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ABSTRACT Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species.
Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a
draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae, a distant relative of the model Caenorhabditis
elegans. We used this draft to identify the likely causative mutations at the O. tipulae cov-3 locus, which affect vulval development. The
cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13, and we further show that Cel-mig-13mutants also have an unsuspected
vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to
improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species.
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A few model organisms have greatly contributed to biolog-
ical research in the lastdecades,amongthemthenematode

Caenorhabditis elegans. However, to tell conserved from specific
features and understand the evolutionary process that gave rise
to extant diversity, comparisons between different species at key
phylogenetic positions are necessary. Genome sequences have

been instrumental inmodel organism research, and the ongoing
revolution in new genome sequencing and assembly technolo-
gies eases the once-daunting task of building such resources for
any species. Draft assemblies can now be achieved within a few
months at a reasonable cost, even by individual teams. Once a
reference genome and gene annotation are available, other
high-throughput sequencing techniques, such as RNA sequenc-
ing, can be used to explore genotype–phenotype interactions
(Liu et al. 2015; Roux et al. 2015). Classical forward genetic
approaches, i.e., phenotype-basedmutagenesis screens, are easy
to perform and universal, provided the species can be cultured
and crossed. Forward genetics has the huge advantage of iden-
tifying genes without prior knowledge or bias, which is partic-
ularly important in evolutionary comparisons. Such forward
screens have been applied to many nonmodel species, but a
remaining challenge is the identification of causative mutations
and thus the function of target genes at the molecular level.

Massively parallel sequencing permits rapid identifica-
tion of phenotype-causing mutations through “mapping-
by-sequencing.”Mapping-by-sequencing has become a standard
forward genetic approach in most model organisms, includ-
ing Arabidopsis thaliana (James et al. 2013), Saccharomyces
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cerevisiae, Danio rerio, Drosophila melanogaster, and C.
elegans (Schneeberger 2014). Mapping-by-sequencing
strategies are generally based on the sequencing of bulk-
segregant populations (Michelmore et al. 1991). Starting
with a cross between the mutant strain of interest to a phe-
notypically wild-type but genetically different outcrossing
strain, F2 grand-progeny individuals showing the recessive
mutant phenotype are selected, and their DNA is pooled and
sequenced. The recessive causative allele is necessarily ho-
mozygous for all individuals in this bulk mutant sample. For
any polymorphic position between the two backgrounds,
allele frequencies can be measured from mapped sequenc-
ing reads. If unlinked to the selected mutation, polymor-
phisms that distinguish the two parental strains will be
found in the mutant pool at equal frequencies. However, if
these markers are genetically linked to the causative muta-
tion, the proportion of the allele from the wild-type back-
ground will decrease close to the mutated locus and
approach zero in its immediate vicinity. Plotting allele fre-
quencies along a reference genome will thus define a region
of low wild-type allele frequency, surrounding the location of
the causative mutation. The physical size of this interval will
decrease with the number of meiotic recombination events in
the F2 population (and, if limiting, with the number of avail-
able polymorphic positions).

In theory, if a mutant strain only differs from a nonmutant
strain by a single mutation, comparing whole-genome se-
quencing data should reveal this polymorphism with no need
for mapping (Nordström et al. 2013). In practice, genetic
mapping information is required because a mutagenized
strain and its nonmutagenized reference will have many spu-
rious fixed differences: nonphenotype-causingmutations due
to mutagenesis, or de novo spontaneous mutations fixed by
drift in each strain. Technical noise, such as sequencing or
mapping errors, can also contribute to observed variation.
After one or several crosses, most of these variations can be
excluded because they fall outside the mapping interval.
Hence, sequencing bulk-segregant F2 populations and
mapping allele frequencies on a reference genome is key
to identifying the phenotype-causing mutation. Recently,
mapping-by-sequencing has been applied to crop plants like
rice (Abe et al. 2012; Fekih et al. 2013; Takagi et al. 2013),
maize (Liu et al. 2012; Li et al. 2013), or barley (Mascher
et al. 2014; Pankin et al. 2014), in which the genome is incom-
plete but high-resolution physical and genetic maps exist for
each chromosome. Whether mapping-by-sequencing can be ef-
ficient in organisms with a fragmented or incomplete reference
genome and no genetic map has not been tested.

The phylum Nematoda, which includes the model organ-
ism C. elegans, is an ideal target for the development of new
species as model organisms amenable to forward genetics,
because many species combine easy genomics and easy ge-
netics. First, the relatively small size of nematode genomes,
ranging from 20 to 400 Mb, ensures reasonable costs and
good quality for most genome projects (Kumar et al. 2012).
Second, the powerful genetics of C. elegans comes from its

short life cycle and its androdioecious mode of reproduction,
with selfing XX hermaphrodites that mate with X0 males in a
facultative and controllable manner. Other nematode species
sharing these features have therefore been chosen to perform
forward genetics: C. briggsae (Gupta et al. 2007), Oscheius
tipulae (Félix 2006), and Pristionchus pacificus (Sommer
2006). With C. elegans, these three free-living bacteriovorous
nematodes belong to the Rhabditinae (De Ley and Blaxter
2002) [also referred as clade V (Blaxter et al. 1998) or 9
(Holterman et al. 2006; vanMegen et al. 2009); see Figure 1].
Besides its mode of reproduction and easy culture, O. tipulae
has been chosen for several reasons: the two-step, anchor-cell
induction of vulval-precursor-cell fates and its simple vulval
cell lineage (Félix and Sternberg 1997), its easy isolation
from various regions of the world (Baïlle et al. 2008), and
its phylogenetic position compared to C. elegans as an out-
group to Caenorhabditis species but an ingroup to P. pacificus
(Blaxter et al. 1998). High-quality genome assemblies have
been generated for C. briggsae (Stein et al. 2003) and P.
pacificus (Dieterich et al. 2008). Classical techniques have
been employed to map and identify genes involved in differ-
ent traits with particular emphasis on the convergent evolu-
tion of self-fertile hermaphroditism, reviewed in Ellis and Lin
(2014), and vulva development (Seetharaman et al. 2010;
Sharanya et al. 2012, 2015; Sommer 2012; Kienle and
Sommer 2013). In P. pacificus, genetic analyses of the evolution
of sex muscles (Photos et al. 2006), gonad development (Rudel
et al. 2008), dauer formation (Ogawa et al. 2009, 2011), and
buccal tooth dimorphism (Bento et al. 2010) have been
published. Inspired by the versatile and robust pipelines of
mapping-by-sequencing routinely used for C. elegans (Minevich
et al. 2012), we generated a genome assembly forO. tipulae and
here test mapping-by-sequencing in this species.

The available O. tipulae mutants have been obtained in
forward genetic screens for mutations affecting vulva devel-
opment and egg laying (Dichtel et al. 2001; Louvet-Vallée
et al. 2003; Dichtel-Danjoy and Félix 2004). The nematode
vulva connects the uterus to the outside and is required for
egg laying and copulation. Vulva precursor cell specification
is one of the best known developmental systems in C. elegans
(Sternberg 2005), and the development of the vulva has be-
come an important system for comparative studies in nema-
todes (Sommer and Bumbarger 2012). The C. elegans vulva
develops from a group of six precursor cells aligned along the
ventral midline of the animal, called P3.p to P8.p (Figure 1).
While the vulva is under strong selective pressure for egg
laying and mating (especially in obligate outcrossing spe-
cies), a complex mosaic of change and stasis of different vul-
val developmental traits is observed among Rhabditinae
(Kiontke et al. 2007). To date, most studies have focused
on the conservation of the anteroposterior pattern of fates
expressed by the three central precursor cells P5.p, P6.p,
and P7.p across wide phylogenetic distances (Figure 1). Prog-
eny of these three cells have specific division patterns and
play specific roles in forming themature vulva, with (usually)
P6.p taking a central, primary (1�) fate, and P5.p and P7.p
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taking a secondary (2�) fate. Nematode vulval development
is one of the best examples of how pervasive but cryptic evo-
lution modifies the mechanisms of development despite an
invariable output; a phenomenon known as “developmental
system drift” (True and Haag 2001; Burgess 2011; Robinson
2011). Interestingly, the phenotypic spectrum of O. tipulae
vulva mutants suggests substantial underlying evolutionary
differences in specification and interaction compared to other
species. In O. tipulae, all but 1 of the 34 vulval mutations so
far isolated in forward genetic screens await molecular iden-
tification. Uncovering themolecular nature of the 33mutants
that are still uncharacterized in O. tipulae will help to unveil
the mode and tempo of the vulva development system drift
and possible innovations among Rhabditinae.

Here, we integrate a range of genomic tools to rapidly and
cost effectively build a draft genome assembly and annotate
genes in the nematode O. tipulae. Despite its fragmentation,
we show that this draft assembly is a suitable platform for
mapping-by-sequencing. As a proof of concept, we identify
the vulvamutant gene cov-3 (Louvet-Vallée et al. 2003) as the
O. tipulae homolog of C. elegans mig-13. Finally, we show
that linkage information collected during mapping of mutant

alleles can be further used to detect mis-scaffolding and to
group scaffolds into chromosome-scale linkage groups, im-
proving the initial assembly, and providing useful information
for further genetic mapping and mutant gene identification.

Materials and Methods

Nematode strains and culture

The O. tipulae reference strain CEW1, originally from Brazil,
was used for forward mutant screens (Félix et al. 2001). The
second wild strain that we used as a source of molecular poly-
morphisms is JU170, a strain sampled from soil in Sevilla,
Spain, in 2000. This latter strain was chosen as it has a high
genetic distance compared to CEW1, based on prior amplified
fragment length polymorphisms (AFLP) analysis of a set of
63 wild O. tipulae isolates (Baïlle et al. 2008). O. tipulae mu-
tant strainswere generated as previously described (Félix et al.
2000; Dichtel et al. 2001). See Supplemental Material, Table
S3, for the list of mutant alleles used in this study. These alleles
were described in Dichtel et al. (2001), Louvet-Vallée et al.
(2003), and Dichtel-Danjoy and Félix (2004), except for

Figure 1 Phylogenetic relationships of O. tipulae and comparison of vulva development with C. elegans. (A) Cartoons showing (left) the systematic
structure phylum Nematoda [clades I–V or 1–12 defined according to Blaxter et al. (1998), p. 199, and van Megen et al. (2009), respectively] and (right)
the relationship of O. tipulae to key Rhabditina species discussed in the text. Pictures of young adult hermaphrodites of O. tipulae and C. elegans are
shown on the right (arrowhead pointing to the vulva). Bar, 0.5 mm. (B–D) Vulva development in O. tipuale and C. elegans. (B) Ventral epidermal cells
called P3.p to P8.p are specified as vulva precursor cells in young L1 larvae. (C) Conserved anteroposterior pattern of cell fates, despite variation in cell
lineages: P6.p occupies the central position and adopts a 1� fate, P5.p and P7.p are induced to follow a 2� fate, and their daughters will form the border
of the vulval invagination. Other cells (P3,4,8.p) differentiate into nonvulval epidermal fates, either with or without one round of division (3� or 4� fates,
respectively). (D) Nomarski images of wild-type, L4-stage hermaphrodites (left, O. tipulae; right, C. elegans), highlighting the daughter cells of the Pn.p
cells (arrowheads). Bar, 10 mm.
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mf33, whose phenotype is only weakly penetrant andwill be
described elsewhere. O. tipulae strains were thawed from
frozen stocks and cultured at 23� on NGM-plates seeded
with Escherichia coli OP50, as previously described (Félix
et al. 2000). The C. elegans strains used were Bristol strain
N2 and the CF726 strain carrying the mig-13(mu225) X
mutation, and they were cultured according to standard
protocols (Brenner 1974) at 20�.

Library preparation and next-generation sequencing

For genome assembly, genomic DNA was extracted from a
mixed-stage growing population using reagents from the
Puregene Core Kit A (QIAGEN, Valencia, CA). Data were
generated from a 400-bp library and a 3-kb mate-pair or
jumping library, following manufacturer’s instructions. The
mate-pair library was constructed by the Centre for Genome
Research, Liverpool. The 400-bp library was sequenced on
the Illumina MiSeq platform (6.5 million 100-base read pairs
and 20.7 million 300-bp read pairs). The paired-end library
was sequenced on an Illumina HiSeq2500 (145.5 million
100-bp paired reads) (Table S1). Raw data have been submitted
to the International Nucleotide Sequence Database Consortium
(INSDC) under project accession no. PRJEB15512.

RNAwas extracted fromamixed-stage growingpopulation
of O. tipulae CEW1, cultured in standard laboratory condi-
tions. Poly(A)-enriched complementary DNA was prepared
from the RNA by GATC (Konstanz, Germany) and normalized
using reassociation kinetics. RNA sequencing was performed
by GATC on the Roche GS FLX Titanium platform. A total of
592,650 reads (average length 369 bp) remained after filter-
ing for quality. Raw transcriptome data are available in
INSDC under project no. PRJEB15512).

For mapping-by-sequencing, genomic libraries and se-
quencing data from O. tipulae JU170 (INSDC project acces-
sion no. PRJEB19969) and mutant F2 pools (see project
accessions in Table S3) used were generated by BGI. Short
insert libraries (,800 bp) were paired-end sequenced on
Illumina Hiseq2000, Hiseq2500, or Hiseq4000 with 100-bp
reads to obtain 2.2 GB (�403 coverage) of clean data per
sample after manufacturer’s data filtering (removing adaptor
sequences, contamination, and low-quality reads).

Genome assembly

All software tools used (including versioning and command
line main options) are summarized in Table S4. Raw reads
were trimmed for adaptors using Cutadapt (Martin 2011)
and low-quality bases, then corrected for sequencing errors
based on k-mer content using Quake (Kelley et al. 2010) and
JELLYFISH (Marçais and Kingsford 2011). Raw data were
checked with FastQC (Andrews 2010) and a preliminary as-
sembly generated with CLC Assembly Cell (CLC bio 2017)
(Table S5). The CLC assemblywas screened for contaminants
using taxon-annotated, GC-coverage (TAGC) plots (Kumar
et al. 2013). Only data deriving from E. coli, the food source,
was identified as contaminant and the corresponding reads
were removed. The optimal k-mer size for assembly of the

cleaned read set was estimated using KmerGenie (Chikhi and
Medvedev 2014). Nine different assemblers (Table 1) were
used to generate preliminary assemblies and these were
assessed using basic metrics, correctness of read alignment
using ALE (Clark et al. 2013) and REAPR (Hunt et al. 2013),
and biological completeness using Core Eukaryotic Genes
Mapping Appoach (CEGMA) (Parra et al. 2007) and direct
identification of ribosomal RNA genes and mitochondrial ge-
nome sequences. SPAdes (Bankevich et al. 2012) outper-
formed the other assembly tools in almost all aspects and
was chosen as draft assembly nOt.1.0. An improved assembly
limited to the nuclear genome (nOt.2.0) was generated by
removing mitochondrial contigs and contigs of abnormally low
coverage and by breaking all scaffolds where mis-assembly
had been indicated from analysis of mapping plots and REAPR
fragment coverage distribution (FCD) scores.

Gene prediction and orthogroup inference

Genes were predicted using a two-pass pipeline (Koutsovoulos
et al.2014) (see FigureS3) basedonMAKER2 (Holt andYandell
2011) and Augustus (Stanke et al. 2006), and using the tran-
scriptome data as evidence. Repeats were identified in the as-
sembly using RepeatModeler (Smit et al. 2013–2015). MAKER2
was run in an SGE cluster using the SNAP (Korf 2004) ab initio
gene finder trained by CEGMA (Parra et al. 2007) output mod-
els, the GeneMark-ES ab initio finder, SwissProt proteins, and
O. tipulae transcripts. The transcriptome data were filtered so
that only reads .300 bases that had significant basic-local-
alignment-search-tool (BLAST) similarity to C. elegans protein
databases were kept. The MAKER2 predictions were used to
train Augustus to generate a custom gene-finding profile for
O. tipulae. Finally, Augustus was used with the gene-finder
profile and O. tipulae transcripts to predict the final gene
set. Not enough transcript evidence was available to train a
model of untranslated regions (UTRs), and therefore no UTRs
were annotated. Protein sets for C. elegans (C. elegans Sequenc-
ing Consortium 1998), Dictyocaulus viviparus (Koutsovoulos
et al. 2014), Meloidogyne hapla (Opperman et al. 2008), and
P. pacificus (Dieterich et al. 2008), downloaded fromWormBase
(http://www.wormbase.org/), were clusteredwithOrthofinder
(Emms and Kelly 2015) using an inflation value of three.

Synteny

O. tipulae scaffolds containing .100 predicted protein-
coding genes were selected to perform synteny analyses
between O. tipulae and C. elegans. Predicted proteins from
these 36 scaffolds were compared to the C. elegans protein
data set with BLAST to identify orthologous pairs. For each
pair, the chromosome location of the C. elegans ortholog
was identified. Hierarchical clustering was performed to
group the scaffolds into groups based on the proportions
of C. elegans chromosomal attributions (Figure S9).

Mapping crosses

JU170 males were crossed with young mutant hermaphro-
dites of the desired recessive mutant genotype (in the CEW1

1750 F. Besnard et al.

http://www.wormbase.org/db/get?name=OP50;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=CF726;class=Strain
http://www.wormbase.org/db/get?name=WBGene00003245;class=Gene
http://www.wormbase.org/db/get?name=WBVar00089238;class=Variation
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.203521/-/DC1/TableS1.pdf
http://www.wormbase.org/db/get?name=CEW1;class=Strain
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.203521/-/DC1/TableS3.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.203521/-/DC1/TableS4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.203521/-/DC1/TableS5.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.203521/-/DC1/FigureS3.pdf
http://www.wormbase.org/
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.203521/-/DC1/FigureS9.pdf
http://www.wormbase.org/db/get?name=CEW1;class=Strain


background) and several F1 cross-progeny were singled. In
the F2 progeny, mutant animals were isolated based on
the observation of the mutant phenotype (checked under
Nomarski microscopy if necessary) and singled onto indi-
vidual plates. These lines were amplified by selfing and
allowed to grow until the E. coli food was just exhausted.
For cov-3 F2 mutant pool sequencing, independent mutant
F2-derived populations (21 for mf35 and 51 for sy463)
were washed several times in M9 buffer (Stiernagle 2006)
and stored at 280� as pellets. A similar mass of nematodes
from each F2 line was then pooled for DNA extraction. For
the F2 sequencing of other mutations, each F2-derived pop-
ulation was checked for the presence of the mutation in the
homozygous state and allowed to grow until the E. coli food
was just exhausted. Nematodes were directly pooled from
different plates and washed in M9 buffer. DNA was then
extracted using the Puregene Core Kit A (QIAGEN).

Variant analysis, gene mapping, and identification

JU170 whole-genome sequencing data were analyzed to
identify SNPs compared to the CEW1 reference genome.
These variants were then used for genetic mapping of the
mutants (listed in Table S3). Reads were mapped with bwa
(Li and Durbin 2009) to the CEW1 assembly, mappings pro-
cessed with the GATK tool suite (McKenna et al. 2010) ver-
sion 3.3-0 and variants called with HaplotypeCaller using
default parameters. We followed HaplotypeCaller’s authors’
recommendations of best practice (DePristo et al. 2011; Van
der Auwera et al. 2013), realigning reads around indels and
performing BQSR by bootstrapping a first call made with
HaplotypeCaller. We analyzed the 300-bp CEW1 MiSeq data
used for genome assemblywith the same pipeline, after E. coli
decontamination, as a control for variant calling. We then
hard filtered a list of high-confidence SNPs of JU170 with
conservative criteria, retaining homozygous positions cov-
ered by at least three reads in each strain, with a sequencing
and mapping quality higher than 100 and 55, respectively,
and a position noted as reference in CEW1 and variant in
JU170. Sequencing data from pooled F2 mutants were ana-
lyzed with the same pipeline, except that variant calling
was restricted to a list of JU170 SNPs previously established
for faster computing (using the HaplotypeCaller option
genotyping_mode GENOTYPE_GIVEN_ALLELES). Output
VCF files were used to compute allele frequencies for each
SNP on the JU170 list as the ratio of the number of reads
with the JU170 allele over the total number of reads. These fre-
quencies were plotted along each scaffold using custom R scripts.
Scaffolds displaying a mean JU170 allele frequency,10% were
selected as possibly linked to the candidate locus and retained
for a second, unrestricted variant call. JU170 variants were
filtered out from the output at this stage. We also system-
atically added for analysis the 47 scaffolds that do not carry
SNPs between JU170 and CEW1 (0.1% of the genome).
The functional impact of identified variantswas assessed using
snpEff (Cingolani et al. 2012) and used to prioritize candidate
genes. Where two alleles of the same gene were analyzed,Ta
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candidate gene lists were compared to exclude identical varia-
tions (likely initial background variations) and were inspected
for independent hits to the same gene with a different noncom-
plementingmutation.When necessary, visual inspections of var-
iations in aligned reads was performed with Tablet (Milne et al.
2013). Scripts used to automate this pipeline are available at:
https://github.com/fabfabBesnard/Andalusian_Mapping.

Sanger sequencing and gene validation

Four primers were designed to cover the Oti-mig-13 coding
region. Oti-mig-13 fragments were amplified from strains ho-
mozygous for the four alleles of cov-3 [mf35,mf79,mf80, and
sy463 (Louvet-Vallée et al. 2003)]. PCR products were veri-
fied on agarose gels, cleaned on columns, and sent for Sanger
sequencing to Eurofins.

X chromosome linkage of scaffolds and pyrosequencing

Linkage of scaffolds to the X chromosomewas determined using
directed pyrosequencing of F1 males from crosses (in both di-
rections) between the CEW1 and JU170 strains. For each scaf-
fold, we selected one polymorphic nucleotide position in the
middle of the scaffold in an otherwise conserved context (no
other variations in the 300 bp surrounding the variant) to en-
sure unbiased PCR. For each position, two PCR primers and one
sequencing primer were designed (Table S6) using the pyrose-
quencer’s companion design software (PyroMarkQ96 ID instru-
ment fromBiotage, Uppsala, Sweden). The primers were tested
on parental strains. PCR using universal biotinylated primers
and single-stranded PCR amplicon purification was performed
as previously described (Duveau and Félix 2010). For each geno-
typing assay, in a successful mating plate, three individual
adult F1 males and three individual adult F1 hermaphrodites
were transferred individually into 10 ml worm lysis buffer
containing proteinase K (200 mg/ml) and frozen at 220�.
Nematodes were then thawed and lysed at 60� followed by
15 min at 95� to inactivate the proteinase. A total of 4 ml of
worm lysate was used as PCR template. Pyrosequencing re-
actions were performed in the sequencingmode. High-quality
DNA extracts from the parental strains were used as positive
controls (separately and mixed to mimic a heterozygote) for
each assay. Linkage to autosomes or the X chromosome was
made if at least two male genotypes were concordant.

Scaffold linkage analysis

For each mutant strain (see Table S3) and each scaffold, the
mean frequency of alleles in the F2mapping populationwhole-
genome sequencing was extracted from the previous pipeline.
All data sets included frequencies for the 144 scaffolds (over a
total of 191 in nOt.2.0) that contained polymorphic positions
between the strains CEW1 and JU170. Scaffolds and F2 map-
ping populations were clustered using the “heatmap.2” func-
tion of the “gplots” package in R.

Microscopy

The vulval-cell phenotypes were determined during the early
to mid-L4 larval stage using Nomarski microscopy.

Data availability

All raw sequencing data supporting the conclusions of this article
have been submitted to the INSDC. Sequencing data of genomic
DNA and RNA from reference strain CEW1 (used for assembly)
are available under project accession no. PRJEB15512. Whole-
genome resequencing data of themapping strain JU170 is under
project accession no. PRJEB19969. Project accession numbers
corresponding to the sequencing data of F2mapping populations
of the different strains used in this study are listed in Table S3.
Annotations have also been submitted to the database European
Molecular Biology Laboratory–European Bioinformatics Institute
under the accession no. PRJEB15512.

All scripts used for mapping-by-sequencing and gene iden-
tification are available in https://github.com/fabfabBesnard/
Andalusian_Mapping.

The genome assembly and annotation is available for
browsing, exploration, and download at http://ensembl.
caenorhabditis.org/index.html; and will be uploaded soon
to WormBase (http://www.wormbase.org/).

Results

Assembly and annotation of the O. tipulae genome

We sequenced the genome of O. tipulae strain CEW1, which
was used as the reference strain in all previous molecular and
genetic studies (Blaxter et al. 1998; Félix et al. 2001; Ahn and
Winter 2006; Félix 2006). Following the strategy suggested
by the 959 Nematode Genomes project (Kumar et al. 2012),
we generated data from two libraries (see Materials and
Methods and Table S1). Paired-end 300-base Illumina MiSeq
reads (�50-fold genome coverage) were generated from a
short insert library, and mate-pair 100-base Illumina HiSeq2500
reads (�150-fold coverage) from a 3-kb virtual insert library.
Before assembly, we cleaned the raw data by removing adaptor
and low-quality bases, and performed error correction (see
Materials and Methods and Figure S1). E. coli contaminating
data were identified using TAGC plots and removed (Kumar
et al. 2013) (Figure S2). We compared the performance of
nine different assemblers (Table 1). All but one of the as-
semblers agreed on a genome size of �60 Mb, confirming
evaluations based on k-mer counting. The assembly gener-
ated by SPAdes (Bankevich et al. 2012) had the highest
quality metrics, with only 203 scaffolds .500 bp, N50
of .1.5 Mb, and only �17,000 undetermined bases. The
SPAdes assembly also had the highest accuracy as assessed
by ALE (Clark et al. 2013) and the third best by REAPR
(Hunt et al. 2013), which are two reference-independent
programs designed to track assembly errors (Table 1). From
this first version, named nOt.1.0, we derived the nuclear
genome assembly nOt.2.0 by removing three mitochondrial
scaffolds and discarding 32 contigs which had very low
coverage. We also broke 16 scaffolds that showed evidence
for overscaffolding (see below). The final draft assembly
spans 59,468,623 bases and includes 191 contigs.500 bp.
Gene finding was performed as previously described
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(Koutsovoulos et al. 2014), using both ab initio predic-
tions and evidence from RNA-sequencing data (Figure S3
and seeMaterials and Methods), and resulted in 14,938 gene
predictions (Table 2). We assessed the completeness of the
nOt.2.0 assembly using the CEGMA pipeline, and identified
97.6% complete and 99.2% partial genes out of the set of
248 conserved and likely essential genes (Parra et al. 2007).
TheO. tipulae genome is surprisingly small, with a span only
59% of that of the model species C. elegans. This reduction
likely results from different factors (Table S2). Genes are
less numerous (74% that of C. elegans) and have a denser
packing (251 genes per Mb compared to 202 genes per Mb
in C. elegans). They are also shorter overall (mean gene
length is 81% of C. elegans) with shorter introns (160 bp
vs. 339 bp), despite more introns per gene (8.5 vs. 6). The
reduction in genome size is mirrored in the reduction in the
span of intergenic DNA, and the repeat content of this inter-
genic DNA ismuch reduced.Overall repeat content inO. tipulae
is 8.4% of the genome compared to 18.7% in C. elegans, mostly
due to a much lower span of DNA elements (1.0% in O. tipulae
compared to 9.9% in C. elegans). Comparing gene orthologies
revealed no particular patterns of gene losses but indicated a
reduced amount of species-specific genes, suggesting lower
frequency of gene expansion and diversification in O. tipulae
(Figure S4).

Mapping-by-sequencing identifies the cov-3 locus

Our motivation to assemble the O. tipulae genome was to
identify the molecular lesions affecting vulva development
in a set of previously characterized mutant strains (Dichtel
et al. 2001; Louvet-Vallée et al. 2003; Dichtel-Danjoy and
Félix 2004). To establish this proof of concept, we chose
the cov-3 (cov standing for competence and centering of vulva)
mutant. cov3-mutant O. tipulae display a partial loss of vulval
competence with a highly penetrant anterior shift of the
vulval fate pattern (Louvet-Vallée et al. 2003). This pheno-
type has only recently been described in C. elegans, occurring
at low penetrance in someWnt pathway mutants (Milloz et al.
2008; Grimbert et al. 2016); suggesting that the coupling of
competence and centering differs between the two species.
Four alleles of cov-3 were available, permitting independent
confirmation of candidate genes.

For genetic mapping, we chose the strain JU170. This wild
O. tipulae isolate is genetically distant from CEW1 (the
genetic background of all mutants) based on AFLP (Baïlle
et al. 2008). We resequenced JU170 to �40-fold coverage
and identified SNPs and indels that distinguish CEWI and
JU170. We found one SNP every 95 bp on average, and a
total of 632,027 SNPs (see Figure S5). For comparison, the
genetically distant strain used routinely in C. elegans mapping-
by-sequencing (CB4856) has an average SNP density of 1 SNP
every 1000 bp (Hillier et al. 2008; Minevich et al. 2012), which
is 10-fold less.

We crossed cov-3 hermaphrodites (alleles mf35 and
sy465) with JU170 males and selected F2 grand-progeny dis-
playing the recessive cov-3 phenotype. After amplification by

selfing, F2-derived populations were pooled and genomic
DNA extracted and sequenced (see Materials and Methods
and Figure 2). To identify the cov-3 mutations, a first variant
call was performed only on known JU170 SNPs, and their
frequencies were plotted genome wide. Scaffolds containing
the lowest JU170 allele frequency were retained. A second-pass
call scanned these scaffolds for all other variants (excluding
JU170 and other background variations). This analysis re-
trieved only eight candidate mutations which were priori-
tized according to their functional impact. In the sy463
pool, a putative 38-bp insertion was predicted to cause a
frameshift in the nOt.2.0.1.t01002 gene, homologous to
Cel-mig-13. However, inspection of read pairing revealed
a much larger deletion (1888 bp) in this gene. No SNP
variants were called at this locus for the mf35 pool, but
inspection revealed a 283-bp deletion affecting the same
gene (Figure S6). Such large deletions are expected to
be less frequent than SNPs following EMS mutagenesis
(Flibotte et al. 2010) and the variant toolkit we used is
not optimal for identification of large indels.

Both mutations are predicted to result in truncation of the
expressed protein, and thus are likely to be loss-of-function
alleles. In the F2 bulk-segregant data, JU170 allele frequency
displayed a clear drop in the �1 Mb at the end of scaffold
nOt.2.0.scaf00001, an interval that contains�200 gene pre-
dictions including Oti-mig-13 (Figure 2). We conclude that
Oti-mig-13 (nOt.2.0.1.t01002) is the best candidate gene
for the cov-3 locus. To confirm this, the Oti-mig-13 locus
was amplified and directly sequenced from all four available,
independently isolated cov-3 alleles: sy463, mf35, mf79, and
mf80. The deletions predicted from whole-genome resequenc-
ingwere confirmed in sy463 andmf35. In the trimethylpsoralen-
ultraviolet (TMP-UV)-induced alleles mf79 and mf80, two
new frameshift-causing deletions were found, and these are
thus also likely to be loss-of-function alleles (Figure 2). We
have thus been able to use a draft genome assembly to
identify a locus by mapping-by-sequencing. The O. tipulae
cov-3 locus is orthologous to C. elegans mig-13. Following
standard nematode genetics nomenclature procedures, we
redesignate Oti-cov-3 as Oti-mig-13.

Table 2 Genomic characteristics of O. tipulae

O. tipulae
(assembly nOt.2.0)

Genome size (Mb) 59
Total intergenic span (Mb)
(% of total genome)

21 (35.5%)

Total genic span (Mb)
(% of total genome)

38 (64.5%)

Number of genes 14,938
Number of genes/Mbp 251
Mean/median transcript length (bp) 1,368/1,032
Mean/median exon length (bp) 160/132
Mean/median number
of exons per gene

8.5/7

Mean intron length (bp) 160
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The role of mig-13 in vulva development has changed
between C. elegans and O. tipulae

The MIG-13 protein is predicted to be a single-pass, trans-
membrane protein that contains two protein–protein interac-
tion domains (a CUB domain and an LDL-receptor repeat),
both extracellular. C. elegans and O. tipulae MIG-13 proteins
are quite similar (48% aa identity and 63.5% similarity), with
higher identity in CUB and LDL functional domains (Figure
S7). Similar organization is observed in MIG-13 homologs in
other nematodes. In C. elegans, mig-13 is necessary for the an-
terior migration of the neuroblasts of the QR lineage (Sym et al.
1999), but Cel-mig-13 was not known to play any role in vulva
development. While O. tipulae cov-3mutants display a partially
penetrant egg laying-defective phenotype, the C. elegans mig-13
mutants are not defective in egg laying. We further investigated
theCel-mig-13(mu225) nullmutant usingNomarskimicroscopy
on a large number of animals. We observed an anterior shift of
the 1� fate on P5.p, associatedwith decreased P4.p competence,
a phenotype identical to the O. tipulae mig-13 phenotype, with
very low (2%) penetrance. Penetrance of this phenotype is
80% in O. tipulae (Louvet-Vallée et al. 2003) (Figure 3, A and
B).We also observed amore penetrant reduction in competence
of vulval equivalence group cells in Cel-mig13(mu255), where
P(3,4,8).p adopt the noncompetent fused 4� fate more fre-
quently than the competent uninduced 3� fate (Figure 3C).
Thus,mig-13does play a role in vulva development inC. elegans,
but the impact of its loss of function is reduced compared to
O. tipulae, especially as far as the centering defect is concerned.
The difference in the mutational phenotypic spectrum between
the two species is thus likely to be due to a quantitative rather
than a qualitative evolution of the contributions ofmig-13 to the

vulva genetic network. This example demonstrates the power of
streamlined forward genetics in O. tipulae, as it both uncovers
the evolution of developmental mechanisms hidden by a highly
conserved cell-fate pattern, and also reveals new aspects of
C. elegans development, even in a well-studied system such
as vulva formation.

Improvements of the O. tipulae genome assembly using
genetic linkage data

The JU170 allele frequency plots provide genome-wide in-
formation about genetic linkage that can be used to improve
the genome assembly, both in identifying errors in assembly
and in superscaffolding into linkage groups. Since many F2
lines are pooled in each data set, recombination events are
averaged out and JU170 allele frequency (with mean of
�0.5) should vary continuously, especially along scaffolds
unlinked to the selected mutations. Following precedents
(Leshchiner et al. 2012), we used abrupt breaks in JU170
allele frequency in the mf35 and sy463 data sets as indica-
tions of mis-assembly. We confirmed overscaffolding by di-
rect inspection of the aligned reads in 11 cases (Figure 4A).
From the REAPR FCD score for each broken scaffold, we
estimated heuristically an FCD cutoff value, and broke five
additional scaffolds that were not highlighted in the allele
frequency plots (Figure 4B). Detection of mis-assemblies
using allele-frequency plots is highly dependent on the posi-
tion of the mapped mutant locus and the number of pooled F2
animals. However, allele frequency plots provide evidence-
based criteria to inform cutoff parameters to assess the correct-
ness of the whole assembly. The modifications outlined above
were integrated in assembly version nOt.2.0.

Figure 2 Mapping-by-sequencing of O. tipulae vulva mutants and identification of cov-3 mutations in the Oti-mig-13 gene. (A) Principle of the
mapping-by-sequencing approach, involving the wild isolate JU170 as a mapping strain and whole-genome resequencing of a bulk of mutant F2
grand-progeny (see text for details). The phenotype-causing mutation is mapped genetically by the cross as the region of low frequency of JU170 alleles.
Final identification requires scanning of this interval for variations specific to the mutant background. (B) JU170 allele frequency plots in scaffold
1 (genome version nOt.2.0.) in bulk-sequencing data generated with the independent cov-3 allelesmf35 and sy463 (upper and lower plots respectively).
On each plot, the blue line is a local regression of the JU170 allele frequency, the red arrow indicates the mapping interval size, the green line
the position of the mig-13 gene, and n the number of F2 lines pooled in each mapping population. (C) Cartoon depicting the structure of the wild-type
Oti-mig-13 gene and the alterations found in all independent alleles isolated so far. Mutations are indicated in red, exons are blue boxes, introns thin
black lines, and intergenic regions thick gray lines. Del, deletion; WT, wild type.
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A second kind of information present in JU170 allele
frequencies is genetic linkage between scaffolds. In an F2
mapping population, a scaffold with a JU170 allele frequency
significantly ,0.5 indicates linkage to the mutation of inter-
est. Scaffolds displaying a low mean JU170 allele frequency
in the sy463 data set were also consistently low in the mf35
data set (see Figure 2B, Figure 5A, and Figure S8). We rea-
soned that we could infer linkage over the whole genome by
analyzing similar data for several independent loci distrib-
uted over the genome. Following the same strategy as for
cov-3, we generated and sequenced F2 mapping populations
from a cross between JU170 and 16 additional strains from
our O. tipulae mutant collection, corresponding to 14 differ-
ent genetic loci (see Table S3). Using the same pipeline as for
cov-3, the genes mutated in these strains were almost all
identified and they will be described in a future article focus-
ing on the evolutionary changes in vulva development be-
tween O. tipuale and C. elegans. Here, we only extracted
the mean JU170 allele frequency of all scaffolds from each
independent mapping data set, which does not require the
causal mutations to be found. Using this approach, we sorted
the genome into large chromosome-scale clusters, but which
remain unordered (Figure S8).

While nematode genomes evolve rapidly, retention of
chromosomal linkage in the absence of close synteny has been

observed in several comparisons (Stein et al. 2003; Ghedin
et al. 2007; Dieterich et al. 2008). We produced a C. elegans
chromosome homology profile for each of the 36 largest scaf-
folds (.100 kb, 79% of the assembly span) (Figure S9). For
each scaffold, we observed that a majority of the genes had
orthologs located on a single C. elegans chromosome. This
pattern was strongest for genes mapping to C. elegans chro-
mosomes I, II, III, IV; and weaker for chromosomes V and X.
Clustering of these orthology-based profiles generated six
groups (labeled A–F in Figure S8 and Figure S9) that are
likely to represent the six O. tipulae chromosomes observed
by microscopy (Ahn and Winter 2006). We reasoned that if
these orthology-driven clusters represent real chromosomes,
they should also cluster by linkage. Indeed, orthology-driven
clusters A, B, C, and D were fully preserved in the linkage
clusters. We thus labeled by homology the corresponding
clusters as part of O. tipulae chromosomes I, II, III, and IV,
respectively, because the majority of genes in these linkage
groups have their C. elegans ortholog in the corresponding
chromosome (Figure S9).

In contrast, two scaffolds assigned in silico to group E and
one assigned to group F were not genetically linked to other
scaffolds of the respective group. Consideration of their con-
tent of orthologs suggested they should instead be swapped
between these two chromosomes (Figure 5A and Figure S8).
It was not possible to assign a clear C. elegans chromosome
homology for these two remaining genetic clusters since they
each have many orthologs in both C. elegans chromosomes V
and X (Figure S9). To determine which O. tipulae chromo-
some is the sex chromosome, we directly genotyped F1 males
from a cross between the reference strain CEW1 and the
polymorphic strain JU170. Markers were designed from the
larger scaffolds of groups E and F and animals were geno-
typed by pyrosequencing. X0-males will be hemizygous for
any X-linked markers, but diploid and thus heterozygous for
autosomal markers that distinguish CEWI and JU170 (Figure
5, B–D) (Srinivasan et al. 2002). This strategy identified
group E as representing the X chromosome, confirming pre-
vious observations of X-linkage for cov-3 (Louvet-Vallée et al.
2003) and mf33 (M.-A. Félix, unpublished data). Cel-mig-13
is on the C. elegans X chromosome. This assignment suggests
that there have been substantial rearrangements involving
what are now the C. elegans and O. tipulae V and X chro-
mosomes. The genotyping also identified an additional
mis-assembled scaffold (scaffold 8, Figure S10). We fur-
ther annotated our preliminary chromosome assembly
with the scaffold position of telomeres (File S1).

The scaffolds assigned to a chromosome corresponded to
99.5% of the genome. The remaining scaffolds were all small
(Figure 5E). A group of 47 scaffolds that bear no genomic
variants between JU170 and CEW1 cannot be mapped in this
cross. Four scaffolds had a consistently high JU170 allele
frequency across all genetic mapping data sets and are likely
to be regions that happened to be genetically unlinked to all
loci that were mapped in this study. Eight scaffolds had a con-
sistently rather low mean JU170 allele frequency (20–25%)

Figure 3 Conservation and evolution of MIG-13 between C. elegans and
O. tipulae. (A) Typical phenotype of a Oti-cov-3 mutant, shown in a
Nomarski picture and an interpretation cartoon below: an anterior shift
(1� fate shifted from P6.p to P5.p) is coupled to a reduced competence of
vulva precursor cells. * indicates Pn.p cells with a modified fate compared
to the wild type. (B) A cov-3-like phenotype can be observed at very low
frequency in a mig-13 null mutant, Cel-mig13(mu225), of C. elegans. (C)
Reduced competence of P3,4,8.p cells in Cel-mig-13(mu225) is indicated
by increased frequency of 4� fate vs. 3� fate. WT, wild type.
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and clustered together. Their low frequency of JU170 alleles
could be an artifact due to problems of read mapping in di-
vergent, repeated, or mis-assembled regions, or may be due to
transmission distortion in the cross between two wild isolates
as seen in C. elegans (Seidel et al. 2008) or C. briggsae (Ross
et al. 2011). For our mapping-by-sequencing approach, we
flagged putative causative mutations associated with these
scaffolds, but will return to them to attempt linkage attribution
in the future.

Discussion

A draft assembly with a high quality provides a useful
and versatile resource for a new nematode species

We assembled a rapid draft assembly for the reference CEWI
strain ofO. tipulae from relatively inexpensive Illumina short-
read data. The assembly has good contiguity and gene con-
tent metrics, and appears to represent the O. tipulae genome
well. It ranks among the better nematode genome assemblies
alongside the complete C. elegans and Onchocerca volvulus
assemblies and the almost complete Strongyloides ratti,
C. briggsae, and Candida tropicalis assemblies, on which
considerable finishing effort has been expended (C. elegans
Sequencing Consortium 1998; Stein et al. 2003; Hillier et al.
2007; Koboldt et al. 2010; Ross et al. 2011; Cotton et al.
2016; Hunt et al. 2016). The high quality of the O. tipulae
assembly is likely to be a result of the high homozygosity in
the inbred strain sequenced (Barrière et al. 2009) and the
small genome size (and concomitant reduced contribution
of repeats, Table S2). The total genome length in our assem-
bly is 40% shorter than a previous estimate from reassocia-
tion kinetics (Ahn and Winter 2006). We found no evidence
for missing genetic content, or a large span of overcollapsed
repeats. It is perhaps more likely that the reassociation kinetics-
based estimate is in error, as was observed for A. thaliana
[actual genome span of �135 Mb (The Arabidopsis Ge-
nome Initiative 2000), flow cytometry estimate of �150 Mb
(Bennett et al. 2003), reassociation kinetics estimate of
70–80 Mb (Leutwiler et al. 1984)].

Regardless of the specific advantages of O. tipulae, achiev-
ing high-quality draft assemblies at reasonable cost is now

feasible for a wide range of species. Advances in sequencing
technologies and assembly algorithms can be combined to
enable high contiguity assemblies, even from highly hetero-
zygous organisms. For example, Fierst et al. (2015) recently
produced a 131-Mb assembly of the highly polymorphic out-
crossing C. remanei in only 1600 scaffolds, using a mix of
short insert and mate-pair libraries, as we did here. We also
found marked differences between assemblers, even those
based on the same underlying algorithm. Comparisons of
assembly toolkits have been made in several “Assemblathon”
competitions, and from these it is clear that, while some as-
semblers do perform better consistently, customization of ap-
proach is key to optimal assembly (Earl et al. 2011; Bradnam
et al. 2013). As the assumptions made in the coding of dif-
ferent assemblers may interact differently with the particular
patterns of genome structure and diversity present in a target
species, it may still be useful to assess several different as-
semblers in parallel for each new genome.

The O. tipulae assembly could still be improved. Long-
read sequence data from Pacific Biosciences, Oxford Nano-
pore, or 103 Genomics platforms could be used to further
contiguate the genome. Long-range physical mapping using
the BioNano or OpGen optical-mapping platforms could be
used to superscaffold the existing assembly. Both of these
approaches could yield chromosomal-sized scaffolds. Tradi-
tional genetic map production from a large mapping cross
could also be used to bin and order scaffolds in a linkage
map, and validate the sequence- or physical-based assembly.
Genotyping-by-sequencing approaches such as restriction
site-associated DNA sequencing (Baird et al. 2008; Baxter
et al. 2011; Fierst et al. 2015) or other reduced-representation
sequencing methods would provide the density of markers
required at minimal cost. Low-coverage, whole-genome
skimming; for example, of recombinant inbred lines as ap-
plied in C. elegans (Li et al. 2006; Doroszuk et al. 2009;
Rockman and Kruglyak 2009), C. briggsae (Hillier et al.
2007; Ross et al. 2011), and P. pacificus (Srinivasan et al.
2002); would serve the same goal. We were able to lever-
age the data generated from bulk-segregant identification
of selected markers in a “virtuous circle” to also improve
the assembly, binning scaffolds representing 99.5% of the

Figure 4 Mapping-by-sequencing detects mis-assembly.
Variant analysis was performed using the preliminary
assembly (nOt.1.0). Plots obtained from mapping-by-
sequencing data set from the cov-3(sy463) mapping
population. JU170 allele frequency is plotted in upper
graphs for each SNP along (A) contig 16 or (B) contig
4 and the coverage is indicated below. Blue lines are
local regressions of the allele frequency or of the cov-
erage. (A) Contig 16: ) indicates a sudden shift in
JU170 allele frequencies in the scaffold. (B) Contig 4: a
REAPR FCD threshold score was deduced from plots
with obvious breaks and applied to all scaffolds. Over-
scaffolding was detected in scaffold 4 (red vertical
dotted line) in the absence of any conspicuous break
in SNP frequency.
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assembly into putative chromosomal groups and will con-
tinue to do so with further mutations.

A complete assembly of the O. tipulae genome will require
significant additional effort, but until that goal is achieved,
we have shown that the existing assembly is a sufficient sub-
strate for mapping of mutants and identification of genes. It is
also highly informative concerning genome evolutionary
dynamics in the Rhabditinae. The genome is available for
browsing and download at http://ensembl.caenorhabditis.
org/Oscheius_tipulae_not2/Info/Index.

Toward universal forward genetics?

For the first time, we successfully identified without a candidate-
gene approach a phenotype-causing gene inO. tipulae, namely
theOti-mig-13 gene corresponding to the previously described
cov-3 vulvamutants (Louvet-Vallée et al. 2003). Our pipeline is
similar to those developed for model species (Schneeberger
et al. 2009; Minevich et al. 2012; James et al. 2013). The
fragmentation of the genome into �200 contigs did not impair

our ability to identify causative lesions. Three of the four muta-
tions we identified inOti-mig-13were large deletions, including
two derived from EMS mutagenesis screens. While TMP-UV
mutagenesis is chosen because of its propensity to induce
deletions, mutations induced by EMS are thought to mainly
comprise G/C to A/T transitions (Anderson 1995); but they
can also include a significant proportion of deletions, es-
pecially after screens for strong loss-of-function mutations
(Flibotte et al. 2010; C. elegans Deletion Mutant Consortium
2012).

Our results suggest that most good-quality draft genome
assemblies will be sufficient to allow the identification of loci
identified by forward genetics. Methods have been developed
that directly identify fixed differences in raw whole-genome
sequencing datawithoutmapping to an assembly (Nordström
et al. 2013). This linkage- and reference-free strategy is par-
ticularly useful in organisms, such as plants, with large and
repetitive genomes, because assembling such genomes is still
challenging (Schneeberger 2014). However, this approach

Figure 5 Building a chromosome-scale assembly of the O. tipulae draft assembly. (A) The O. tipulae cluster of scaffolds that correspond to the X
chromosome. This cluster was selected from a global clustering based on JU170 allele mean frequency across 18 F2 mapping populations. The entire
heatmap is shown in Figure S8. Each column of the heatmap corresponds to an independent F2 mapping population (Table S3) and each rectangle to
the mean frequency of JU170 alleles in a scaffold. Scaffold identifiers are listed on the right side of the heatmap and the color scale is given above. If
available, the prediction made from orthology-driven clusters (Figure S9) is indicated on the left side of the heat map. * indicates scaffolds where the
causative cov-3 mutation has been found. (B) Method to distinguish autosome-linked vs. X-linked loci. a and b loci are on an autosome (Aut.) and the X
chromosome, respectively, and are polymorphic between two strains (alleles x and y). While F1 hermaphrodites are heterozygotes for both loci, F1 males
are homozygotes for the X-linked locus and bear the maternal allele. (C and D) Pyrograms of an F1 male progeny (left) from a CEW1 hermaphrodite
(middle) and a JU170 male (right): genotyping was performed with polymorphic markers in scaffold 14 and 31 (assembly nOt.2.0.), which are placed in
genetic clusters (C and D), respectively. Scaffold 14 is linked to X while scaffold 31 is linked to an autosome. (E) Cumulative length of each cluster of
scaffolds. Numbers within bars are percent of the whole assembly, numbers below the chart count the number of scaffolds in each cluster. ♀, female; ♂,
male; blind, scaffolds bearing no genomic variants between JU170 and CEW1; low, scaffolds with consistent low mean JU170 allele frequency; roman
numbers, chromosomes; Un., unplaced scaffolds.
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tends to output more candidate variants, and cannot exclude
candidates by linkage. This is critical, as downstream valida-
tion of candidates is time consuming and occasionally not
technically possible in nonmodel species. For Nematoda,
where genomes are generally small, a pipeline with a de novo
reference assembly and mapping by bulk-segregant analysis
is very efficient.

Many nematode species are attractive subjects for labora-
tory research, thanks to their small size, fast life cycle, large
broods, and simplicity of culture. The fact that many species
can be cryopreserved simplifies genetic approaches. Many
genetically diverse isolates are available from wild sampling
collections for each species for generation of mapping pop-
ulations. Facultative selfinghasevolvedmultiple independent
times in the phylum, and this, as in C. elegans, significantly
simplifies genetic analyses. The homozygosing effect of self-
ing also ensures easier genome assembly, but high-quality
genomic resources can still be built for obligate outcrossers,
such as C. remanei (Fierst et al. 2015). Thus, many new nem-
atode species, selfing or outcrossing, could now be turned
into genetic model systems. The real bottleneck will be the
development of functional genetic tools to validate the iden-
tified candidate genes. However, the revolution brought by
the CRISPR-Cas9 system for genome editing may solve this
issue, as shown by the recent successful implementations of
this versatile technique in various nematode species other than
C. elegans, including P. pacificus (Witte et al. 2015, p. 201) and
C. briggsae (Culp et al. 2015).

Evolution of development of the vulva in nematodes

We exemplify the relevance of the comparative genetic ap-
proachwith our analyses of the evolution of the role ofmig-13
in nematode vulva development. First, this gene would not
have been investigated in a targeted reverse genetic study:
phenotype-based screens ensure unexpected findings about
genetic innovation. Second, although C. elegans vulva devel-
opment has been studied in exquisite detail, the findings in
O. tipulae allowed us to uncover a role formig-13 in C. elegans
vulval development. The precise involvement of mig-13 in
vulva development remains an open question. MIG-13 in
C. eleganswas known to be required for the anterior migration
of the QR neuroblast (Sym et al. 1999, p. 1). Lrp12, a mouse
trans-membrane protein containing CUB and LDL repeats, is
expressed in populations of migrating and polarized neurons
during corticogenesis (Schneider et al. 2011) and can partially
rescue aC. elegansmig-13mutant (Wang et al. 2013). Although
the mechanism of action of mig-13 in neuroblast migration
remains elusive, it likely acts cell autonomously to polarize
the actin skeleton at the leading edge of the migrating cell
(Wang et al. 2013). As reported previously (Sym et al. 1999),
we were unable to detect mig-13 expression in the Pn.p vulva
precursor cells in C. elegans, but this could be due to a weak
expression [as in QR neurons (Wang et al. 2013)]. A cell-
autonomous role of MIG-13 in migration of Pn.p cells could
explain the centering phenotype observed in O. tipulae, al-
though the mechanism of its effect on competence is less

clear. In C. elegans, although vulval precursor cells move
(Grimbert et al. 2016), this movement could be of reduced
importance for proper centering of the cell fate pattern on
P6.p. This reduced role would explain why cov phenotypes
are not penetrant. It is tempting to speculate that MIG-13
acts as a receptor, but no ligand or protein partner has been
identified. Finally, since a mixture of competence and cen-
tering phenotypes have been reported in Wnt mutants of C.
elegans (Eisenmann et al. 1998; Milloz et al. 2008; Grimbert
et al. 2016), it will be important to test whether theWnt and
the mig-13 pathways interact during vulva development,
and whether the Wnt pathway is disrupted in other O. tipulae
cov mutants. Interestingly, mig-13 appears to be absent from
the P. pacificus genome. Comparing vulva development in the
three species will provide a useful framework to polarize
evolutionary changes and understand the genetic basis of
phenotypic change and stasis despite pervasive develop-
mental system drift.

In conclusion, we have shown how a draft de novo genome
assembly can be used to identify phenotype-causing muta-
tions in a nonmodel species. Our method does not require
physical or genetic maps of the genome. In addition to further
understanding of key developmental mechanisms in nema-
todes, the new assembly will be a useful resource for phylum-
wide nematode genome analyses. We validated our approach
by successfully identifyingOti-mig-13 as the gene responsible
for the vulva mutant phenotypes described in cov-3 mutants
(Louvet-Vallée et al. 2003). Our results pave the way for the
identification of further O. tipulae mutations. Mapping-by-
sequencing provides further linkage information, creating a
virtuous circle between genome assembly and mutant map-
ping. More broadly, this work shows that the combination of
better assembly techniques and mapping-by-sequencing now
makes forward genetics realistic in nonmodel species.
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