplemental Table S3). Importantly,
the integration dramatically increased the number of distinct
peptides and coding region coverage compared with results
for individual datasets (Fig. 6B and Supplemental Tables S4
and S5). Integration also added additional unique peptides to
a significant number of single-hit genes and proteins in indi-
vidual datasets, leading to more confident identification of
these genes and proteins (Fig. 6B). The big increase in the
number of distinct peptides and coding region coverage may
reflect both the limited coverage of individual experiments
and the difference in sample preparation protocols. Specifi-
cally, for the TUM_NCI_60 dataset, proteins were first sepa-
rated by gel electrophoresis and then digested in-gel,
whereas for the VU_CRC_10 dataset, protein lysate was first
digested and the resulting peptides then were separated by
narrow isoelectric point range isoelectric focusing. The first
dataset identified a smaller number of proteins but more
distinct peptides for individual proteins, whereas the second

FIG. 6. proBAM enables proteomics data integration. (A) The numbers of identifiable spectra, peptide-spectrum matches (PSMs), and
distinct peptides from the TUM_NCI_60 dataset. The three columns represent search results based on: 1) the GENCODE database; 2) the
GENCODE database, and then reannotated to RefSeq annotation using proBAMtools; and 3) the RefSeq database. Similar results in columns
2 and 3 indicate that proBAM can facilitate easy reannotation of PSMs without new database searching. (B) Proteomics data integration for
cell lines COLO205 and HT29, which were included in both the TUM_NCI_60 dataset searched against the GENCODE protein database and
the VU_CRC_10 dataset searched against customized ENSEMBL66 databases. Merged proteomic identifications were analyzed based on the
GENCODE annotation using proBAMtools. Blue, yellow, and green bars represent results from the TUM_NCI_60 dataset, the VU_CRC_10
dataset, and the combined dataset, respectively. The two top figures show the numbers of identified gene groups and protein groups,
respectively. The two middle figures show CDS coverage ratios and the numbers of distinct peptides, respectively. The two bottom figures
show the numbers of single-hit gene groups and protein groups, respectively, with the dark-colored sections representing gene and protein
groups that acquired additional unique peptides through data integration. The number of rescued gene/protein group is defined as how many
groups do not overlap with each dataset after integration. (C) Protein and gene FDRs as a function of sample size in the TUM_NCI_60 dataset.
Data from different PSM FDRs are plotted in different colors. (D) The numbers of identified protein and gene groups as a function of sample
size in the TUM_NCI_60 dataset. Data from different PSM FDRs are plotted in different colors.
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dataset identified a larger number of proteins with fewer dis-
tinct peptides for individual proteins. Thus, proBAMsuite-en-
abled proteomics data integration may leverage existing da-
tasets to gain a more comprehensive coverage of a proteome
of interest.

This approach easily can be extended to the integration of
more than two datasets. However, an important consideration
when applying this approach to the integration of data from a
large number of samples is the appropriate control of protein-
and gene-level FDRs, which may quickly become uncon-
trolled with increased sample size (8, 31). Because the PSMs
of decoy peptides are kept in proBAM files and are included
in protein and gene inference, proBAMtools can provide pro-
tein- and gene-level FDRs for an integrated dataset using the
target-decoy strategy. In the TUM_NCI_60 dataset, with a
PSM FDR threshold of 1%, the protein- and gene-level FDRs
increased linearly with sample size and reached 17% and
19%, respectively, when all 60 samples were combined (Fig.
6C). Both the protein- and gene-level FDRs were less than
0.9% for each sample. This problem can be alleviated by
applying a more stringent PSM FDR (Fig. 6C). In contrast to its
dramatic impact on protein- and gene-level FDRs, strength-
ening the PSM FDR had only a relatively moderate impact on
the numbers of protein and gene identifications (Fig. 6D).

With the ability to integrate multiple proteomics datasets
while controlling protein- and gene-level FDRs, proBAMsuite
can facilitate more comprehensive proteomic validation of
novel coding genes and transcripts predicted by genomics
projects. In the GENCODE annotation provided by the
ENCODE project, transcripts are categorized as known,
novel, or putative, reflecting their similarity to preexisting
models in EntrezGene or Swissprot/Uniprot (34). By integrat-
ing data from all 60 cell lines in the TUM_NCI_60 dataset, with
a protein-level FDR of 4.5% (PSM FDR 0.5%), we identified a
total of 11,631 protein groups, among which 272 and 617
could only be explained by novel or putative transcripts, re-
spectively (Supplementary Note and Supplemental Fig. S6).
Similarly, for GENCODE transcripts classified by an alterna-
tive scheme with three confidence levels, we identified 410
protein groups that could only be explained by automated
annotated transcripts (Supplementary Note and Supplemen-
tal Fig. S6). These results demonstrate the potential of pro-
teomics data in consolidating genome annotation and sug-
gest that full realization of this potential would benefit from
proBAM-based integration of a large number of existing pro-
teomics datasets.

Proteogenomic Data Integration—Using genome sequence
as a common reference, proBAM also facilitates seamless
inference across proteomic and genomic or transcriptomic
datasets. We demonstrate this with three examples from the
VU_CRC_10 dataset, which was searched against custom-
ized protein databases built from matched RNA-Seq data (24,
26). In the first example, we investigated coding single nucle-
otide variants at both the RNA and protein levels simultane-

ously. Figure 7A shows a heterozygous Ser13Leu mutation of
EPB41L1 in the LoVo cell line. We previously confirmed this
mutant peptide by targeted analysis of tumor lysates spiked
with synthetic, isotope-labeled peptide standards (24). Inter-
estingly, the expression ratio between mutant and wild-type
alleles is skewed toward mutant at the protein level (4:1) but
not at the RNA level (43:58), suggesting either preferential
translation of the mutant allele transcript or higher stability of
the protein product resulting from the mutated allele (p �

0.05, one-sided z-test). Thus, proBAM allows researchers to
verify mutations detected at the genomic level with proteomic
evidence and to compare allele expression patterns between
proteomics and transcriptomics data.

The second example demonstrates the proteomic valida-
tion of alternative splicing isoforms. About 30% of human
genes contain introns ending in NAGNAG (N represents any
nucleotide), where alternative splicing can create transcript
isoforms by inclusion or exclusion of three bases; however,
only some of these motifs are functional (35). The NAGNAG
motif was found in a splice acceptor in the gene LSR (Fig. 7B).
RNA-Seq data support the existence of tandem splicing at
this site and proteomics data further prove that both splicing
isoforms are translated into proteins in multiple cell lines and
thus are very likely to be functional (Fig. 7B). The last example
shows how proBAM facilitates the proteomic validation of
novel coding regions predicted by RNA-Seq. As shown in
Supplemental Fig. S7, peptides were identified from multiple
samples for a novel exon region predicted by RNA-Seq data,
which is located near EPB41.

DISCUSSION

We have developed proBAMsuite, a bioinformatics frame-
work for genome-based representation and analysis of pro-
teomics data. In contrast to existing proteomics data formats
that use proteins as the data organization unit, the proBAM
format organizes proteomic data based on the corresponding
genome, thereby providing a fundamentally different way to
structure and reference proteomics data. This new data for-
mat and the associated proBAMtools address the inherent
limitations of the existing protein-centric data formats and
data analysis tools. First, the interpretation of proteomics data
is significantly enhanced with the rich genomic annotation
information. Second, PSMs can be easily reannotated using
user-specified gene annotation schemes and assembled into
both protein and gene identifications. Third, using the genome
as a common reference, proBAMsuite facilitates seamless
proteomics and proteogenomics data integration. Finally, pro-
BAM files can be visualized readily in genome browsers and
thus are immediately available to a general audience beyond
the proteomics community.

The proBAM format offers a few unique features compared
with other related approaches (14–19). First, proBAM holds
more information in one file. In addition to amino acid se-
quences, proBAM also includes information on sequence
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variants, the relationship between peptides and exon annota-
tion (e.g. exon–exon junction peptides and within exon pep-
tides), PSM scores, and peptide charge states, among others.
Second, proBAM is highly analogous to BAM, which allows it
to link proteomics data to a large number of bioinformatics
tools and methods that have already been developed for the
analysis and visualization of BAM files. Third, proBAM stores
data in a compact format, and the data volume reduction
enables more effective data exchange. Finally, the proBAM
format is supported by the proBAMsuite, which provides tools
for file conversion and downstream data analysis, enabling
easy adoption and use of the proBAM format for any pro-
teomics laboratories.

By effectively leveraging genomic annotation information,
the proBAM-driven approach reveals useful insights that
would not be apparent from analyses based on existing pro-
tein-centric data formats. For example, it enables easy iden-
tification of junction peptides or peptides specific to a gene or

protein for targeted proteomics analysis. It can also distin-
guish peptides mapping to multiple genomic locations from
those mapping to a unique location. Although a large number
of shared peptides are typically observed in proteomics ex-
periments, the proBAM-based analysis showed that more
than 90% of the peptides were mapped to a unique genomic
location. This observation motivated the implementation of
gene-level assembly in proBAMtools, which reduces the am-
biguity in peptide assembly and improves the reliability of
spectral-counting-based quantification. Although not investi-
gated in this paper, the gene-level assembly may also im-
prove the reliability of labeled proteomics quantification be-
cause of the reduced ambiguity in peptide assignment.

Although recent proteomics studies have started to report
gene-level inference (36), it is typically achieved by associat-
ing peptides with genes through their proteins based on ID
mapping tables. The proBAM-driven approach is the only one
that directly uses the genomic location of PSMs and assigns

FIG. 7. Proteogenomics data integration. (A) Integrative Genomics Viewer (IGV) snapshot of a heterozygous Ser13Leu mutation of gene
EPB41L1 (inside the red box) in the LoVo cell line. The ratio between wild-type and mutant alleles is skewed toward mutant in the proteomics
data (upper panel) but not the RNA-Seq data (lower panel). (B) Integrative Genomics Viewer (IGV) snapshot of a tandem splicing site in gene
LSR (inside the red box), which was confirmed by both RNA-Seq (lower panel) and proteomics (upper panel) data from multiple cell lines as
indicated by different colors.
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peptides to proteins or genes based on the Range infrastruc-
ture developed by the genomics community (23). Therefore, it
could distinguish gene- and protein-specific peptides from
those mapped to multiple proteins or genes. Spectral count
data are generated at both gene and protein levels independ-
ently, avoiding the complication in converting protein-level
counts into gene level. The proBAM framework for protein and
gene inference is generic and can be extended in the future to
include additional data such as intensity-based peptide mass
from MaxQuant (37) to improve quantification.

Using the genome as a common reference, proBAM meets
critical needs in proteomics and proteogenomics data inte-
gration. proBAM alleviates the compatibility problem by
bringing different proteomics datasets into the same coordi-
nate system, i.e. the genome, thereby allowing data integra-
tion without re-searching the raw data. When different ver-
sions of the reference genome are used, tools developed in
the genomics field for converting genome coordinates be-
tween assemblies in BAM/SAM format, such as CrossMap
(38), could be directly applied to the proBAM files. proBAM
also facilitates seamless integration between proteomics data
and genomic or transcriptomic data, allowing cross-referenc-
ing and consolidating novel discoveries in proteogenomic
studies, including genomic mutations and allele expression
patterns, predicted splicing isoforms, and novel coding re-
gions. We show that integrating proteomics data from two
independent cell line studies almost doubled the number of
distinct peptides and coding region coverage for all four cell
lines. Integrating all three datasets used in the study achieved
an overall coverage of 18% for the whole human coding
genome. We show that applying a stringent PSM FDR can
effectively control protein- and gene-level FDRs when inte-
grating data from a large number of samples. Although this
strategy only moderately reduces the numbers of identified
proteins and genes, it dramatically reduces the number of
identifiable spectra. In the TUM_NCI_60 dataset, the total
spectra count dropped from 3,410,633 to 2,242,690 when the
PSM FDR was reduced from 1% to 0.1%. Previously, we used
a second step to rescue high-quality PSMs that were ex-
cluded by the stringent PSM FDR threshold (i.e. to relax the
PSM FDR threshold to 1% for the confidently identified pro-
teins) (8). Applying the same procedure to the TUM_NCI_60
dataset increased the total number of identifiable spectra to
3,390,728.

We expect that many researchers would benefit from the
proteomics datasets made available in the JBrowse (39)-
based genome browser, which allows visualizing all PSMs
against the human genome. An important future work is to
allow hyperlinking each PSM to a visual display of the asso-
ciated spectrum, which is possible because proBAM pre-
serves the link to supporting spectrum for each PSM, and
JBrowse is an open source project. The proBAM files can also
be downloaded and visualized in the more flexible desktop-
based Integrative Genomics Viewer (40). Moreover, toolkits

such as the BEDTools (41) can be used to convert proBAM
files to other file formats, such as the Browser Extensible Data
(BED) format, which can be uploaded to the UCSC Genome
Browser or Galaxy.

In conclusion, we have developed proBAM as a new format
for proteomics data, and this study establishes proBAMsuite
as a useful bioinformatics framework for proteomics and pro-
teogenomics research.
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