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Abstract

Complex diseases are often highly heritable. However, for many complex traits only a small proportion of the heritability can
be explained by observed genetic variants in traditional genome-wide association (GWA) studies. Moreover, for some of
those traits few significant SNPs have been identified. Single SNP association methods test for association at a single SNP,
ignoring the effect of other SNPs. We show using a simple multi-locus odds model of complex disease that moderate to
large effect sizes of causal variants may be estimated as relatively small effect sizes in single SNP association testing. This
underestimation effect is most severe for diseases influenced by numerous risk variants. We relate the underestimation
effect to the concept of non-collapsibility found in the statistics literature. As described, continuous phenotypes generated
with linear genetic models are not affected by this underestimation effect. Since many GWA studies apply single SNP
analysis to dichotomous phenotypes, previously reported results potentially underestimate true effect sizes, thereby
impeding identification of true effect SNPs. Therefore, when a multi-locus model of disease risk is assumed, a multi SNP
analysis may be more appropriate.
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Introduction

Since the first GWA study in 2005[1], hundreds of GWA studies

have been published, reporting more than 2000 associations[2].

However, despite large heritability estimates, relatively few

associations have been reported for most complex traits.

Moreover, associations found in GWA studies often explain only

a small proportion of the phenotypic variation[3]. For example,

although 71 independent loci have been identified as being

associated with Crohn’s Disease, they still account for only 23% of

the estimated heritability[4]. GWA studies of psychiatric diseases

show an even less favorable picture. For instance, schizophrenia

has an estimated heritability of 80%[5,6], but observed genetic

variants currently account for less than 1% of the variance[7].

One explanation of the missing heritability is that complex

diseases are caused by a large number of causal variants with small

effect sizes. Odds ratios (OR) reported in GWA studies are

typically small (i.e., a median OR of 1.33[8]). The many

associations that are tested require a very low significance

threshold to prevent an inflated genome-wide type I error. This

reduces the probability of identifying SNPs with small effect size,

unless sample sizes are large enough to achieve sufficient power to

identify such SNPs. Using large combined datasets within scientific

consortia has significantly increased power in GWA studies.

Despite this increase in power, still only a small number of

associated variants have been identified[3]. A second explanation

of the missing heritability is that risk SNPs are correlated with

unobserved causal genetic variants, since they are unlikely to be

causal themselves[9]. The lower the correlation between an

observed risk SNP and the unobserved causal variant, the smaller

the estimated effect size of the risk SNP, resulting in less explained

variance and hence decreased power. This decrease in power is

most dramatic for rare variants (i.e., SNPs with minor allele

frequencies less than 5% or even 1%) and these variants are less

likely to be tagged by the genotyped SNPs.

The present study addresses a fundamental limitation of

traditional GWA analysis of dichotomous phenotypes which

provides an additional explanation for the difficulty in identifying

effect SNPs and the missing heritability. By definition complex

diseases are caused by numerous risk variants. However, as single

SNP analysis only considers a single SNP at a time, other SNPs

associated with disease can be considered omitted covariates. Gail

et al.[10] proved in the context of generalized linear models that

omitting covariates can result in asymptotically underestimated

effect sizes, even in the absence of confounders. Confounders are

(possibly omitted) covariates that are associated with other

covariates or variables of interest. Gail et al. showed that only

the linear-link and log-link functions produce asymptotically

unbiased effect sizes in generalized linear regression, although

the log-link function can produce asymptotically biased inter-

cepts[10]. In the context of logistic regression, this underestimation

effect reduces the efficiency of effect size statistics[11]. Neuhauss

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e27964



and Jewell[12] provided formulas to assess this bias for several

common link functions, including the logit and probit link

functions, which are most suitable for analyzing dichotomous

phenotypes. In linear regression omitting covariates has no effect

on the estimated effect size[11].

The underestimation effect of non-linear link functions can be

best understood in terms of the statistical concept of collapsibility.

Simpson[13] wrote a seminal paper on the surprising non-

equivalence of conditional and marginal odds ratios, which has

later been referred to as Simpsons’s paradox[14,15]. Given three

dichotomous variables X, Y, and Z, he showed that even if the

odds ratios between X and Y conditional on the value of Z are

equal (ORXY jZ~0~ORXY jZ~1~ORXY jZ), this does not imply

that the marginal odds ratios equal the conditional odds ratio

(ORXY ~ORXY jZ). In other words, the odds ratio is a non-

collapsible effect measure, as the marginal effect measure (ORXY )
cannot generally be expressed as a weighted average of the

conditional effect measures (ORXY jZ~0 and ORXYjZ~1). In the

context of GWAS, Y is disease status, X is the genotype of an allele

of interest, and Z is the number of risk variants in the genetic

background. In this context Z is unlikely to be dichotomous. An

effect size measure would be called collapsible if the marginal

effect size of SNP X, averaged over all possible genetic

backgrounds Z, can be expressed as a weighted average of all

conditional effect sizes of SNP X (i.e., conditional on specific

genetic background Z).[14,15]

Two conditions have been identified that do result in collapsible

odds ratios[16]. The first condition is that disease status Y and

background Z are independent given SNP X. This implies that

ignoring SNPs which have no effect on disease will not result in

underestimation. The second condition is that SNP X and genetic

background Z are independent given disease status Y. This

situation cannot arise if we (safely) assume that SNPs or the causal

variants with which they are in linkage disequilibrium cause

disease status and not vice versa (see Hernán et al.[14] for a

discussion on the importance of causal assumptions when dealing

with Simpson’s paradox). In other words, conditional and

marginal odds ratios are only equivalent if the SNP of interest

or the genetic background is not associated with disease status.

Despite the use of the word ‘bias’ by earlier authors[10–12],

Greenland et al. [15] note that non-collapsibility is technically not

a bias. It reflects the mathematical fact that for some effect

measures marginal and conditional effect sizes are non-equivalent.

When choosing a non-collapsible effect size measure, one merely

needs to decide whether the marginal, the conditional effect size or

both are of interest[14]. We believe that in GWA studies the odds

ratio conditional on a fixed genetic background reflects the relative

importance of a single SNP better than the marginal odds ratio. A

single SNP analysis would estimate the marginal odds ratio,

whereas a multi SNP analysis would estimate the odds ratio

conditional on a fixed genetic background. Risk difference and risk

ratio are examples of collapsible effect measures[15]. However, as

traditional GWA analyses are often based on odds ratios, we will

focus here on the logistic or odds disease model.

Complex diseases in GWA studies can be characterized by

numerous risk SNPs with small effect sizes. Although the average

effect size is expected to be small, the variance in the genetic

background increases with the number of true risk SNPs. In the

present simulation study we investigate the potential implications

of non-collapsibility for traditional GWA studies. We first study the

relation between the marginal and the conditional odds ratio

under a naive disease model. The simplicity of the naive model

facilitates the simulation and mathematical analysis of the

underestimation effect. We report how disease characteristics

(e.g., prevalence, number of risk SNPs, minor allele frequency, and

effect sizes) influence the underestimation effect. We also show

how this underestimation affects the estimated explained variance.

Subsequently, we illustrate the underestimation effect under a

more realistic genetic architecture. Finally, we discuss the

implications of underestimating effect size and suggest potential

solutions.

Methods

Modeling a heritable disease requires a function relating

genotype to disease risk. To simulate the implications of traditional

GWA analysis using odds ratios, we constructed a disease

generating model based on the odds model of disease risk. Before

discussing this model in more detail, we illustrate the disease

generating process of the odds model with an example. We assume

that all risk alleles at different loci have equal frequency and equal

effect size (these assumptions have been shown by others to have

little impact on interpretation of results)[17–19]. For example,

Figure 1 shows disease probability and the distribution of risk allele

counts for a disease with a prevalence of 1%, assuming a total

number of 200 effect alleles (i.e., 100 risk SNPs); the odds ratio of

each risk allele is 1.6 and the risk allele frequencies are 0.25. Under

this additive model on the log odds scale, people carry on average

50 risk alleles (binomial mean is 200|0:25) corresponding to a

negligible disease risk. However, as the number of risk alleles

exceeds a threshold, disease probability increases rapidly,

demonstrating the highly non-linear relationship between genetic

risk factors and disease risk. Those at highest risk of disease carry

more risk alleles, w70 in this example, but each affected person

could have a unique portfolio of risk alleles; the effect of a risk

allele on disease depends on the genetic background (other risk

alleles) carried by an individual. The (implicit) error variance in

the odds model is p2=3, the variance of the standard logistic

distribution.

As mentioned before, the marginal odds ratio produced by

single SNP analysis is averaged over all possible genetic

Figure 1. Disease model. Probability of disease as a function of the
number of risk alleles (line) and the distribution of risk alleles in a large
sample (n = 10,000) (histogram). Disease prevalence is 1%. The odds
ratio of each risk SNP is 1.6 and the allele frequencies of risk alleles are
0.25. The maximum number of risk alleles is 200 (i.e., 100 SNPs). The
(implicit) error variance of the odds model is p2=3.
doi:10.1371/journal.pone.0027964.g001
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backgrounds. However, the odds ratios from the odds model,

which we assume generates the disease, are conditional on a fixed

background odds of disease (see section A3.2 in Appendix S1). We

will therefore refer to the conditional odds ratio as the true odds ratio

ORt and to the marginal odds ratio as the (possibly under-)estimated

odds ratio ORe. To relate ORe to the prespecified ORt, we

performed the following four steps: (1) we specified a disease

generating model based on disease characteristics including ORt, (2)

we mathematically derived the genotype distribution of a single SNP

of interest given disease status and disease characteristics, (3) we

repeatedly simulated a case-control sample of the SNP of interest

based on this genotype distribution and computed the corresponding

SNP-based odds ratio (ORe), and (4) we reported the median of all

estimated odds ratios ORe, reflecting the asymptotic marginal odds

ratio estimated by single SNP analysis. We now discuss the disease

generating model.

We specified a disease generating model with four parameters:

(1) disease prevalence pD, (2) true (allelic) odds ratio ORt, (3) minor

allele frequency of risk alleles pa, and (4) the total number of effect

alleles na. Risk alleles can be either minor alleles or major alleles.

We only consider minor risk alleles, as the analysis is analogous for

major risk alleles. Let D be disease status and

z(xa,b0,b1)~b0zb1xa a linear function of the number of risk

alleles xa with effect size b1 and intercept b0. Then the probability

of disease conditional on the number of risk alleles is defined as

(see also Equation S3 in Appendix S1)

P(D~1jXa~xa; b0,b1)~
1

1z exp½{z(xa,b0,b1)� ð1Þ

As effect size b1 is defined on a log odds scale, exp (b1) is the

effect size on an odds scale. Therefore ORt~ exp (b1) is the true

odds ratio in the biological reality we aim to model.

So far we specified the probability of disease conditional on the

number of risk alleles. To obtain a full probability model of

disease, it is necessary to specify the distribution of risk alleles as

well. Assuming Hardy-Weinberg equilibrium and linkage equilib-

rium for a total of na effect alleles (i.e., twice the number of risk

SNPs) and risk allele frequency pa, the number of risk alleles xa in

the population can be modeled with a binomial distribution

P(Xajna,pa)~
na

xa

� �
pxa

a (1{pa)na{xa ð2Þ

Combining distribution 1 and 2 results in a joint probability

distribution of disease and number of risk alleles given four disease

parameters: risk allele frequency pa, total number of effect alleles

na, effect size b1 on a log odds scale, and intercept b0.

P(D,Xajb0,b1,na,pa)~P(DjXa,b0,b1)P(Xajna,pa) ð3Þ

The probability of disease status P(Djb0,b1,na,pa) can be

obtained by summing over all possible genetic liabilities Xa.

Although b0 has an interpretation as the baseline (or

background) log odds of disease, there is no strong prior

information what this might be, as there is for the other three

model parameters. However, as disease prevalence is an observed

disease characteristic, it is possible to set b0 such that the disease

probability of the model P(D~1jb0,b1,pa,na) equals disease

prevalence pD. Although P(D~1jb0,b1,pa,na)~pD cannot be

solved analytically for b0, an error function, such as the sum

squared error can be defined (Equation S1 in Appendix S1). This

error function can be minimized to obtain a numerical

approximation of b0 that satisfies the equality. Because

ORt~ exp (b1) and number of risk SNPs ns = 1
2

na, the result is a

model of disease with the four parameters: disease prevalence

(pD), true allelic odds ratio (ORt), number of risk SNPs (ns), and

risk allele frequency in risk SNPs (pa). As a fifth parameter, error

variance on the liability trait could be included to model the

proportion of variance explained by all SNPs (heritability), but as

this was not required for the derivations in this paper, we left the

error variance implicit and constant (see section A3.4 in Appendix

S1). From the four-parameter disease model we derived the

genotype distribution of SNP s given disease status and model

parameters P(XsjD,pD,ORt,pa,na) (see Equation S2 in Appendix

S1). Based on this distribution we simulated 10,000 case-control

samples and computed the median estimated SNP-based odds

ratio ORe. By relating the odds ratio ORe obtained when

performing a single SNP analysis to the true odds ratio ORt, we

could study the underestimation effect for different disease

characteristics. Further details on simulation technicalities can be

found in section A1 of Appendix S1.

Although the odds model is mathematically convenient, it

assumes a constant effect size and minor allele frequency for all

risk alleles. Therefore we performed a second simulation

investigating the underestimation effect under a more realistic

genetic architecture. In GWA studies absolute effect sizes on the

log odds scale are roughly exponentially distributed[20,21].

Consequently, effect sizes were drawn from an exponential

distribution with rate parameter 5. This corresponds with an

expected ORt of 1.25, but acknowledges that true effect sizes are

frequently small and rarely large. To avoid rare variants, allele

frequencies were assumed to be uniformly distributed between

0.05 and 0.95. Effect sizes and allele frequencies were drawn once

and fixed in the rest of the simulation replicates. The odds disease

model from the first simulation is easily extended to accommodate

different fixed effect sizes by defining z(xa,b0,b1)~b0zPns

i~1 bixi in Equation 1, where ns is the number of SNPs, bi is

the effect size of SNP i and xi[f0,1,2g refers to the number of risk

alleles at SNP i. The intercept b0was chosen corresponding to a

disease prevalence of 1%.

The asymptotic single SNP estimate was again assessed by

generating 10,000 case-control samples and computing for each

SNP the median odds ratio using a single SNP logistic regression.

Case-control samples, 5000 subjects each, were generated by

repeatedly drawing from the population distribution until 2500

cases and 2500 controls were sampled.

Results

If a disease is caused by a single risk SNP, the odds ratio

estimated by single SNP analysis (ORe) will, on average, reflect the

true odds ratio (ORt) (section A2 in Appendix S1). However, if a

disease is caused by numerous risk SNPs, the median ORe follows

an asymptote. Figure 2 shows the relationship between median

ORe and ORt for diseases caused by 100 risk SNPs with different

prevalences (A) and different minor allele frequencies of the risk

SNPs (B). A wide range of prevalences and minor allele

frequencies results in upper limits for the median SNP-based odds

ratio. This asymptotic effect is more dramatic in diseases with

higher prevalences and/or higher minor allele frequencies.

Depending on the model parameters, the upper bound is reached

with true model odds ratios as low as 1.5. In that case traditional

association testing cannot differentiate, for example, between a

Underestimated Effect Sizes in GWAS
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true odds ratio of 1.5 and a true odds ratio of 3, as both will be

estimated at 1.5, the maximum value that can be obtained. In

other words, under this disease model large true effect sizes are not

identified as such by single SNP association testing.

The asymptotic constraint on the estimated odds ratio is caused

by two factors. First, single SNP odds ratios (ORe) are estimated

across an average over all possible background risks in cases and

controls; this can be seen when computing the conditional

probability of disease status given the genotype at a particular

SNP (section A3.1 in Appendix S1). Only when the risk allele

frequency (pa) approaches zero, the background risk will approach

zero, which is similar to a disease with a single risk SNP. This is

why low risk allele frequencies (for example, pa = 0.01) result in a

delayed asymptotic effect compared to high risk allele frequencies

(pa§0:1) (Figure 2B). If the odds ratio for an allele could be

estimated in a subsample of the population that all carried the

same background risk, then the SNP-based odds ratio (ORe)
would (almost) equal the true odds ratio (ORt) (see section A3.2 in

Appendix S1).

Although weighted averaging is part of the explanation of the

constrained odds ratios, it is not a sufficient explanation, because

for continuous phenotypes the asymptotic effect does not occur

when computing SNP-based effect sizes (section A3.3 in Appendix

S1). It is due to the non-collapsibility of the odds ratio that

averaging over background risks results in a discrepancy between

the estimated marginal odds ratio ORe and the true conditional

odds ratio ORt.

A priori the total number of risk SNPs in a disease is unknown,

but it is of course possible to simulate the results of traditional

association testing for diseases with different numbers of risk SNPs.

The asymptotic effect is stronger for diseases which are influenced

by a large number of risk SNPs (Figure 3). In other words, an

increase in the number of SNPs associated with disease results in

increased underestimation. As complex diseases are assumed to be

influenced by many risk SNPs, analyzing numerous large-effect

SNPs with traditional association testing would result in consid-

erable underestimation. This type of underestimation is not due to

a lack of power as increasing sample size will decrease the variance

of effect sizes obtained, but will not reduce underestimation due to

the non-collapsibility of the odds ratio.

We will now show that underestimation of effect sizes can result

in additional missing heritability. Narrow-sense heritability is the

percentage of total phenotypic variance that is explained by

additive genetic variance. Figure 4 compares the explained

variance (on the log odds scale) of true odds models with the

explained variance based on effect sizes obtained from single SNP

association tests. Although many measures of explained variance

exist for logistic regression, we adopted McKelvey-Zavoina’s

pseudo{R2[22], as it is defined on the log odds scale and closely

mirrors the explained variance of continuous traits [23](see section

A3.4 in Appendix S1 for more details on McKelvey-Zavoina’s

pseudo{R2).

McKelvey-Zavoina’s pseudo{R2 strongly depends on the

effect size of risk alleles and the genetic variance in risk SNPs.

Therefore even true odds models show little explained variance in

case of small effect sizes or low minor allele frequencies

(e:g:, pa~0:01). Except for diseases with rare causal variants,

true models with moderate to large effect sizes explain more than

80% of total variance, approaching 100% for very large effect

sizes, indicating large heritability. However, odds models based on

Figure 2. Numerous risk SNPs. Relationship between median estimated SNP-based odds ratio (ORe) and true conditional model odds ratio (ORt)
for a disease with 100 effect SNPs. (A) Different prevalences with risk allele frequency 0.25. (B) Different risk allele frequencies with prevalence 1%.
Simulations are based on a case-control study of 3500 subjects and a 1:1 case:control ratio. Medians are based on 10,000 case-control samples.
doi:10.1371/journal.pone.0027964.g002

Figure 3. Number of risk SNPs. Effect of total number of risk SNPs
on median SNP-based odds ratio (ORe) for different true odds ratios
(ORt). An allele frequency of 0.25 for risk alleles and a prevalence of 1%
is assumed. Simulation is based on a sample of 3500 subjects and a 1:1
case:control ratio. Median is based on 10,000 case-control samples.
doi:10.1371/journal.pone.0027964.g003
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underestimated SNP-based odds ratios (ORe) show a loss in

explained variance compared to odds models based on true effect

sizes (ORt). In the unrealistic case of 100% heritability the typical

loss of explained variance is around 20%. A more realistic disease

with a heritability of 80%, prevalence of 1% and a minor allele

frequency of 50%, still results in an expected loss of more than

10% in explained variance (see Figure 4A). Although prevalence

does not affect the true heritability (dotted line), it does affect the

heritability based on ORe(solid line) (Figure 4B).

Truly associated SNPs are unknown a priori and effect sizes will

be estimated with error. Nonetheless, this analysis shows that even

if truly associated SNPs are known and effect sizes are estimated

without error, traditional association testing on dichotomous

phenotypes can result in a significant loss of explained variance.

The previous results were all based on the assumption of fixed

effect size and allele frequency. Figure 5 shows odds ratios

estimated with single SNP analysis, using a more realistically

simulated data set in which absolute effect sizes are exponentially

distributed and minor allele frequencies are uniformly distributed.

Moderate and large odds ratios are underestimated and the

underestimation effect increases with effect size. For example the

highest risk SNP with a true (conditional) odds ratio of 4.74 has a

marginal odds ratio of 4.36, resulting in underestimation of 9% on

the odds scale. As expected, odds ratios close to one do not show

underestimation. Similar to the naive disease model results,

increasing the average true odds ratio, the number of effect SNPs,

or the prevalence further increases the underestimation effect (data

not shown).

Discussion

Summarizing, our analysis shows a fundamental limitation of

applying single SNP association tests to dichotomous phenotypes.

Single SNP tests can severely underestimate moderate and large

effect sizes for diseases with numerous risk SNPs due to non-

collapsibility of the odds ratio. Therefore the marginal odds ratios

obtained by single SNP tests can be smaller than the true

conditional odds ratios. This underestimation reduces the

explained variance and hence contributes to the missing

heritability. Underestimation is most pronounced in diseases with

high-risk SNPs (i.e., mean ORw1:25), common affect SNPs (i.e.,

MAFw0:1), a large number of risk SNPs (i.e., 100 or more) and

high prevalence (w10%).

Our results are consistent with empirical findings in the GWAS

literature. Odds ratios reported in GWA studies are generally

small[8]. For example, a recent GWA study reported 57 regions

outside the major histocompatibility complex associated with

multiple sclerosis, none of which had an odds ratio much higher

than 1.5 (see Figure 2 in[24]). Although occasionally large effect

Figure 4. Explained Variance. McKelvey-Zavoina’s pseudo{R2 (on log odds scale) as a function of true effect size for an odds model with true
odds ratio (dashed line) and an odds model with median odds ratio obtained by single SNP analyses (solid line) for (A) different risk allele frequencies,
(B) different prevalences, and (C) different number of effect SNPs. Unless stated otherwise models are based on a disease prevalence of 1%, 100 effect
SNPs with risk allele frequencies of 0.25, a case-control sample of 3500 subjects and a 1:1 case:control ratio.
doi:10.1371/journal.pone.0027964.g004

Figure 5. Varying effect sizes. Relationship between median
estimated SNP-based odds ratio (ORe) and true conditional model
odds ratio (ORt) for a disease with 100 effect SNPs and a disease
prevalence of 1%. Effect sizes on log odds scale were drawn once for
each SNP from an exponential distribution with rate parameter 5 and
fixed for all 10,000 case-control simulations. Similarly, allele frequencies
were drawn once for each SNP from a uniform distribution between
0.05 and 0.95 and fixed for all case-control simulations. Case-control
simulation was based on a sample of 5000 subjects and a 1:1
case:control ratio.
doi:10.1371/journal.pone.0027964.g005
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sizes have been reported, numerous common high-risk SNPs have

not been identified for a single dichotomous trait. Searching the

GWAS catalogue (http://www.genome.gov/gwastudies; accessed

August 24, 2011) for SNPs with ORw4 and pv10{8, shows that

no single study reports a disease that is influenced by two or more

common SNPs with ORw4. Diseases for which high odds ratios

are reported for common SNPs (with minor allele frequency in

controls w0:05) include auto-immune diseases such as type I

diabetes (OR~8:3 and OR~5:49)[25,26] and ciliac disease

(OR~7:04)[27]. These high-risk SNPs are part of the major

histocompatibility complex.

Single SNP analysis cannot identify large effect sizes of

numerous risk SNPs, even if many high risk SNPs would exist.

This scenario is mostly of theoretical interest though, as research

on quantitative traits, which are not affected by non-collapsibility,

suggests that numerous high risk SNPs are not likely in practice.

However, conditional odds ratios are likely to be larger than the

marginal odds ratios commonly reported. The significance

thresholds for marginal and conditional odds ratio are equal as

both odds ratios are equivalent in case of no effect[15]. That is,

under the null distribution underestimation is not an issue.

Therefore, underestimation impedes the identification of SNPs

above the significance threshold with underestimated values below

the significance threshold.

GWA studies of diseases with high prevalence have reported less

significantly associated genetic variants than similar studies of

diseases with low prevalence. For example, GWA studies of major

depression disorder, which has a life time prevalence of 15%, have

reported no associations that reached genome-wide significance or

have been solidly replicated[7,28]. On the other hand, studies of

schizophrenia and bipolar disorder, which have life time preva-

lences of 1% or less, have reported several SNPs that did reach

genome-wide significance and/or were replicated[7]. There are

likely to be many factors contributing to the differential success of

GWAS for psychiatric disorders. For example, a lower heritability

for depression compared to schizophrenia could imply smaller effect

sizes under an architecture of the same number of causal variants,

hence requiring larger sample sizes to achieve the necessary power

to detect variants that explain the same proportion of variance.

Nonetheless, the empirical data are consistent with our result that

the underestimation of effect size is larger and the explained

variance in liability is lower for complex diseases with high

prevalence compared to diseases with low prevalence.

The underestimation effect due to non-collapsibility has impor-

tant implications for GWA studies of complex diseases. An

important aim of GWA analyses is to select truly associated SNPs

for use in subsequent analyses and to identify causal variants[19,29].

For selection purposes moderate underestimation of effect sizes need

not be a problem, if sample sizes are large enough. However,

underestimation of effect size requires larger sample sizes to identify

both truly associated SNPs and causal variants. One solution to

avoid underestimation of true effect sizes is to analyze continuous

instead of dichotomous phenotypes, if available. Continuous

phenotypes can usually be modeled with linear regression and

under an additive genetic model SNPs are independent and single

SNP association tests will not result in underestimation. The use of

continuous phenotypes is consistent with the quest for endopheno-

types for complex (psychiatric) diseases[30]. Another solution is to

estimate effect sizes of all SNPs simultaneously rather than

individually. It is for example feasible to estimate the effect sizes

of more than 100,000 SNPs in a single analysis[31]. Based on the

results of Robinson et al.[11], we expect that a multi SNP analysis is

more powerful than a single SNP analysis in the context of a

complex disease. Methods for estimating aggregate statistics such as

explained variance, total number of risk SNPs, and average effect

size of risk SNPs, which analyze all SNPs simultaneously, also

exist[32–34]. Even in the context of continuous traits it might be

beneficial to opt for multi SNP analysis, as adding covariates can

reduce the standard error of the estimates, requiring a smaller

sample size to achieve significance.

There are some limitations to our analysis. First of all, our

conclusions are conditional on simple model assumptions.

However, simpe assumptions do underscore the fundamental

nature of the underestimation effect. A second limitation is that we

have not proved that effect sizes reported in traditional GWA

studies are indeed underestimated. Biases such as the winner’s

curse could also result in overestimation[35,36]. The winner’s

curse refers to the fact that due to stringent multiple testing

correction it is likely that the first significant finding of a SNP will

have a larger effect size than subsequent independent replications.

It is therefore unclear whether in practice reported odds ratios are

overestimated or underestimated. The major difference between

the underestimation effect we discuss and the winner’s curse bias,

is that the latter will decrease as the sample size increases, whereas

non-collapsibility results in a fundamental underestimation that is

not affected by sample size. Finally, although we show that

underestimation can partly explain missing heritability, this effect

could be modest. Continuous traits such as human height are not

affected by the underestimation effect, but also show missing

heritability[37].

In conclusion, single SNP association testing on dichotomous

phenotypes can be problematic. Our analysis implies that odds

ratios typically reported in GWA studies [8] could be underesti-

mates of the true conditional odds ratios. We argue that

asymptotic underestimation is a serious draw-back, as it cannot

be remedied by increasing sample size. We therefore recommend

analyzing all SNPs simultaneously. As a variety of multi SNP

methods have been proposed in the literature, we are currently

comparing the performance of several of those on real GWAS

data.
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