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Abstract
How phosphorylation of the epithelial sodium channel (ENaC) contributes to its regulation is incompletely understood. 
Previously, we demonstrated that in outside-out patches ENaC activation by serum- and glucocorticoid-inducible kinase 
isoform 1 (SGK1) was abolished by mutating a serine residue in a putative SGK1 consensus motif RXRXX(S/T) in the 
channel’s α-subunit (S621 in rat). Interestingly, this serine residue is followed by a highly conserved proline residue rather 
than by a hydrophobic amino acid thought to be required for a functional SGK1 consensus motif according to in vitro data. 
This suggests that this serine residue is a potential phosphorylation site for the dual-specificity tyrosine phosphorylated 
and regulated kinase 2 (DYRK2), a prototypical proline-directed kinase. Its phosphorylation may prime a highly conserved 
preceding serine residue (S617 in rat) to be phosphorylated by glycogen synthase kinase 3 β (GSK3β). Therefore, we investi-
gated the effect of DYRK2 on ENaC activity in outside-out patches of Xenopus laevis oocytes heterologously expressing rat 
ENaC. DYRK2 included in the pipette solution significantly increased ENaC activity. In contrast, GSK3β had an inhibitory 
effect. Replacing S621 in αENaC with alanine (S621A) abolished the effects of both kinases. A S617A mutation reduced the 
inhibitory effect of GKS3β but did not prevent ENaC activation by DYRK2. Our findings suggest that phosphorylation of 
S621 activates ENaC and primes S617 for subsequent phosphorylation by GSK3β resulting in channel inhibition. In proof-
of-concept experiments, we demonstrated that DYRK2 can also stimulate ENaC currents in microdissected mouse distal 
nephron, whereas GSK3β inhibits the currents.
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Introduction

The epithelial sodium channel (ENaC) is the rate-limiting 
step for  Na+ absorption in a variety of epithelia and plays 
a critical role in maintaining  Na+ balance and controlling 
long-term blood pressure in mammals [28, 34, 63]. ENaC 

is probably a heterotrimer consisting of three homologous 
subunits (α, β, and γ) [60]. Each subunit has two transmem-
brane domains, a large extracellular loop and cytosolic N- 
and C-termini (Fig. 1a). In different epithelial tissues, ENaC 
activity is under the tight control by a range of hormones and 
local mediators [37, 49, 65].

At the cellular level, ENaC regulation involves a com-
plex interplay of extracellular factors and intracellular signal 
transduction pathways including a number of protein kinases 
[3, 37, 65]. Kinases are important regulators of a wide range 
of cellular processes and consequently may modify ENaC 
function by acting at many different levels. Effects of kinases 
on ENaC include the phosphorylation and modification of 
regulatory proteins associated with ENaC or the phospho-
rylation of the channel itself with modulatory effects on its 
interaction with regulatory proteins. A prominent example 
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is the ubiquitin ligase Nedd4-2 [65, 72, 73] which promotes 
endocytic retrieval and subsequent proteasomal degrada-
tion of ENaC. Phosphorylation of Nedd4-2 at specific sites, 
e.g., by serum- and glucocorticoid-induced kinase 1 (SGK1) 
[18, 25, 42], reduces its ability to bind to PY-motifs in the 
cytosolic C-termini of the channel resulting in reduced chan-
nel retrieval. This mechanism is thought to contribute to 
the increase of ENaC expression at the cell surface elicited 
by aldosterone because the latter has a strong stimulatory 
effect on SGK1 [12]. On the other hand, phosphorylation 

of specific sites in the C-termini of β- and γENaC has been 
reported to modify the channel’s interaction with Nedd4-2 
thereby facilitating or impeding Nedd4-2 mediated channel 
retrieval [22, 41, 68].

In Xenopus laevis oocytes, the stimulatory effect of coex-
pressed SGK1 on ENaC whole-cell currents can be attrib-
uted mainly to an increased channel abundance at the cell 
surface [2, 18, 21, 62]. There is good evidence that this is 
due to inhibition of Nedd4-2-mediated channel retrieval, but 
a stimulation of channel forward trafficking may contribute 
to the effect [2, 45, 46]. This latter concept is also supported 
by the observation that in the oocyte system, a co-expressed 
neuronal isoform of SGK increased cell surface expression 
of homomeric human δENaC known to lack PY-motifs [82]. 
In addition, we have previously shown that recombinant 
active SGK1 included in the pipette solution can rapidly 
activate ENaC in excised outside-out patches from oocytes 
most probably by increasing the open probability of channels 
present in the plasma membrane [20]. This direct stimula-
tory effect on ENaC activity was also observed with recom-
binant protein kinase B alpha (PKBα) in the pipette solution 
[21]. Importantly, the stimulatory effect of both kinases was 
critically dependent on the serine residue S621 in rat αENaC 
[20, 21]. Originally, the putative phosphorylation site S621 
was identified by searching for a conserved SGK/PKB con-
sensus motif RXRXX(S/T) [38, 39] in the cytosolic termini 
of ENaC. The identified site is located in the carboxyl ter-
minal region of αENaC close to the second transmembrane 
domain and is highly conserved in mammals (Fig. 1b). A 
corresponding site is absent in the β-, γ-, and δ-subunits of 
ENaC (Fig. 1c).

Presently, it remains an open question whether SGK1 and 
PKBα directly phosphorylate the channel at the identified 
phosphorylation site S621. Indeed, it is conceivable that the 
stimulatory effect of the recombinant kinases is mediated 
by modifying the activity of endogenous kinases or phos-
phatases present in the patch, thereby indirectly favoring 
channel phosphorylation at this site. Thus, SGK1 and PKBα 
may not phosphorylate the channel directly but may mediate 
their effect by activating or inhibiting an endogenous kinase 
or phosphatase, respectively. This hypothesis is supported 
by evidence from in vitro studies that the RXRXX(S/T) 
motif has to be followed by a bulky hydrophobic residue 
to become a preferred SGK/PKB consensus motif [1, 38]. 
In contrast, in αENaC (Fig. 1b), the RXRXX(S/T) motif is 
followed by a highly conserved proline residue (P622 in rat). 
Interestingly, this proline residue makes the preceding serine 
residue (S621 in rat) a rather poor phosphorylation site for 
SGK/PKB [1, 85] but a potential phosphorylation site for 
proline-directed kinases.

The dual-specificity tyrosine-phosphorylation-regu-
lated kinase 2 (DYRK2) is a prototypical proline-directed 
kinase and a member of a family comprising at least seven 

Fig. 1  Two serine residues and one proline residue are highly con-
served in a C-terminal region of αENaC close to the second trans-
membrane domain. a Schematic representation of αENaC illustrating 
the extracellular loop, two transmembrane domains (M1 and M2), 
and intracellular N- and C-termini. The amino acid sequence of rat 
αENaC (residues 613–625) corresponds to the C-terminal region 
indicated by a star (*) and contains the serine residues 617 (S617) 
and 621 (S621) and the proline residue 622 (P622) highlighted in 
bold. b Amino acid sequence alignment of this highly conserved 
C-terminal region from several mammalian αENaC subunits. The 
residues homologous to S617, S621, and P622 in rat αENaC are high-
lighted in bold. c Amino acid sequence alignment of homologous 
C-terminal regions from human β-, γ-, and δENaC subunits
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mammalian isoforms [5]. DYRK2 has multiple functions 
and is expressed in a broad range of tissues [16, 75, 84]. 
These include colonic [81] and renal tubular epithelial cells 
[10, 78], where DYRK2 may be co-expressed with ENaC. 
Kinases of the DYRK family (DYRKs) autophosphoryl-
ate a critical tyrosine residue in their own activating loop 
during the translational process at the ribosome [48]. After 
complete translation and release from the ribosome, tyros-
ine-kinase-activity is lost and DYRKs phosphorylate their 
substrates on serine or threonine residues [47]. DYRKs are 
called proline-directed kinases due to their strong preference 
for a proline residue at the P + 1 position in combination with 
an arginine residue at P − 3 position. Thus, the typical phos-
phorylation recognition sequence of DYRK2 is RXX(S/T)P 
[8, 16, 70]. This suggests that S621 in the carboxyl terminus 
of rat αENaC located in the sequence 618RYWSP622 (Fig. 1b) 
is a good target for DYRK2-mediated phosphorylation.

Interestingly, DYRK2 phosphorylates several substrates 
which are subsequently recognized and further phosphoryl-
ated by the glycogen synthase kinase 3 β (GSK3β) [16]. 
Among those are eukaryotic initiation factor 2B (eIFB) 
[83], glycogen synthase [69], collapsin response mediator 
protein 4 (CRMP4) [15], transcription factors c-Myc, and 
c-Jun [74]. GSK3β phosphorylation targets are determined 
by other so-called priming kinases, because GSK3β prefer-
entially phosphorylates its substrates when another phos-
phoserine (PS) or phosphothreonine residue (PT) is present 
four residues C-terminal to the site of GSK3β phosphoryla-
tion. Thus, a typical GSK3β recognition motif has the fol-
lowing sequence: SXXX(PS/PT) [23, 24]. This suggests that 
phosphorylation of S621 in the α-subunit of rat ENaC may 
prime the preceding serine residue 617 (S617) for phospho-
rylation by GSK3β (Fig. 1b).

Therefore, the aim of the present study was to investi-
gate whether DYRK2 and GSK3β can affect ENaC function 
and whether this involves the two adjacent serine residues 
S621 and S617 located in the α-subunit of rat ENaC. For this 
purpose, we tested the effects of recombinant DYRK2 and 
GSK3β on rat ENaC heterologously expressed in Xenopus 
laevis oocytes using the outside-out patch clamp technique 
and site-directed mutagenesis. To confirm the oocyte find-
ings in proof-of-concept experiments in native renal tissue, 
we also studied the effects of recombinant DYRK2 and 
GSK3β on ENaC currents in patch-clamp recordings from 
microdissected mouse distal nephron.

Materials and methods

cDNA clones

Full-length cDNAs for rat wild-type α-, β-, and ΓENaC [9] 
and for αS621AENaC [20], αS617AENaC, and αP622FENaC 

mutants were in pGEM-HE vector. Extension overlap 
PCR for site directed mutagenesis was used to generate 
αS617AENaC and αP622FENaC mutants. For the S617A muta-
tion, a mutagenic forward primer with the sequence 5′-CTA 
CGC CGG TTC CGG GCC CGG TAC TGG TCT CCA-3′ and 
a reverse primer with the sequence 5′-TGG AGA CCA GTA 
CCG GGC CCG GAA CCG GCG TAG-3′ were used to intro-
duce a triplet mutation from CCA at nucleotides 1848–1851 
to TTT. To generate αP622FENaC, a mutagenic forward 
primer with the sequence 5′-GCC GGT ACT GGT CTT TTG 
GAC GAG GGG CCA G-3′ and a reverse primer with the 
sequence 5′-CTG GCC CCT CGT CCA AAA GAC CAG TAC 
CGG C-3′ were used to introduce a triplet mutation from 
GGC at nucleotides 1864–1867 to AGC. Mutations were 
confirmed by sequence analysis. Linearized plasmids were 
used as templates for cRNA synthesis using T7 RNA poly-
merase (mMessage mMachine, Ambion, Austin, TX, USA).

Isolation of Xenopus laevis oocytes and injection 
of cRNA

Isolation of oocytes was performed essentially as described 
previously [20, 21, 30, 32, 62]. Oocytes were injected with 
cRNA using 0.1–0.2 ng of cRNA per ENaC subunit per 
oocyte. To prevent  Na+ overloading [33], injected oocytes 
were incubated in low-sodium modified Barth’s saline 
(in mM, 1 NaCl, 40 KCl, 60 NMDG-Cl, 0.4  CaCl2, 0.3 
Ca(NO3)2, 0.8  MgSO4, and 10 HEPES adjusted to pH = 7.4 
with HCl) supplemented with 100 U/ml sodium penicillin 
and 100 µg/ml streptomycin sulfate. Ocytes were studied 
48–72 h after injection.

Recordings in outside‑out macropatches excised 
from Xenopus laevis oocytes

Current recordings from outside-out membrane patches 
were performed essentially as described previously [20, 
21, 31, 40, 44] using conventional patch-clamp technique. 
Patch pipettes were pulled from borosilicate glass capillaries 
and had a tip diameter of about 5–7 μm after fire polish-
ing. Pipettes were filled with K-gluconate pipette solution 
(in mM, 90 K-gluconate, 5 NaCl, 2 Mg-ATP, 2 EGTA, and 
10 mM HEPES adjusted to pH = 7.28 with Tris). Seals were 
routinely formed in a low-sodium NMDG-Cl bath solution 
(in mM, 95 NMDG (N-methyl-D-glucamine)-Cl, 1 NaCl, 
4 KCl, 1  MgCl2, 1  CaCl2, and 10 HEPES adjusted to pH 
7.4 with Tris). In this bath solution, the pipette resistance 
averaged about 3 MΩ. In NaCl bath solution, NMDG-Cl 
was replaced by 95  mM NaCl. For continuous current 
recordings, the holding potential was set to − 70 mV using 
an EPC9 amplifier (HEKA Elektronik, Lambrecht, Ger-
many). Using a 3 M KCl flowing boundary electrode, the 
liquid junction (LJ) potential occurring at the pipette/NaCl 
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bath junction was measured to be 12 mV (bath positive) 
[44]. Thus, at a holding potential of − 70 mV, the effective 
trans-patch potential was − 82 mV. This value is close to the 
calculated equilibrium potential of  Cl−  (ECl =  − 77.4 mV) 
and  K+  (EK  =  − 79.4 mV) under our experimental condi-
tions. Experiments were performed at room temperature. 
To change from one bath solution to another, a conventional 
gravity-fed system controlled by a magnetic valve system 
(ALA BPS-8) was used in combination with a TIB14 
interface (HEKA Elektronik, Lambrecht, Germany). Pulse 
8.78 software (HEKA Elektronik, Lambrecht, Germany) 
was used for data acquisition. Amiloride-sensitive current 
(∆IAmi) in outside-out membrane patches was determined 
by subtracting the current value recorded in the presence of 
amiloride (2 μM) from the corresponding value recorded 
prior to its addition. The current traces were filtered at 
200 Hz and sampled at 800 Hz.

Preparation of mouse renal tubules

For this study, we used 29 male mice (C57BL/6 J originally 
acquired from Charles River Laboratories, Sulzfeld, Ger-
many) aged 6–8 weeks. Mice were bred and maintained in 
the animal facility of Friedrich-Alexander-Universität Erlan-
gen Nürnberg (FAU). Mice received a standard diet  (Na+ 
content 3.2 g/kg, Cat-No 1310 from Spezialfutter GmbH & 
Co. KG, Lage, Germany) with free access to tap water. Isola-
tion of renal tubules was essentially performed as described 
previously [57, 58]. Renal tubules were separated manually 
using fine forceps. We identified and isolated tubular seg-
ments with characteristic branching indicative of the transi-
tion from connecting tubules (CNT) to cortical collecting 
ducts (CCD). Under the dissecting microscope, there are no 
clear-cut boundaries between CNT and initial CCD. In par-
ticular, after transfer of the tubular segments to the perfusion 
chamber and after opening the tubules, it is difficult to distin-
guish between CNT and initial CCD. Therefore, we have to 
assume that our recordings include recordings from CNT as 
well as from CCD. We did not attempt to distinguish these 
recordings and pooled the data. The microdissected tubular 
segments were attached to small pieces of glass coverslips 
coated with Cell-Tak (Collaborative Research, Bedford, MA, 
USA) and were transferred to a temperature controlled per-
fusion chamber (37 °C) mounted on an inverted microscope 
(Leica DM IRB) to perform patch clamp recordings.

Whole‑cell and outside‑out patch clamp recordings 
from microdissected mouse distal nephron

A computer-controlled EPC-9 patch clamp amplifier (HEKA 
Elektronik, Lambrecht, Germany) was used to perform con-
ventional whole-cell and outside-out patch clamp recordings 
as previously described [55–59]. To gain access with the 

patch pipette to the apical cell membrane, tubules were cut 
open with a broken glass pipette attached to a microma-
nipulator. Principal cells expressing ENaC were identified 
according to their characteristic shape and responsiveness 
to amiloride. Pipettes were pulled from borosilicate glass 
capillaries and had a tip diameter of about 1.5 μm after fire 
polishing. Pipettes were filled with a pipette solution con-
taining the following (in mM): 85 K gluconate, 40 CsOH, 5 
Na gluconate, 2 Mg ATP, 2 EGTA Na, 2  MgCl2, 20 TEA-
OH, and 10 HEPES. Its pH was adjusted to 7.2 with glu-
conic acid. The bath solution had the following composi-
tion (in mM): 145 Na gluconate, 5 K gluconate, 2  CaCl2, 5 
barium acetate, 1  MgCl2, 3 glucose, and 5 HEPES; pH was 
adjusted to 7.4 with Tris. Pipette resistance measured in the 
bath solution was about 4–6 MΩ. Seals were formed at the 
apical surface of principal cells by using gentle suction. Seal 
resistance ranged from 3 to 10 GΩ. Series resistance was 
in the order of 10 to 30 MΩ and was not compensated. For 
continuous whole-cell as well as outside-out current record-
ings, the holding potential  (Vhold) was set at − 60 mV. In each 
experiment, ∆IAmi was initially measured in the whole-cell 
configuration and subsequently in the outside-out configura-
tion provided that membrane patch excision was successful. 
In both configurations, ∆IAmi was determined by subtracting 
the current measured in the presence of amiloride (2 μM) 
from that measured in its absence. The current traces were 
filtered at 250 Hz and sampled at a rate of 2 kHz. For further 
analysis, they were digitally re-filtered at 70 Hz. Data were 
analyzed using the program “Patch for Windows” written by 
Dr. Bernd Letz (HEKA Elektronik, Lambrecht, Germany).

Chemicals

Recombinant constitutively active human SGK1 (∆1–60, 
S422D) and recombinant active full length human DYRK2 
were purchased from Biomol GmbH (Hamburg, Germany) as 
2 μg (SGK1) and 5 μg (DYRK2) vials in 50 μl stock solu-
tion both containing as main components 50 mM Tris–HCl, 
0.1 mM EGTA, 0.1% 2-mercaptoethanol, 0.15 mM NaCl, 
and 270 mM sucrose. SGK1 and DYRK2 pipette solutions 
were freshly prepared on the day of the experiment by adding 
stock solutions to 1 ml of the corresponding pipette solutions 
giving a final SGK1 and DYRK2 concentration of 80 U/ml 
(for experiments in oocytes) and 20 U/ml (for experiments 
in microdissected renal tubules). Recombinant GSK3β and a 
selective GSK3β inhibitor (CHIR99021) were kindly provided 
by Prof. Philip Cohen (Dundee, UK). GSK3β in a concentra-
tion of 1.54 mg/ml was stored in a stock solution containing 
as main components 50 mM Tris–HCl, 0.1 mM EGTA, 0.1% 
2-mercaptoethanol, 0.15 mM NaCl, and 50% glycerol. On the 
day of the experiment, the GSK3β pipette solution was freshly 
prepared by adding stock solution to pipette solution giving 
a final GSK3β concentration of 16 U/ml (for experiments in 
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oocytes) and 8 U/ml (for experiments in microdissected renal 
tubules). CHIR99021 was stored in DMSO as stock solution 
with a concentration of 10 mM. On the day of the experiment, 
stock solution was added to pipette solution giving a final 
CHIR99021 concentration of 2 μM [54]. To preserve SGK1, 
DYRK2, and GSK3β activity, the pipette solutions were sup-
plemented with dithiothreitol (Sigma-Aldrich, Taufkirchen, 
Germany) in a concentration of 0.1 mM in experiments with 
oocytes and 0.05 mM in experiments with microdissected renal 
tubules. Control experiments were performed using identical 
pipette solutions with SGK1, DYRK2, or GSK3β after heat 
inactivating the solutions at 68° C for 45 min. Moreover, in 
additional control experiments, we confirmed that dithiothrei-
tol per se had no detectable effect on ENaC activity in the con-
centrations used (data not shown). Amiloride hydrochloride 
was purchased from Sigma-Aldrich (Taufkirchen, Germany) 
and was added from an aqueous 10 mM stock solution.

Statistics

Data are presented as mean values ± SEM; n indicates the 
number of individual recordings. In oocyte experiments, N 
indicates the number of different batches of oocytes used. 
In animal experiments, N is number of mice used in a set 
of recordings. Data from different oocyte batches and from 
different animals were pooled. Statistical analysis of nested 
experiments using N and n was not performed due to the 
low number of recordings obtained per animal and oocyte 
batch. Normal distribution of data was assessed using 
D’Agostino–Pearson omnibus test. Statistical significance 
was assessed by an appropriate parametric test: paired or 
unpaired Student’s t-test and Student’s ratio t-test. Signifi-
cance was accepted for p < 0.05. Statistical analysis was per-
formed using Graph Pad Prism 5.04.

Results

Recombinant DYRK2 stimulates ENaC currents 
in outside‑out patches from Xenopus laevis oocytes

To investigate whether DYRK2 can modify ENaC activity, 
we performed patch-clamp recordings using Xenopus lae-
vis oocytes expressing α-, β-, and γ-subunits of rat ENaC 
(αβγENaC). Recordings from outside-out macropatches 
were started about 4 min after patch excision. To mini-
mize spontaneous channel rundown known to occur in the 
presence of a high extracellular  Na+ concentration [80], 
patches were maintained for most of the time in NMDG-
Cl solution containing only 1 mM  Na+. In this solution, 
only a negligible inward current was detectable at a holding 
potential of − 70 mV. In contrast, periodic changes to NaCl 
bath solution revealed sizeable inward currents consistent 

with a current component carried by  Na+ influx via ENaC. 
This current component was largely inhibited by the appli-
cation of 2 μM amiloride, a concentration known to spe-
cifically inhibit ENaC. Using this protocol, the amiloride-
sensitive sodium current (∆IAmi) was repeatedly determined 
to monitor ENaC activity over time. Figure 2a (left panel) 
shows a representative control recording with heat inacti-
vated DYRK2 (inactive DYRK2) in the pipette solution. 
Data from similar experiments are summarized in the 
right panel of Fig. 2a and demonstrate that under control 
conditions ENaC currents recorded in outside-out patches 
remain pretty stable for about half an hour. This is consist-
ent with previous control recordings using vehicle control 
in the pipette solution or other heat-inactivated kinases 
[20, 21]. In contrast, when catalytically active DYRK2 
was included in the pipette solution, ∆IAmi significantly 
increased by about twofold within ~ 25 min (Fig. 2b). Using 
a similar experimental approach, we have previously shown 
that the serine residue S621 in the α-subunit of ENaC is 
essential for mediating channel activation by SGK1, PKBα, 
or the phosphatase inhibitor ocadaic acid included in the 
pipette solution [20, 21]. To test whether this residue is 
also important for mediating the stimulatory effect of 
DYRK2, we performed recordings in outside-out patches 
obtained from oocytes expressing mutant αS621AβγENaC 
in which S621 of the α-subunit was replaced by alanine. 
No stimulatory effect of DYRK2 was observed on mutant 
αS621AβγENaC (Fig. 2c). Similarly, no stimulatory effect of 
DYRK2 was detected in outside-out patches obtained from 
oocytes expressing mutant αP622FβγENaC in which P622 
of the α-subunit was replaced by phenylalanine (Fig. 2d). 
These findings indicate that ENaC activation by DYRK2 
requires the phosphorylation site S621 and in addition the 
proline residue P622 most likely as recognition site for the 
proline-directed kinase which enables it to phosphorylate 
the preceding serine residue. Phenylalanine was chosen as 
replacement for P622 to test the functional role of this pro-
line residue and to create an optimal SGK1 consensus site 
(see next paragraph).

Recombinant SGK1 fails to stimulate mutant 
αP622FβγENaC

As stated in the introduction, in vitro studies indicate that 
an RXRXX(S/T) motif has to be followed by a large hydro-
phobic residue to become a functional SGK1 consensus 
motif [1, 38]. Thus, the P622F mutation in the channel’s 
α-subunit (αP622FENaC) theoretically converts the original 
motif (616RSRYWS621P622, Fig. 1) into an optimal SGK1 
consensus site (616RSRYWS621F622). Therefore, we asked the 
question whether SGK1 can activate mutant αP622FβγENaC 
under our experimental conditions. To address this, ENaC 
activity was assessed by measuring ∆IAmi in outside-out 
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macropatches excised from oocytes expressing αβγENaC 
or αP622FβγENaC. In these recordings, we confirmed our 
previous findings [20, 21] that ∆IAmi remained stable over 
time with heat inactivated SGK1 (inactive SGK1) included 
in the pipette solutions (Fig. 3a) but significantly increased 
by about threefold within ~ 20 min with catalytically active 
SGK1 in the pipette solution (Fig. 3b). Importantly, SGK1 

failed to stimulate αP622FβγENaC (Fig. 3c) despite the pre-
dicted optimal SGK1 consensus site of the mutant chan-
nel. We cannot exclude the possibility that introducing a 
hydrophobic residue in the C-terminal domain may cause a 
structural rearrangement of this flexible loop, thereby pre-
venting SGK1 from accessing its target. However, the well-
preserved channel function of αP622FENaC argues against 

Fig. 2  Recombinant DYRK2 stimulates ENaC currents in outside-
out patches from Xenopus laevis oocytes. a, b, c, and d, Left pan-
els, representative current traces recorded in outside-out patches of 
αβγENaC, αS621AβγENaC, and αP622FβγENaC expressing oocytes at a 
holding potential (Vhold) of − 70  mV. As indicated by the bars, bath 
solution was changed from a low  Na+ (NMDG-Cl;  [Na+] = 1  mM) 
to a normal  Na+ containing solution (NaCl;  [Na+] = 96 mM) without 
or with amiloride (Ami, 2  μM). Heat-inactivated DYRK2 (inactive 
DYRK2) or active recombinant DYRK2 (80 U/ml) were included in 
the pipette solutions as indicated under the traces. Right panels, sum-

mary of normalized ∆IAmi values obtained from similar experiments 
as shown in the representative traces (left panels). Each grey line cor-
responds to an individual outside-out patch clamp recording and con-
nects ∆IAmi values obtained at different time points. The black lines 
in each graph connect average ∆IAmi values (mean ± SEM; αβγENaC/
inactive DYRK2, n = 8; αβγENaC/DYRK2, n = 13; αS621AβγENaC/
DYRK2, n = 7; αP622FβγENaC/DYRK2, n = 6). ∆IAmi values deter-
mined at individual time points were compared with the correspond-
ing initial ∆IAmi value at 4 min using paired Student’s ratio t-test. ** 
p < 0.01; *** p < 0.001
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this possibility. Thus, our finding that SGK1 failed to stimu-
late αP622FβγENaC supports the hypothesis that S621 is not 
directly phosphorylated by SGK1 but that the stimulatory 
effect of SGK1 is mediated by an indirect effect resulting in 
the phosphorylation of S621.

Recombinant GSK3β inhibits ENaC currents

As noted in the introduction, phosphorylation of S621 may 
prime the preceding S617 for phosphorylation by GSK3β, 
because the latter preferentially phosphorylates its substrates 
four residues N-terminal to a phosphoserine (PS) or phos-
phothreonine residue (PT) [23, 24]. Therefore, we tested the 
effect of GSK3β on ENaC activity using the same approach 
as described above for DYRK2 and SGK1. In control 

experiments, we detected no effect of heat-inactivated 
GSK3β (inactive GSK3β) on ENaC currents (Fig. 4a). How-
ever, catalytically active GSK3β significantly reduced ∆IAmi 
to less than 50% of its original value (Fig. 4b). In contrast, 
the inhibitory effect of GSK3β was not observed, when the 
specific GSK3β inhibitor CHIR99021 [54] was included in 
the pipette solution in addition to GSK3β. This supports the 
conclusion that the inhibitory effect GSK3β on ENaC is spe-
cific and due to its kinase activity. Importantly, GSK3β failed 
to inhibit ENaC currents in outside-out patches from oocytes 
expressing αS617AβγENaC (Fig.  4d) or αS621AβγENaC 
(Fig. 4e). Thus, the inhibitory effect of GSK3β depended 
on the presence of S617 and also on the presence of S621. 
This suggests that phosphorylation of S621 is required as a 
priming site for GSK3β to phosphorylate S617.

Fig. 3  Recombinant SGK1 fails to stimulate αP622FβγENaC. Left 
panels, representative current traces recorded in outside-out patches 
of αβγENaC (a, b) or αP622FβγENaC (C) expressing oocytes as 
described in Fig. 2. Heat-inactivated SGK1 (inactive SGK1) or con-
stitutively active recombinant SGK1 (80 U/ml) were included in the 
pipette solutions as indicated under the traces. Right panels, sum-
mary of normalized ∆IAmi values obtained from similar experiments 

as shown in the representative traces (left panels) using the same 
symbols as in Fig.  2. αβγENaC/inactive SGK1, n = 5; αβγENaC/
SGK1, n = 7; αP622FβγENaC/SGK1, n = 7. ∆IAmi values determined at 
individual time points were compared with the corresponding initial 
∆IAmi value at 4 min using paired Student’s ratio t-test. * p < 0.05; ** 
p < 0.01
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Recombinant DYRK2 stimulates αS617AβγENaC

Since mutating S617 or S621 in the channel’s α-subunit 
abolished the inhibitory effect of GSK3β, we wondered 
whether the stimulatory effect of DYRK2 was pre-
served in outside-out patches from oocytes expressing 
αS617AβγENaC. In control recordings, we demonstrated 
that inactive DYRK2 had no significant stimulatory effect 

on αS617AβγENaC (Fig. 5a). Importantly, the stimulatory 
effect of catalytically active DYRK2 on αS617AβγENaC 
was fully preserved with a ~ 2.5-fold increase of ∆IAmi 
within ~ 25 min (Fig. 5b). Taken together with the findings 
shown in Fig. 2, this indicates that the stimulatory effect 
of DYRK2 is dependent on S621 and P622, but independ-
ent of S617.

Fig. 4  Recombinant GSK3β inhibits ENaC currents. Left pan-
els, representative current traces recorded in outside-out patches 
of αβγENaC (a, b, c), αS617AβγENaC (d), or αS621AβγENaC (e) 
expressing oocytes as described in Fig.  2. Heat-inactivated GSK3β 
(inactive GSK3β) or active recombinant GSK3β (16 U/ml) were 
included in the pipette solutions as indicated under the traces. In c, 
the GSK3β inhibitor CHIR99021 (2 µM) was included in the pipette 
solutions together with GSK3β. Right panels, summary of normal-

ized ∆IAmi values obtained from similar experiments as shown in 
the representative traces (left panels) using the same symbols as in 
Fig.  2. αβγENaC/inactive GSK3β, n = 9; αβγENaC/GSK3β, n = 20; 
αβγENaC/GSK3β + CHIR99021, n = 8; αS617AβγENaC/GSK3β, 
n = 7; αS621AβγENaC/GSK3β, n = 6. ∆IAmi values determined at 
individual time points were compared with the corresponding initial 
∆IAmi value at 4 min using paired Student’s ratio t-test. *** p < 0.001
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DYRK2 can stimulate ENaC in outside‑out patches 
from principal cells of microdissected mouse distal 
nephron

Our oocyte data indicate that DYRK2 and GSK3β can 
stimulate and inhibit ENaC activity, respectively, and that 
these effects are mediated by specific phosphorylation sites 
in the C-terminus of the channel’s α-subunit. To explore a 
possible regulatory role of these kinases in native renal tis-
sue, we tested the effects of DYRK2 and GSK3β on ENaC 
currents in microdissected mouse distal nephron using an 
established experimental technique [55–59]. Tubular epithe-
lial cells were approached from the apical membrane, and 
amiloride-sensitive ENaC currents (ΔIAmi) were recorded in 
the whole-cell and outside-out configuration of the patch-
clamp technique. Microdissected and split open tubular 
fragments of the connecting tubule (CNT) and cortical col-
lecting duct (CCD) were used which are known to express 
ENaC in principal cells. For the purpose of this study, we 
did not distinguish between recordings from CNT and CCD 

and pooled the data from all successful experiments (see 
Experimental Procedures).

At the beginning of the experiments, whole-cell currents 
were recorded at a holding potential of − 60 mV (Fig. 6a 
and 6b, left panels). Recordings were started in the pres-
ence of amiloride (2 μM). Washout of amiloride revealed 
an ENaC-mediated inward current component which was 
rapidly inhibited upon reapplication of amiloride. A detect-
able amiloride-sensitive whole-cell current was taken as evi-
dence that the cell under investigation was a principal cell 
expressing ENaC. After determining ∆IAmi in the whole-cell 
configuration, we routinely tried to excise an outside-out 
patch and to record from the same cell ∆IAmi also in the 
outside-out configuration. In successful attempts, we moni-
tored ∆IAmi over time by repeated application and washout 
of amiloride (Fig. 6a and 6b, right panels). Representative 
current traces from experiments with active recombinant 
DYRK2 or heat-inactivated DYRK2 in the pipette solution 
are shown in Fig. 6a and 6b, respectively. Data from similar 
recordings are summarized in Fig. 6c, d, and e. Interestingly, 

Fig. 5  Recombinant DYRK2 activates αS617AβγENaC. a and b, 
left panels, representative current traces recorded in outside-out 
patches of αS617AβγENaC expressing oocytes as described in Fig. 2. 
Heat-inactivated DYRK2 (inactive DYRK2) or active recombinant 
DYRK2 (80 U/ml) were included in the pipette solutions as indi-
cated under the traces. Right panels, summary of normalized ∆IAmi 

values obtained from similar experiments as shown in the repre-
sentative traces (left panels) using the same symbols as in Fig.  2. 
αS617AβγENaC/inactive DYRK2, n = 3; αS617AβγENaC/DYRK2, 
n = 6. ∆IAmi values determined at individual time points were com-
pared with the corresponding initial ∆IAmi value at 4 min using paired 
Student’s ratio t-test. ** p < 0.01
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the amiloride-sensitive whole-cell currents were not sig-
nificantly different in the two groups with ∆IAmi averag-
ing 253 ± 54 pA (n = 14; N = 11) in control experiments 
and 193 ± 57 pA (n = 9; N = 8) in experiments with active 
DYRK2 included in the pipette solution (Fig. 6c). A possible 

explanation for this is that active DYRK2 included in the 
pipette solution does not reach ENaC in the plasma mem-
brane in a sufficient concentration. Interestingly, recordings 
performed in the outside-out configuration revealed a sig-
nificant difference between the two groups. In the control 

Fig. 6  DYRK2 stimulates ENaC currents in outside-out patches 
excised from the apical membrane of principal cells in split open 
microdissected mouse renal tubules. a and b Representative current 
traces from whole-cell (left panels) and subsequent outside-out (right 
panels) patch-clamp recordings at a continuous Vhold of − 60  mV. 
Black bars indicate the presence of amiloride (Ami, 2  μM) in the 
bath solution. Active recombinant DYRK2 (40 U/ml; a) or heat-
inactivated DYRK2 (inactive DYRK2; b) were included in the pipette 
solutions as indicated under the traces. c–e Summary of data from 
similar experiments as shown in the representative traces (a and b, 
left panels) with DYRK2 (n = 9) or inactive DYRK2 (n = 14) in the 
pipette solution. In c and d, black dots correspond to measurements 
from individual patches, and open columns with error bars repre-

sent mean values ± SEM. ∆IAmi values shown in c were determined 
in the whole-cell configuration. Data shown in d represent ∆IAmi 
values from outside-out patches (∆IAmi(o/out)) expressed as per-
centage of the corresponding whole-cell ∆IAmi values (% of ∆IAmi 
(w/c)). DYRK2, n = 9; inactive DYRK2, n = 14. In c and d, statistical 
significance was assessed by unpaired Student’s t-test and unpaired 
Student’s ratio t-test, respectively. e Averaged normalized ΔIAmi 
recorded in outside-out patches as illustrated in a (right panel) at dif-
ferent times after patch excision with DYRK2 (solid triangles, n = 9) 
or inactive DYRK2 (open circles, n = 14) in the pipette solution. In 
e, ∆IAmi values determined at individual time points were compared 
with the corresponding initial ∆IAmi value at 2 min using paired Stu-
dent’s ratio t-test. * p < 0.05; ** p < 0.01; n.s. not significant
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group with inactive DYRK2, the initial ∆IAmi measured in 
the outside-out configuration averaged 1.54 ± 0.63% (n = 14) 
of the corresponding ∆IAmi determined in the whole-cell 
mode (Fig. 6d). This percentage roughly reflects the ratio of 
the area of the pipette tip to the area of the entire apical cell 
membrane. Importantly, in experiments with active DYRK2 
in the pipette solution, the initial ΔIAmi in outside-out 
patches was increased to 8.96 ± 3.08% of ΔIAmi determined 
in the corresponding whole-cell recordings. This value was 
significantly higher than that observed in control record-
ings with heat-inactivated DYRK2 (p < 0.01) (Fig. 6d). 
Moreover, in outside-out patches with active DYRK2 in the 
pipette solution ΔIAmi further increased over time (Fig. 6a, 
right panel) reaching on average ~ 160% of its initial value 
within ~ 10 min (Fig. 6e). In contrast, in control recordings 
in outside-out patches with inactive DYRK2 in the pipette 
solution, ΔIAmi remained relatively stable (Fig. 6b, right 
panel; Fig. 6e). These findings indicate that DYRK2 can 
stimulate ENaC currents in outside-out patches from native 
renal tubules. Apparently, the main stimulatory effect occurs 
within the initial 2–3 min needed to establish the outside-
out configuration with some further stimulation after patch 
excision.

GSK3 has an inhibitory effect on ENaC in outside‑out 
patches from principal cells of microdissected 
mouse distal nephron.

In similar experiments, we also tested the effect of GSK3β 
on ENaC in microdissected mouse distal nephron. Con-
stitutively, active recombinant GSK3β or heat-inactivated 
GSK3β were added to the pipette solution. Representative 
traces from these experiments are depicted in Fig. 7a and 
7b, respectively, and the results are summarized in Fig. 7c, 
d, and e. Similar to the experiments with DYRK2, ΔIAmi 
measured in the whole-cell configuration was not different 
in the group with active GSK3β compared to ΔIAmi in the 
control group with inactive GSK3β (Fig. 7a and 7b, left 
traces; Fig. 7c). The initial ΔIAmi determined in the out-
side-out configuration appeared to be slightly reduced in 
the group with active GSK3β. The ratio between the initial 
ΔIAmi in outside-out patches and the corresponding ΔIAmi in 
the whole-cell configuration averaged 1.24 ± 0.49% (n = 7; 
N = 6) in experiments with GSK3β in the pipette solution 
and 2.43 ± 0.45% (n = 10; N = 7) in control experiments with 
inactive GSK3β (Fig. 7d). This difference did not reach sta-
tistical significance (p = 0.096). However, ΔIAmi declined 
more rapidly in outside-out patches with active GSK3β in 
the pipette solution than in patches with inactive GSK3β 
(Fig. 7a and 7b, right panels). Within 4 min after patch 
excision, relative ΔIAmi was significantly lower in outside-
out patches with active GSK3β in the pipette solution than 
relative ΔIAmi in outside-out patches from the control group 

with inactive GSK3β (Fig. 7e). After 8 min, this differ-
ence was even more pronounced, and ΔIAmi had declined to 
46 ± 1.1% (n = 7; N = 6) of its initial value in the experiments 
with active GSK3β but only to 78 ± 0.9% (n = 10; N = 7) in 
control experiments with inactive GSK3β (p = 0.02). These 
findings indicate that GSK3β can inhibit ENaC in native 
renal tubules.

Discussion

The key findings of the present study are the following: 
(i) DYRK2 stimulated and GSK3β inhibited ENaC activ-
ity in outside-out patches from oocytes; (ii) the stimula-
tory effect of DYRK2 depended on the amino-acid residues 
S621 and P622 in the C-terminus of rat αENaC which sup-
ports the hypothesis that S621 is a phosphorylation site 
for a proline directed kinase; (iii) the inhibitory effect of 
GSK3β depended on both S617 and S621, consistent with 
the idea that phosphorylation of S621 primes S617 to be 
phosphorylated by GSK3β; (iv) the S617 phosphorylation 
site is necessary for channel inhibition by GKS3β but not 
required for channel activation by DYRK2; (v) in proof-of-
concept experiments we demonstrated a stimulatory effect of 
DYRK2 and an inhibitory effect of GSK3β on ENaC activity 
also in microdissected mouse distal nephron.

This study confirms our previous finding that in outside-
out patch clamp recordings from oocytes an intact S621 
phosphorylation site in the C-terminus of rat αENaC is criti-
cal for mediating acute channel activation by SGK1 included 
in the pipette solution [20]. So far, it remained unclear 
whether SGK1 directly phosphorylates S621 or whether a 
downstream kinase is needed to mediate the S621-depend-
ent stimulatory effect of SGK1. The findings of the present 
study support the hypothesis that due to a proline residue at 
the P + 1 position, the serine residue S621 is a phosphoryla-
tion site for proline-directed kinases, e.g., DYRK2. Indeed, 
replacing P622 by phenylalanine prevented ENaC activation 
by DYRK2, highlighting the functional importance of this 
proline residue to make S621 a suitable phosphorylation site 
for this prototypical proline-directed kinase. Interestingly, 
the P622F mutation also inhibited the stimulatory effect of 
SGK1, despite converting the original motif into an optimal 
SGK1 consensus site (616RSRYWS621F622). Moreover, the 
proline residue following S621 makes the latter an unlikely 
SGK1 phosphorylation site according to in vitro studies [1, 
38, 85]. Taken together, this argues against a direct phospho-
rylation of S621 by SGK1, although its stimulatory effect is 
lost when S621 is replaced by an alanine [20, 21].

We have previously shown that the stimulatory effect of 
SGK1 can be mimicked by including the broad range phos-
phatase inhibitor okadaic acid or protein phosphatase inhibi-
tor type 2 (PIP2) in the pipette solution [20]. Importantly, 
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the stimulatory effect of phosphatase inhibition on ENaC 
also critically depended on S621 and was abolished by 
mutating this site [21]. Moreover, ENaC activity in outside-
out patches decreased to very low levels, when  Mg2+ was 
omitted from the pipette solution. This is consistent with 
the concept that an endogenous  Mg2+-dependent kinase 

activity is present in the patch and is involved in maintain-
ing baseline ENaC activity [20]. Inclusion of phosphatase 
inhibitors probably shifts the balance between endogenous 
kinase and phosphatase activity in the patch to favor phos-
phorylation of the stimulatory S621 site. Similarly, inclu-
sion of SGK1 or DYRK2 in the pipette solution is likely to 

Fig. 7  GSK3β inhibits ENaC currents in outside-out patches excised 
from the apical membrane of principal cells in split open microdis-
sected mouse renal tubules. a and b Representative current traces 
from whole-cell (left panels) and subsequent outside-out (right 
panels) patch-clamp recordings from experiments similar to those 
shown in Fig.  6. Active recombinant GSK3β (8 U/ml; a) or heat-
inactivated GSK3β (inactive GSK3β; b) were included in the pipette 
solutions as indicated under the traces. c–e Summary of data from 
similar experiments as shown in the representative traces (a and b, 
left panels) with GSK3β (n = 7) or inactive GSK3β (n = 10) in the 
pipette solution. In c and d, black dots correspond to measurements 
from individual patches, and open columns with error bars repre-
sent mean values ± SEM. ∆IAmi values shown in c were determined 

in the whole-cell configuration. Data shown in d represent ∆IAmi 
values from outside-out patches (∆IAmi(o/out)) expressed as percent-
age of the corresponding whole-cell ∆IAmi values (% of ∆IAmi (w/c)). 
GSK3β, n = 7; inactive GSK3β, n = 10. In c and d, statistical signifi-
cance was assessed by unpaired Student’s t-test and unpaired Stu-
dent’s ratio t-test, respectively. e Averaged normalized ΔIAmi recorded 
in outside-out patches as illustrated in a (right panel) at different 
times after patch excision with GSK3β (solid triangles, n = 7) or inac-
tive GSK3β (open circles, n = 10) in the pipette solution. In e, ∆IAmi 
values determined at individual time points were compared with the 
corresponding initial ∆IAmi value at 2 min using paired Student’s ratio 
t-test. * p < 0.05; n.s. not significant
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favor phosphorylation of S621 resulting in ENaC activation 
above baseline level. In case of DYRK2, this is most likely a 
direct effect which can be inhibited by mutating the proline 
residue P622. The latter residue is critical for DYRK2 to 
recognize the S621 phosphorylation site. In contrast, SGK1 
may indirectly lead to S621 phosphorylation by stimulating 
an endogenous oocyte kinase or by inhibiting an endogenous 
phosphatase. In both cases, the resulting ENaC activation is 
due to increased phosphorylation of S621 as indicated by 
the finding that mutating this residue abolished the stimula-
tory effect of both SGK1 and DYRK2. The identity of the 
endogenous oocyte kinase and phosphatase involved in the 
phosphorylation and dephosphorylation of S621, respec-
tively, is presently unknown.

The concept of an indirect effect of SGK1 on S621 is 
also consistent with our previous observation that plasma 
membrane cholesterol removal abolishes the acute stimula-
tory effect of SGK1 on ENaC in outside-out patches [40]. 
Cholesterol removal is likely to compromise the function of 
cholesterol-rich lipid raft microdomains, which are thought 
to serve as signaling platforms for ENaC and may be impor-
tant for the channel’s interaction with associated regulatory 
proteins. Thus, the finding that cholesterol depletion pre-
vents ENaC stimulation by SGK1 suggests that additional 
regulatory proteins, e.g., an endogenous kinase or phos-
phatase, are required to mediate the stimulatory effect of 
SGK1 on the channel.

Our findings in microdissected tubules provide proof 
of principle that the prototypical proline-directed kinase 
DYRK2 can activate ENaC not only in the oocyte expres-
sion system but also in native renal tissue. DYRK2 is known 
to be expressed in the kidney [16] including in renal tubu-
lar epithelial cells co-expressing ENaC [10, 78]. Moreover, 
using RNA-seq analysis, we recently confirmed expression 
of DYRK2 in cultured mouse cortical collecting duct (CCD) 
cells from the  mCCDcl1 cell line (unpublished observation). 
This cell line is known to express ENaC and is an estab-
lished CCD model to study ENaC-mediated transepithelial 
sodium transport [26, 50–52]. Whether DYRK2 is the physi-
ologically relevant kinase or whether other proline-directed 
kinases are involved in ENaC activation by targeting S621 
remains to be investigated. Regulating mechanisms and 
stimuli able to modify the expression and activity of DYRK2 
are still incompletely understood [16]. Thus, it is presently 
unclear how DYRK2 may be regulated to modify ENaC 
function according to physiological needs. Moreover, it is 
conceivable that in the presence of a suitable baseline kinase 
activity, the degree of S621 phosphorylation is determined 
by adjusting the activity of a phosphatase dephosphorylating 
this site rather than by modifying the kinase activity.

At present, it is unclear how phosphorylation at S621 
mechanistically causes channel activation. Our previous 
findings indicate that in outside-out patches, the acute 

stimulatory effect of SGK1 on ENaC is not due to the inser-
tion of additional channels into the plasma membrane. 
Instead, constitutively active SGK1 in the pipette solution 
seems to activate a population of near-silent channels pre-
sent in excised outside-out patches from ENaC expressing 
oocytes [20]. Thus, phosphorylation at S621 probably affects 
ENaC gating and turns previously silent channels into chan-
nels with a rather high open probability. Interestingly, this 
is reminiscent of proteolytic ENaC activation observed in 
single-channel recordings from outside-out patches exposed 
to trypsin or chymotrypsin in the bath solution [19, 29]. 
Proteolytic channel activation is a unique feature of ENaC 
[64, 65], but the underlying mechanisms and the identity of 
the physiologically relevant proteases remain incompletely 
understood. There is good evidence that proteases stimulate 
ENaC by cleaving specific sites in the extracellular loops of 
its α- and γ-subunits [37]. This cleavage causes the release 
of inhibitory tracts which probably leads to a conformational 
change resulting in channel activation [35]. Recently pub-
lished cryo-EM structural data of ENaC indicate that spe-
cific binding sites are present to allow a close interaction of 
the α- and γ-inhibitory tracts with their respective subunits 
[60, 61]. However, it is still unclear how the occupancy of 
these binding sites alters channel conformation. No cryo-EM 
structural information is presently available regarding the 
C-termini of ENaC including the S621 residue in α-ENaC. 
Thus, at present, it remains purely speculative to postulate 
that a phosphorylation at this site may result in a conforma-
tional change similar to that induced by proteolytic channel 
activation. It will be an interesting task for future studies 
to explore a possible link between proteases and kinases in 
acutely regulating ENaC activity at the level of the plasma 
membrane.

As stated in the introduction, DYRK2 is known to act as 
priming kinase for GSK3β [16]. Our findings support the 
hypothesis that phosphorylation of S621 primes S617 for 
phosphorylation by GSK3β. Interestingly, GSK3β inhibited 
ENaC expressed in X. laevis oocytes and in microdissected 
tubules. Moreover, in the oocyte expression system, its effect 
depended on both S617 and on S621. In contrast, the stimu-
latory effect of DYRK2 was fully preserved when S617 was 
mutated and S621 remained intact. Thus, phosphorylation 
of S617 by GSK3β may serve as feedback mechanism to 
limit ENaC activation induced by phosphorylation of S621. 
Our functional data provide indirect evidence that phospho-
rylation of these residues is relevant for ENaC regulation. 
It remains a challenge for future studies to demonstrate 
direct phosphorylation of these sites and to elucidate how 
the degree of phosphorylation varies according to different 
physiological conditions.

GSK3β was first discovered to phosphorylate glycogen 
synthase, a final enzyme in the glycogen synthesis path-
way. GSK3β is expressed in many tissues [13, 14] including 
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ENaC expressing renal epithelial cells [10, 11, 78]. Indeed, 
we recently confirmed co-expression of ENaC and GSK3β in 
 mCCDcl1 cells using RNA-seq analysis (unpublished obser-
vation). Phosphorylation of glycogen synthase by GSK3β 
leads to its inactivation [13]. Inhibition of GSK3β medi-
ates the effect of insulin on glycogen synthesis [17]. Pro-
tein kinase B alpha (PKBα, named also Act1), induced by 
insulin, phosphorylates GSK3β at serine residue S9, thereby 
inactivating it [66, 67]. Interestingly, insulin has been 
reported to activate ENaC [4, 6, 7, 53, 71, 77]. The stimula-
tory effect of insulin on ENaC may be mediated partially 
by PKBα, because it was shown that this kinase increases 
ENaC abundance in the plasma membrane [43] and acutely 
activates ENaC in outside-out patches [21]. The latter effect 
depends on S621. Since we have shown that ENaC is inhib-
ited by GSK3β, it is tempting to speculate that inhibition of 
GSK3β by PKBα contributes to ENaC activation by insulin. 
Moreover, activation of ENaC by other kinases known to 
inactivate GSK3β may be partially attributed to their inhibi-
tory effects on this kinase. For instance, SGK1 [66] and the 
protein kinase A (PKA) [76] can inactivate GSK3β through 
phosphorylation at S9. Thus, SGK1 and PKA, induced by 
aldosterone [27, 34] and vasopressin [36, 79], respectively, 
may activate ENaC at least in part by inactivation of GSK3β. 
Taken together, GSK3β may be involved in ENaC regulation 
as a tonic inhibitory factor and/or may serve as an inhibitory 
feedback mechanism after ENaC activation by phosphoryla-
tion at S621.

In summary, our study indicates that phosphorylation 
of S621 by a proline-directed kinase, e.g., DYRK2, stimu-
lates ENaC activity and primes S617 to be phosphorylated 
subsequently by GSK3β which limits the stimulatory effect 
of the initial phosphorylation and results in channel inhibi-
tion. Moreover, our findings provide proof of principle that 
DYRK2 and GSK3ß can activate and inhibit ENaC also in 
microdissected renal tubules, respectively. This supports 
the concept that the opposing effects of the two adjacent 
phosphorylation sites in the C-terminus of the channel’s 
α-subunit play a role in acute regulation of ENaC activity 
in native tissue.
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