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Objectives: The endothelium maintains vascular
homeostasis through the release of endothelium-derived
relaxing factors (EDRF) and endothelium-derived
hyperpolarization (EDH). The balance in EDH : EDRF is
disturbed in cardiovascular disease and may also be
susceptible to developmental conditioning through
exposure to an adverse uterine environment to predispose
to later risk of hypertension and vascular disease.

Methods: Developmentally conditioned changes in
EDH : EDRF signalling pathways were investigated in
cremaster arterioles (18–32 mm diameter) and third-order
mesenteric arteries of adult male mice offspring of dams
fed either a fat-rich (high fat, HF, 45% energy from fat) or
control (C, 10% energy from fat) diet. After weaning,
offspring either continued on high fat or were placed on
control diets to give four dietary groups (C/C, HF/C, C/HF,
and HF/HF) and studied at 15 weeks of age.

Results: EDH via intermediate (IKCa) and small (SKca)
conductance calcium-activated potassium channels
contributed less than 10% to arteriolar acetylcholine-
induced relaxation in in-situ conditioned HF/C offspring
compared with �60% in C/C (P< 0.01). The conditioned
reduction in EDH signalling in HF/C offspring was reversed
in offspring exposed to a high-fat diet both before and
after weaning (HF/HF, 55%, P< 0.01 vs. HF/C). EDH
signalling was unaffected in arterioles from C/HF offspring.
The changes in EDH : EDRF were associated with altered
endothelial cell expression and localization of IKCa

channels.

Conclusion: This is the first evidence that EDH-mediated
microvascular relaxation is susceptible to an adverse
developmental environment through down-regulation of
the IKCa signalling pathway. Conditioned offspring exposed
to a ‘second hit’ (HF/HF) exhibit adaptive vascular
mechanisms to preserve dilator function.

Keywords: developmental conditioning, endothelium
derived hyperpolarizing factor, intermediate conductance
calcium-activated potassium channels, maternal obesity,
microvasculature

Abbreviations: ACh, acetylcholine; DAPI, 4,6-diamidino-
2-phenylindole; EDHF, endothelium-derived hyperpolarizing
factor; EDRF, endothelium-derived relaxing factor; eNOS,
endothelial nitric oxide synthase; IEL, internal elastic
lamina; IKCa, intermediate-conductance calcium-activated
potassium channel; L-NAME, Nv-nitro-L-arginine methyl
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ester hydrochloride; PBST, PBS 0.1% Tween-20; ROI,
region of interest; SKCa, small-conductance calcium-
activated potassium channel; TRAM-34, 1-
[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole
INTRODUCTION
T
he endothelium maintains vascular homeostasis
through the release of endothelium-derived relaxing
factors (EDRF; including nitric oxide, prostaglandins

[PGE2, PGI2]), and endothelium-derived hyperpolarization
(EDH). Ageing and pathologies, including hypertension,
obesity, and type 2 diabetes mellitus are associated with a
reduced nitric oxide-dependent vasodilator capacity in the
resistance vasculature [1–5]. It remains contentious whether
EDH signalling is similarly affected in cardio-metabolic
disease [6]. Persistence or even upregulation of EDH-medi-
ated relaxation to compensate for the loss of nitric oxide-
mediated relaxation has been reported in small resistance
arteries and arterioles from animal models of hypertension
[7], diet-induced obesity [8,9], and hypercholesterolaemia
[10,11] whereas in other models reduced EDH-dilator
responses are reported [12,13]. Similarly, conflicting find-
ings of the degree of dysfunction of EDH-mediated relaxa-
tion have been reported in humans with essential
hypertension, atherosclerosis, and diabetes [6].

It is now widely accepted that an adverse early life
environment primes or conditions multiple systems and
pathways to increase susceptibility in the offspring to later
disease risk [14,15]. Evidence from both animal studies
and human cohorts indicates that offspring exposed to a
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disadvantageous developmental environment go on to
develop endothelial dysfunction in later life [16] and that
maternal under and over-nutrition condition both EDRF
and EDH-mediated vasorelaxation [11,17–19]. These stud-
ies were conducted in resistance and large conduit arteries
in which nitric oxide-mediated signalling predominates.
Direct evidence of the impact of the developmental
environment on endothelium-mediated relaxation within
arterioles in the microvasculature (vessels <200 mm in
diameter) where EDH-mediated relaxation play a greater
role is missing [20].

Intermediate (IKCa 3.1) and small (SKCa 2.3) conductance
calcium-activated potassium channels play a prominent
role in initiating hyperpolarization and modulating electri-
cal conduction along the endothelium and to the smooth
muscle of small arteries and arterioles in many vascular
beds [6,21,22]. These channels may also contribute to the
modulation of endothelial Ca2þ signalling and nitric oxide
release [23]. Obesity-related disorders are associated with
impairment in the signalling mechanisms of both IKCa and
SKCa channels [12]. Deficiencies in IKCa and SKCa channels
have also been reported in diabetes [13] and ageing [24],
and genetic deficits in IKCa and SKCa shown to lead to
elevated arterial blood pressure (BP) in mice [25]. Con-
versely, increased function and expression of IKCa and SKCa

channels may contribute to sustained endothelium-
dependent relaxation in the early stages of obesity [9]. IKCa

and SKCa channel expression and location have been
shown to be subject to significant remodelling during
development [26] and ageing [24]. However, the mechan-
isms underlying altered membrane expression and/or
activity of KCa channels have yet to be determined [27].

The present study was designed to test the impact of
developmental conditioning through exposure to fat-rich
diet during gestation and suckling on the contribution of
the EDH-signalling to vasodilatation within a skeletal muscle
microvascular bed. It also set out to determine whether
dysregulation of KCa channel signalling plays a mechanistic
role. As we have previously shown that a second insult (a
postweaning fat-richdiet) independently influences vascular
outcomes and interacts with the effects of an adverse intra-
uterine environment [28], we now examine whether the
EDH-signalling pathway in developmentally conditioned
adult mouse offspring is exacerbated in conditioned off-
spring additionally fed a HF-rich postweaning.

METHODS

Ethical approval
All animal experimentation was performed under license
from the Home Office in accordance with the Animals
(Scientific Procedures) Act (1986). The study received
institutional approval from the University of Southampton
Biomedical Research Facility Research Ethics Committee.

Animal procedures
All mice were reared within the University of Southampton
Biomedical Research Facility and were housed in appro-
priate environments in rooms maintained at 22� 28C with a
12 h light : dark cycle. Female C57/BL6 mice were fed either
a fat-rich (HF, standardized Van Heek diet-induced obesity
Journal of Hypertension
diet) [29] with 45% energy from fat, 35% from carbohydrate
and 18% from protein (TestDiet, St. Louis, Missouri, USA,
n¼ 21) or control diet with 10% energy from fat, 72% from
carbohydrate and 18% from protein (RM1 chow diet,
Special Diets Services, Witham, UK, n¼ 17) for 4 weeks
before conception and throughout gestation and lactation
as previously described [28,30]. Dams’ body weight and
body composition were measured after weaning of their
offspring. Litter sizes were standardized at birth and female
offspring culled at weaning (21 days). After weaning, male
offspring were fed either the same diet as their dams or diet
switched to give four offspring groups (C/C, C/HF, HF/C,
and HF/HF). Offspring BP was measured via tail cuff
plethysmography (Columbus Volumetric BP Monitor
NIBP-8, Linton Instruments, Diss, UK) at 15 weeks of
age. After overnight fasting, animals were killed by cervical
dislocation and body weight and body composition
measured. Blood was collected by cardiac puncture follow-
ing euthanasia for measurement of fasting plasma glucose
(Accu-Check; Roche, Mannheim, Germany) and total
plasma lipids by gas chromatography [31].

Measurement of body composition using
three-dimensional computed tomography
Whole animal carcasses were scanned using a Skyscan 1176
in-vivo micro-computed tomography (CT) scanner (Bruker
microCT, Kontich, Belgium). All scans were taken at 40 kV,
600 mA with 0.2 mm aluminium filter, with 0.78 rotation
step. Individual two-dimensional cross-sectional images
were reconstructed using Bruker NRecon software version
1.6.5.8. Voxel resolution was 35 mm. Reconstructed images
were analysed using Bruker CTAn software version 1.13.5.1
with appropriate thresholds to determine volumes of fat,
soft tissue, and bone [32].

Cremaster arteriolar function
Immediately after killing by cervical dislocation, the abdomi-
nal aorta was cannulated orthogradely and the circulation
stabilized by perfusion with a cardioplegic solution that
contained NaCl (110mmol/l), MgCl2 (16mmol/l), KCl
(16mmol/l), CaCl2 (1.2mmol/l), NaHCO3 (10mmol/l), iso-
prenaline hydrochloride (0.01mmol/l; to ensure full vaso-
dilatation), ascorbic acid (0.01mmol/l; to prevent the
oxidation of isoprenaline) and heparin (300 IU/ml). The
pH was adjusted to 7.0� 0.05. All chemicals were purchased
from Sigma-Aldrich (Dorset, UK). The cremaster muscle was
exteriorized as described previously [33] and perfusion
switched to Krebs solution (NaCl (118mmol/l);
KCl (4.7mmol/l); CaCl2 (2.52mmol/l); MgSO4.7H2O
(1.18mmol/l); KH2PO4 (1.18mmol/l), NaHCO3 (25mmol/
l), glucose (9mmol/l) buffered to pH 7.4� 0.05) containing
bovine serum albumin (10mg/ml) at a rate of 0.5ml/min.
The exteriorized cremaster was continuously superfused
with a similar but albumin-free Krebs solution (pH 7.4)
gassed with 5% CO2 in air and maintained at 378C at a rate
of 2ml/min. After a stabilization period of 30min a bolus of
fluorescein isothiocyanate conjugated-albumin (10mg/ml)
in Krebs solution was injected into the circulation via the
abdominal aorta and suitable 3A cremaster arterioles
(<40 mm diameter) identified. The cremaster muscle was
trans-illuminated using blue (480–500nm) light and viewed
www.jhypertension.com 453
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FIGURE 1 Functional studies. (a) Diagrammatic representation of protocol for measurement of functional relaxation in the cremaster microvasculature. (b) The average
diameter of a vessel segment was estimated from the fraction of the pixels within the region of interest (shown by the white box) above a predetermined threshold level.
The threshold was calculated from the time series of images obtained during the different treatments by using the ‘Stack Histogram’ function using the ‘Yen’ algorithm in
Image J (1.49 v) Auto Threshold v1.5. The diameter at any time point is given by the product of the width of the region of interest and f. NA, noradrenaline; ACh, acetyl
choline; Nv-nitro-L-arginine methyl ester hydrochloride; TRAM-34, 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole.
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with a Zeiss ACM microscope using a 10� water immersion
objective lens at an emission wavelength of 525–535nm.
Images of single arterioles were captured at 2 s�1 via a
ProGres MF cool camera (Jenoptik, Jena Germany) (Fig. 1).

To assess functional responses, vessels were precon-
stricted with 1 mmol/l noradrenaline followed by relaxation
to 10 mmol/l acetylcholine (ACh) added as a bolus to the
superfusate. Specific blockers to nitric oxide (100 mmol/l L-
NAME), prostaglandins (10 mmol/l indomethacin) and IKCa

(1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-
34) 1 mmol/l) and SKCa (apamin, 0.1 mmol/l) were then
sequentially added to the superfusate to reveal the relative
contribution of these pathways to ACh-endothelial-medi-
ated relaxation (Fig. 1). Arteriolar diameters were measured
off-line using Image Hopper (Samsara Research, Dorking,
UK) and relaxation responses were represented as the
maximum % reversal of noradrenaline-induced constric-
tion. The reduction in relaxation at each stage of signalling
pathway blockade was calculated as a fraction of the initial
ACh-induced relaxation in the absence of blockers. Using
these data, the relative fractional contribution of the EDRF-
pathways (blockable by Nv-nitro-L-arginine methyl ester
hydrochloride (L-NAME) and indomethacin) and of EDH-
mediated signalling (via IKCa and SKCa channels) to ACh-
mediated relaxation was estimated in each offspring group.
Quantification of endothelial expression of
intermediate-conductance calcium-activated
potassium channel and small-conductance
calcium-activated potassium channel in third-
order cremaster arterioles and mesenteric
arteries
The entire cremaster muscle was dissected in physiological
saline solution (PSS, mmol/l: 119 NaCl, 4.7 KCl, 1.17
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MgSO4, 1.18 KH2PO4, 25 NaHCO3, 0.027 EDTA, 5.5 glu-
cose) and fixed in 4% paraformaldehyde overnight at 48C.
Areas of the cremaster muscle (�1 mm2) were then cut
from either side of the main cremaster artery andblocked in
5% (v/v) goat serum, 1% BSA (v/v) 0.3 mol/l glycine, 2%
Triton X-100 in 1x PBS (Sigma Aldrich) for 1 h. The cre-
master samples were incubated with an IKCa antibody
(APC-051 Alomone Labs, Jerusalem, Israel; 1 : 200) and
CD31 antibody (Abcam, Cambridge UK; 1 : 100) overnight
at 48C. The tissues were washed three times with 1�PBS
0.1% Tween-20 (PBST) followed by incubation with Ima-
ge-iT FX signal enhancer (Invitrogen, Paisley, UK) for
30 min and then washed three times in PBST. Samples
were probed with Alexa Fluor goat antimouse IgM 568
secondary antibody (Invitrogen; 1 : 100) and Alexa Fluor
goat antirabbit IgG 633 secondary antibody (Invitrogen;
1 : 100) for 1 h followed by three washes in PBST and
incubation with 4,6-diamidino-2-phenylindole (DAPI)
for 30 min. Samples were cleared in 2,20-thiodiethanol in
stages; 10, 25, 50, 97% (in H2O) each for 45 min with two
incubations in 97% and mounted onto coverslips in 100%
2,20-thiodiethanol.

Third-order fat free mesenteric arterioles (diameter
150–200 mm) were dissected into PBS and fixed as
described above. The vessels were cut into 0.2 mm rings
and opened longitudinally. Sections were mounted with
the endothelium uppermost and blocked in 5% (v/v) goat
serum, 1% BSA (v/v) 0.3 mol/l glycine, 0.2% Triton X-100 in
1�PBS for 1 h followed by incubation with the IKCa

antibody (APC-051 Alomone Labs; 1 : 100) or SKCa antibody
(APC-025 Alomone; 1 : 50) for 2 h. Samples were washed
three times in PBST then probed with Alexa Fluor 568 goat
antimouse IgM secondary antibody followed by a further
three washes in PBST. Sections were then incubated with
Alexa Fluor 633 hydrazide (Invitrogen; 1 : 5000) for 30 min
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and DAPI (1 : 1000) for 20 min before mounting in Mowiol.
Negatives for all tissues and secondary antibodies were
generated.

Tissues were imaged using a Leica TCS SP5 multiphoton
confocal microscope and images analysed using Leica AS
AF suite. Three regions of interest (ROIs, 45� 15 mm for
cremaster vessels and 40� 40 mm for mesenteric arteries)
per sample were examined. ROIs were selected based on
clear vessel morphology, that is, away from branch points
and avoiding areas of tissue where there was overlap of
vessels through the cremaster. In the mesenteric artery,
ROIs were chosen in areas of well preserved endothelial
morphology and internal elastic lamina (IEL) structural
integrity. The analysis of KCa channel expression (intensity)
and location (overlap) was undertaken on maximum pro-
jection images from z-stacks of the whole vessel in cre-
master and in the endothelial layer of mesenteric arteries
excluding the smooth muscle cell layer. Overlap with
endothelial cell membrane was semiquantified using Man-
der’s overlap coefficient analysis [34]. Overlap was also
explored in the cremaster arterioles using a single trans-
verse median optical section of each vessel. Myoendothelial
domains (number and size of holes in the IEL and coloc-
alization of IKCa and SKCa were quantified in mesenteric
segments.

eNOS mRNA expression in cremaster muscle
Freshly dissected cremaster muscles were powdered under
liquid nitrogen and 75mg of tissue homogenized in 1ml Tri
Reagent (Invitrogen) prior to centrifugation (12 000� g
10min at 48C). The supernatant was incubated with 1-
bromo-3-chloropropane (100 ml) for 15min before centrifu-
gation (12 000� g for 15min 48C) and transfer of the aque-
ous phase to a fresh microfuge tube. The samples were
mixed with 500 ml isopropanol (15 min) and recentrifuged
at 12 000� g for 15min 48C. The supernatant was removed
and the pellet resuspended in 1ml 75% ethanol and cen-
trifuged 7500� g for 5min. The pellet was resuspended in
nuclease free H2O and RNA concentration and quality (260/
280 ratio) assessed using Nanodrop (Thermo Scientific,
Basingstoke, UK) and stored at�808C. cDNA was prepared
as follows using Promega reagents. 1.3 mg cremaster RNA
was mixed with 1 ml Oligo(dT) and 1 ml random primer, the
reactions were heated to 708C for 5min followed by
addition of 5 ml 5� reaction buffer, 1 ml 10 mmol/l dNTPs,
0.5 ml RNasin, 1 ml reverse transcriptase Moloney murine
leukemia virus reverse transcriptase and made to 25 ml with
nuclease free H2O. The reactions were then incubated at
428C for 60min and then 708C 15min and the cDNA stored
at�208C prior to use in real time polymerase chain reaction
(RT-PCR) RT-PCR. For each sample a triplicate reaction was
made containing 5 ml cDNA, 4 ml nuclease free H2O, 1 ml
6 mmol/l forward/reverse primer mix (eNOS: forward –
GGAAATGTCAGGCCCGTACA reverse – GTCGAGCAG-
GAGACACTGTTGA, GAPDH (PrimerDesign)) and 10 ml
2� Precision SYBR green master mix (PrimerDesign). Total
96 well plates were cycled at 958C 10min, followed by 40
cycles of 958C 15 sec and 608C 1min followed by a melt
curve stage in the Applied Biosystems StepOne Plus RT-
PCR machine. The average deltaCT value of the mRNA of
interest was normalized to glyceraldehyde-3-phosphate
Journal of Hypertension
dehydrogenase (GAPDH) and a delta CT value generated
by expressing results as fold increase compared with C/C.

Statistical analysis
No more than two offspring per dam were studied in any
dietary group and where a variable was measured in two
offspring from the same litter the values were treated as
replicates and averaged. In functional studies no more than
two arterioles were studied in any cremaster preparation
and the values were treated as replicates and averaged.
Data were tested for normality using the Shapiro–Wilks
test. Data from dams were compared by unpaired Students
t-test. In offspring groups, pre and postnatal dietary
exposures were compared by two-way ANOVA followed
by Bonferroni post hoc test using PASW version 21 (SPSS
UK, Woking, UK). All data are expressed as mean� SEM.
Statistical significance was accepted if P< 0.05.

RESULTS

Maternal phenotype
Dams fed a high-fat diet consumed approximately 30% less
(by weight) than chow-fed dams (C, 29.7� 1.0 g/week,
n¼ 17; HF, 21.5� 1.2 g/week, n¼ 21, P¼ 0.003). The aver-
age energy consumption (in kcal) over the 4 weeks immedi-
ately before mating did not differ significantly between
groups (P¼ 0.148). Dams consuming a high-fat diet before
and during pregnancy and suckling were 40% heavier (C,
27.9� 0.7 g n¼ 17; HF, 38.7� 1.5 g n¼ 21) and had a
significantly higher volume and proportion of body fat
than those consuming a chow diet (Fig. 2). The lean : fat
soft tissue ratio for the C and HF-fed dams was 2.3� 0.3
(n¼ 5) and 1.0� 0.1 (n¼ 6), respectively (P¼ 0.0014).
www.jhypertension.com 455
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HF-fed dams also exhibited significant hyperglycaemia
(C, 7.6� 1.2 mmol/l; HF, 10.9� 1.3 mmol/l, n¼ 6 per
group, P¼ 0.03) as has been shown previously [28,30].
Dam total fasting plasma lipids did not differ between
groups (C, 2541� 125 mg/ml, HF 2662� 257 mg/ml, n¼ 6
per group). HF-fed dams gave birth to smaller litters
(C¼ 8� 1, HF 5� 1, P¼ 0.007) but there was no significant
difference in litter sex balance between the two groups.

Offspring phenotype
The amount of diet consumed (g/week) measured in a
subset of offspring over 12 weeks postweaning was
significantly lower in offspring fed a fat-rich diet after
weaning (C/HF and HF/HF) than that of offspring fed a
chow diet after weaning (C/C and HF/C; P< 0.001); a
finding that is consistent with results from other studies
that show mice are capable of caloric regulation is con-
sistent [17]. There was a significant impact of postnatal
diet on caloric intake (F¼ 5.43, P¼ 0.029). Caloric intake,
however, of offspring consuming a postweaning fat-rich
diet (C/HF, 18.9� 0.5; HF/HF 21.2� 0.9 kcal/week) did
not differ significantly from that of C/C (26.7� 0.7 kcal/
week) or HF/C (27.7� 1.0 kcal/week) offspring
(P¼ 0.06).

Offspring bodyweight measured in the four dietary
groups at 15 weeks of age are shown in Fig. 3a. Body
weight was significantly higher in offspring groups exposed
to postweaning HF (C/HF and HF/HF; P< 0.0001) (prenatal
diet, F¼ 4.9, P¼ 0.03; postnatal diet, F¼ 74.6, P< 0.0001).
Additionally, C/HF and HF/HF offspring had a higher
volume and proportion of body fat than C/C or HF/C
offspring (P< 0.0001) (Fig. 3b and c). The lean : fat tissue
ratios for the four groups were C/C, 1.8� 0.1; HF/C,
2.8� 0.4; C/HF, 1.2� 0.4; HF/HF, 0.8� 0.1.

Offspring SBP was significantly influenced by both pre-
natal (F¼ 13.6, P¼ 0.001) and postnatal (F¼ 13.2,
P¼ 0.002) diet. Postnatal diet had a greater influence on
DBP (F¼ 5.6, P¼ 0.001) than prenatal diet (F¼ 3.5,
P¼ 0.071) (Fig. 3d). A postweaning fat-rich diet had a
significant impact on fasting plasma glucose levels
(F¼ 8.5, P¼ 0.009), with C/HF and HF/HF offspring
showing significant hyperglycaemia compared with C/C
and HF/C offspring at 15 weeks of age (P< 0.05) (Fig. 3e).
Offspring total plasma lipids did not differ significantly
between dietary groups (mg/ml) (C/C 2619� 223, HF/C
3643� 370.4, C/HF 3417� 520, HF/HF 3486� 531, n¼ 4–6
per group).

Impact of maternal high-fat feeding on the
contributions of nitric oxide and endothelium-
derived hyperpolarization pathways to
acetylcholine-induced relaxation in third-order
cremaster arterioles
Functional studies were conducted in a total of 41 offspring
from the four dietary groups. Data are reported from 33
vessels that exhibited an initial constrictor response to
1 mmol/l noradrenaline of more than 50% of resting
diameter and that remained functional throughout the
whole protocol. There was no significant difference in
the resting diameter of the vessels studied between the
456 www.jhypertension.com
four groups (P¼ 0.143) (Table 1). Initial constrictor
response to noradrenaline did not differ across the four
dietary groups. The tone generated in response to 1 mmol/l
noradrenaline (ratio of noradrenaline-constricted to rest-
ing diameter) was for C/C, 0.46� 0.05; HF/C 0.40� 0.03; C/
HF 0.33� 0.04; HF/HF 0.51� 0.03 (P¼ 0.09). The relaxa-
tion response to ACh did not differ significantly between
groups (Fig. 4) (F¼ 3.96, P¼ 0.057). The sequential
addition of the pharmacological inhibitors L-NAME -
þ indomethacin followed by TRAM-34þ apamin resulted
in group-specific reductions in ACh-induced relaxation
(Fig. 4a), indicative of differing contributions of the EDRF
and EDH signalling pathways to the relaxation of cremaster
arterioles across the offspring dietary groups (F¼ 5.44,
P¼ 0.028). In C/C arterioles the % contributions
of EDH and EDRF to the ACh-induced L-NAME -
þ indomethacinþTRAM-34þ apamin-blockable relaxa-
tion were 60 and 40%, respectively. This ratio was
similar to that reported previously in isolated myogenically
active cremaster arterioles from chow-fed C57BL6 mice
[39]. In maternal HF-conditioned (HF/C) offspring EDH
contributed less than 10% to ACh-mediated relaxation
(EDH : EDRF¼ 8 : 92%) (P< 0.01 vs. other dietary groups).
EDH : EDRF in C/HF offspring was 51 : 49% and in offspring
exposed to a high-fat diet both before and after weaning
(HF/HF) 55 : 45% (Fig. 4f).

Effect of maternal high-fat feeding on the
eNOS mRNA expression in cremaster arterioles
There was a significant effect of diet on expression of eNOS
mRNA (prenatal diet F¼ 14.8, P< 0.001; postnatal diet
F¼ 4.9, P¼ 0.058; interaction prenatal diet�postnatal diet,
F¼ 33.1, P< 0.001). The fold change relative to C/C
(1.0� 0.05) was HF/C 1.2� 0.1; C/HF 1.35� 0.05; and
HF/HF 0.4� 0.1 (P< 0.01 HF/HF vs. HF/C and C/HF)
(n¼ 3 per offspring group).

Effect of maternal high-fat feeding on the
expression and localization of intermediate-
conductance calcium-activated potassium
channel in cremaster arterioles
Figure 5a shows examples of confocal images of maxi-
mum projection images from z-stacks of the whole vessel
in cremaster arterioles from the four offspring groups.
IKCa expression in cremaster arterioles was influenced by
both maternal (F¼ 7.7 P¼ 0.017) and offspring diet
(F¼ 6.3, P¼ 0.027) with total expression of IKCa in HF/
HF arterioles greater than that in both HF/C and C/HF
arterioles (P< 0.01) (Fig. 5c). There was a clear associ-
ation of IKCa with the endothelial cell membrane in
cremaster arterioles from C/C, C/HF, and HF/HF off-
spring while staining in those from HF/C offspring
appeared diffuse with little overlap with CD31-stained
endothelial cell plasma membrane in single transverse
median optical section of each vessel (Fig. 5b). Overlap
of IKCa with CD31 was more influenced by postnatal
(F¼ 9.84, P¼ 0.016) than prenatal (F¼ 0.87, P¼ 0.39)
diet. We were unable to quantify expression and local-
ization of SKCa in our whole cremaster preparation
because of poor antibody staining.
Volume 34 � Number 3 � March 2016
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Developmental conditioning of endothelial signalling
Impact of maternal high-fat diet on the
expression and localization of intermediate-
conductance calcium-activated potassium
channel in third-order mesenteric arteries

The whole mount cremaster preparation precluded optimal
resolution of the endothelial expression and localization of
Journal of Hypertension
IKCa because of its complex structure. We therefore went on
to further examine the impact of pre and postnatal diet on
membrane localization and intracellular expression and of
IKCa in the endothelium of open segments of third-order
mesenteric arteries from the same conditioned animals in
which it was possible to image the luminal endothelium
more clearly. Figure 6 shows maximum projection images
www.jhypertension.com 457
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from z-stacks of the endothelial and smooth muscle cell
layers of mesenteric arteries viewed from the luminal sur-
face. As in cremaster arterioles, total IKCa expression in
mesenteric arteries was influenced by both maternal
(F¼ 12.1, P¼ 0.003) and offspring diet (F¼ 6.0,
P¼ 0.027; interaction prenatal�postnatal diet, F¼ 16.77,
P¼ 0.001), with total intensity of IKCa in mesenteric arteries
from HF/HF offspring greater than that in both HF/C and C/
HF offspring (P< 0.01) (Fig. 6b). Overlap of IKCa with the
DAPI-stained nuclei of endothelial cells appeared to be
influenced by prenatal diet (F¼ 5.00, P¼ 0.04) with an
increase in IKCa/DAPI overlap in the endothelial layer of
the mesenteric arteries from HF/C conditioned offspring
(P¼ 0.004) (Fig. 6c). By contrast, overlap of IKCa with CD31
was influenced by postnatal (F¼ 5.34, P¼ 0.03) but not
prenatal (F¼ 1.2, P¼ 0.29) diet (C/C 6.0� 1.7; HF/C
Volume 34 � Number 3 � March 2016
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TABLE 2. Distribution of holes in the IEL and colocalization with intermediate-conductance calcium-activated potassium channel in
third-order mesenteric arteries from adult male mouse offspring from four dietary groups

C/C HF/C C/HF HF/HF

Hole density (per 103 mm2) 13.6�1.1 15.0�1.9 15.1�2.4 17.1�1.6

Hole diameter (mm) 1.15�0.08 1.33�0.11 1.24�0.08 1.19�0.08

Colocalization with IKCa (%) 26�3 20�3 27�7 35�4

Number of holes in the IEL expressed per 1000 mm2 IEL area (n¼10–13 animals/dietary group. IKCa localization to IEL holes expressed as a percentage of total holes counted (n¼4–6
animals/group). Data are mean� SEM. There were no significant differences between HF-fed and C/C groups. IEL, internal elastic lamina.

Stead et al.
6.7� 1.4; C/HF 9.0� 1.9; HF/HF 12.5� 2.7 (n¼ 4–6 vessels
per group).

We also quantified endothelial domains (number and
size of holes in the internal elastic lamina and colocalization
of IKCa and SKCa in the same mesenteric segments. There
was no significant difference in the number of IEL holes per
unit area or their size in mesenteric arteries from the three
HF-fed offspring (HF/C, C/HF and HF/HF) compared with
C/C. Neither did the number of holes colocalized with IKCa

differ between groups (Table 2).
DISCUSSION
We have shown that developmental conditioning through
exposure to a fat-rich diet in utero and during suckling
gives rise to distinct alterations in the contribution of EDRF
and EDH signalling to ACh-mediated relaxation in skeletal
muscle arterioles. Our findings provide evidence that
attenuation of functional EDH-mediated relaxation in
developmentally conditioned adult male mouse offspring
is associated with altered endothelial cell membrane local-
ization and/or trafficking of IKCa channels. Developmen-
tally conditioned male offspring exposed to a ‘second hit’
and studied at 15 weeks of age exhibit the ability to
upregulate EDH-mediated vasodilatation in the face of a
reducing nitric oxide-mediated vasodilator response. Sus-
tained function is accompanied by an increased endothelial
expression and/or redistribution of IKCa channels to pre-
serve EDH-mediated vasodilatation within the skeletal
muscle vasculature. These findings evidence a flexibility
of the developmentally conditioned EDH-signalling path-
way similar to that reported in the early stages of cardio-
vascular and metabolic disease.
Developmental conditioning of functional
relaxation in the microcirculation
The conditioned cardiovascular and metabolic phenotype
that we report in 15-week-old male mice offspring of dams
fed a diet rich in animal fat for 4–6 weeks before mating and
during pregnancy and suckling is similar to that we have
reported previously [28] and consistent with that in a wide
range of animal models of maternal overnutrition (for
review see [35]). It is also similar to that observed in
prospective human cohort studies [36] in which associations
between maternal nutritional intake and weight gain during
pregnancy and offspring growth and metabolic and cardi-
ovascular traits have been demonstrated (for review see
[20]). However, the association between the developmental
environment, vascular structure and function, and the
development of cardiovascular and metabolic disease in
460 www.jhypertension.com
adulthood remains contentious and the mechanistic path-
ways underinvestigated.

Our new findings using perfused skeletal muscle arterio-
les in situ establish that the microvasculature is susceptible
to conditioning by the developmental environment, and
that this leads to alterations in signal transduction under-
lying endothelium-dependent dilator responses. The mod-
est (�20%) loss of dilator capacity in skeletal muscle
arterioles (<30 mm diameter) in all HF-fed offspring groups
was similar to that reported in rat mesenteric resistance
arteries [18] and foetal sheep coronary arteries [37] in
developmentally conditioned offspring. A similar small
but significant reduction has been reported in cremaster
muscle arterioles from adult hamster offspring overnour-
ished in early postnatal life by restriction of litter size [38]. If
the cremaster skeletal muscle vasculature is taken as a
surrogate for that of less accessible skeletal muscle beds
[39], it is probable that a similar loss of dilator tone across
other organ systems will contribute to an increase in per-
ipheral resistance and the raised BP seen in the conditioned
offspring.

In the current study in cremaster arterioles (18–32 mm
diameter) where EDH-mediated relaxation might be
expected to predominate, the relative contribution of
EDH to endothelium-dependent relaxation (via a pathway
blocked by apamin and TRAM-34) was reduced from�60%
in chow-fed controls (C/C) to less than 10% in conditioned
(HF/C) offspring. Previous studies in dietary conditioned
rodent offspring failed to show attenuation of ACh-medi-
ated relaxation in the presence of cyclooxygenase and nitric
oxide synthase (NOS) blockade, in large conduit (femoral)
arteries in which EDH-mediated vasodilatation has a less
prominent role than nitric oxide [11,19]. However, a
reduction in EDH-mediated relaxation has been reported
in third-order mesenteric resistance arteries from rat off-
spring of fat-fed dams [11] and in foetal coronary arteries
from sheep subject to maternal nutrient restriction during
pregnancy [18]. Together these data are consistent with a
susceptibility of EDH-signalling to developmental con-
ditioning.

We have previously shown that a second insult (a post-
weaning fat-rich diet) independently influences vascular
outcomes and interacts with the effects of an adverse
uterine environment to exacerbate vascular dysfunction
[19]. In larger conduit arteries this was in part attributable
to an increase in oxidative stress and reduced nitric oxide
bioavailability [19]. While there was a significant effect of
diet on expression of eNOS mRNA in the cremaster, we saw
no significant difference in nitric oxide-mediated relaxation
in cremaster arterioles in offspring exposed to a fat-rich diet
both pre and postweaning (HF/HF) compared with C/HF or
Volume 34 � Number 3 � March 2016
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HF/C offspring. To what extent this is attributable to altered
reduction-oxidation balance has yet to be elucidated. The
contribution of EDH to ACh-induced relaxation of HF/HF
offspring was more than four times greater than that seen in
arterioles from HF/C offspring and similar to that seen in the
other offspring groups. These data suggest an adaptive
mechanism to preserve dilator function and ameliorate
any reduction in other signalling pathways. This adaptive
response appears similar to that seen in the diet-induced
obese rat saphenous artery [8] and in coronary arteries of
the Zucker rat in the early stages of obesity [9] in which
enhanced EDH-mediated relaxation appears to compen-
sate for the loss of nitric oxide-mediated relaxation. A
similar plasticity has been reported in foetal and neonatal
whereby there is a maturational switch in the signalling
pathways controlling vasodilatation from one dominated
by EDH to one in which nitric oxide plays a more prom-
inent role [5,24,32,36,38]. The prominent role of EDH-
mediated relaxation during early life may also render this
signalling pathway susceptible to developmental con-
ditioning. Whether the susceptibility of the EDH pathway
to developmental conditioning that we observe in the HF/C
adult offspring is a consequence of the dominance of EDHs
in endothelium-dependent relaxation during vascular
development and maturation, and whether a conditioned
imbalance in EDH : EDRF is a risk factor for adult vascular
disease, requires further investigation.

We did not observe a significant alteration in EDH : EDRF
in C/HF mouse offspring compared with control. The
reasons for this are unclear. Similar to the HF/HF offspring,
C/HF offspring were heavier, with more body fat, higher BP
and a trend to dysglycaemia compared with chow-fed
control offspring. It is possible that had we continued
the offspring on a fat-rich diet for longer and studied the
animals at an older age they would have gone on to show
an even greater attenuation of dilator responses similar to
those reported previously in larger blood vessels from
30-week-old fat-fed mouse offspring [19].
Developmental conditioning of intermediate-
conductance calcium-activated potassium
channel signalling in the microcirculation
In the present study, we have shown that expression and
cellular localization of IKCa channels in the endothelium of
both cremaster arterioles and third-order mesenteric resist-
ance arteries was influenced by both maternal and post-
natal offspring diet. The physiological response of ion
channels depends critically on their number and time spent
at the cell surface [27]. Nuclear localization of IKCa has been
demonstrated in bronchial smooth muscle cells in healthy
and asthmatic airways [40] and in the human placental
syncytiotrophoblast from normal term placentas [41] where
it may be associated with cell proliferation and differen-
tiation. Moreover, studies in an eccrine sweat gland cell line
have shown agonist-induced intracellular trafficking of IKCa

to and from the nuclear region [42]. Thus, it is possible that
the reduced endothelial plasma membrane association and
increased intracellular accumulation of IKCa in develop-
mentally conditioned (HF/C) animals may be indicative
Journal of Hypertension
of an altered anterograde/retrograde trafficking of IKCa

resulting in attenuation of EDH-mediated relaxation.
Attenuation in functional EDH signalling in HF/C cre-

master arterioles was not, as anticipated, associated with
either a decrease in total IKCa expression or changes in the
localization of channels to regions adjacent to the myoen-
dothelial domain; as seen in obesity [8]. However, an
increased nuclear association of IKCa was seen in the
endothelium of mesenteric arteries taken from the same
animals. Thus it is possible that IKCa trafficking may partially
explain the reduced EDH-mediated relaxation reported in
third-order mesenteric resistance arteries from rat offspring
of fat-fed dams [11].

A marked increase in endothelial (CD31-associated)
expression of IKCa was seen in the vascular endothelium
from HF/HF offspring. The increase in IKCa expression in
HF/HF offspring was consistent with the observed reversal
in relative contribution of EDH : EDRF to ACh-mediated
relaxation from one dominated by EDRF-type (nitric oxide)
relaxation in HF/C offspring to one in which EDH predo-
minated. Our observations are supported by those of Cli-
ment et al. [9] who showed increased function and
expression of IKCa and SKCa to preserve dilator function
in animals exhibiting early stages of the metabolic syn-
drome, hypertension, and obesity.

We observed little change in endothelial expression of
IKCa in C/HF offspring compared with C/C. IKCa signalling
is altered with advancing age [24] and age interacts with
maternal and offspring diet to worsen the vascular pheno-
type [28]. It is possible that we would have detected more
marked changes in expression and localization of KCa

channels had we studied older C/HF offspring with a more
advanced cardio-metabolic phenotype.

The mechanisms underlying altered expression and
activity of IKCa channels at the endothelial cell surface
remain unclear. Protein glycosylation may play a key role
in this process [43] and advanced glycation end products
and oxidative stress – as exhibited by fat-rich diet con-
ditioned offspring [28] have been shown to impair both
expression and activity of KCa channels [44,45]. Similarly,
endoplasmic reticular stress has been shown to impair IKCa

channel-mediated relaxation in porcine coronary arteries
and to inhibit the endothelial cell surface expression of IKCa

channels [46]. To what extent this represented reduced
forward trafficking or enhanced endocytosis of channels
remained unclear.
Study limitations
We studied the independent effects of a preweaning fat-rich
diet and the subsequent impact of a postweaning high-fat
diet on the conditioned phenotype on skeletal muscle
arterioles in male mouse offspring at 15 weeks of age using
a perfused cremaster preparation. The relative contribution
of EDH to ACh-mediated relaxation in perfused cremaster
arterioles was not as great as anticipated considering the
size and location of the vessels studied. This may be
because of the use of a perfused preparation and the lack
of endogenous vascular tone which necessitates precon-
struction of the vessels with noradrenaline. However,
although an agonist was used to generate tone, the
www.jhypertension.com 461
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percentage decrease in diameter was matched to that
observed in in-vivo cremaster preparation [47,19].

The use of the cremaster muscle preparation precluded
the study of female offspring. Sex differences in the relative
contributions of nitric oxide and EDH to agonist-induced
endothelium-dependent relaxation have been reported in
resistance arteries [48] and EDH to dominate in arteries of
females [49]. Further, oestrogens have been shown to target
IKCa channels and to induce translocation and activation
[42]. Sexual dimorphism has also been demonstrated in the
vascular response of conditioned offspring [50]. Our find-
ings in male offspring should therefore be extrapolated
across the sexes with caution.

In conclusion, we provide the first evidence that devel-
opmental conditioning through exposure to fat-rich diet
during gestation and suckling gives rise to changes in the
relative contribution of the EDH-signalling pathway to
vasorelaxation in skeletal muscle microvasculature. Con-
ditioned attenuation in functional EDH-mediated relaxation
is associated with a reduction in endothelial expression and
trafficking of IKCa channels. However, our findings suggest
that conditioning of EDH-signalling does not appear to
disadvantage adult offspring, nor negate the protection
afforded by the EDH pathway, in the short term. Continuing
exposure to an adverse environment in adult life (post-
weaning HF) may induce activation of adaptive vascular
mechanisms to preserve the dilator capacity in the face of
reduced nitric oxide bioavailability. The match in prenatal
and postnatal diet in the HF/HF offspring may serve to
advantage these individuals compared with the mismatch in
the C/HF and HF/C groups [51]. The capacity for adjustment
in EDH-signalling pathways may provide a critical win-
dow(s) during which changes in vascular tone associated
with cardiovascular disease could be therapeutically tar-
geted.
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Reviewers’ Summary Evaluations

Reviewer 1
Developmental conditioning via a high fat diet (HFD)
through gestation and suckling may alter the contribution
of endothelium-derived hyperpolarization (EDH) to vaso-
relaxation. In an elegant set of experiments, this study
found that developmental conditioning alters EDH contri-
bution to acetylcholine-induced vasorelaxation in the cre-
master circulation. Findings could be extended to
determine whether EDH signalling is similarly altered in
response to other vasodilators and in other vascular beds.
Alternative methods, such as measurement of membrane
potential, to account for the alteration of EDH signalling in
developmental conditioning is also warranted.

Reviewer 2
This is an interesting study on developmental effects of the
interaction between maternal and offspring dietary fat intake
on Endothelium-derived hyperpolarizing factor (EDHF) in
the arterioles of the mouse cremaster muscle. Interestingly,
EDHF seems to function normally when high fat intake in
prenatal life is matched by high fat intake in postnatal life.
Whether this is also the case in humans, particularly in
arterioles at other anatomic locations, remains to be seen.
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