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Abstract

Macroparasites of humans are sensitive to a variety of environmental variables, including 
temperature, rainfall and hydrology, yet current comprehension of these relationships 
is limited. Given the incomplete mechanistic understanding of environment-disease 

interactions, mathematical models that describe them have seldom included the effects of 
time-varying environmental processes on transmission dynamics and where they have been 
included, simple generic, periodic functions are usually used. Few examples exist where seasonal 
forcing functions describe the actual processes underlying the environmental drivers of disease 
dynamics. Transmission of human schistosomes, which involves multiple environmental stages, 
offers a model for applying our understanding of the environmental determinants of the viability, 
longevity, infectivity and mobility of these stages to controlling disease in diverse environments. 
Here, a mathematical model of schistosomiasis transmission is presented which incorporates 
the effects of environmental variables on transmission. Model dynamics are explored and several 
key extensions to the model are proposed.

Introduction
A common feature of many of the most debilitating macroparasites of humans is their de-

pendence on environmental life-stages subject to dynamic climactic, ecological, hydrological 
and other conditions. This phase can be wholly environmental, where for example infected 
humans excrete parasite eggs in feces and others are exposed via contaminated food or, as in 
the case of hookworm, where contact with contaminated soil can result in penetration of the 
parasite through the intact skin. Alternatively, the environmental phase may consist of time 
spent in an intermediate host, such as a snail or fish, itself subject to heterogeneous environ-
ments. Transmission of human schistosomes involves environmental phases of both types and 
thus understanding the environmental determinants of the viability, longevity, infectivity and 
mobility of these phases is key to conceptualizing disease transmission and ultimately control-
ling disease in diverse environments.

Schistosomes enter the environment as eggs that hatch in water into a free-swimming 
miracidium that seeks a snail of the appropriate species to infect. Asexual reproduction in the 
snail produces cercariae, another free-swimming aquatic stage with a lifespan on the order 
of a day, which penetrate the intact skin of a definitive host and mature into adult worms. 
The worms sexually pair and the female lays copious numbers of eggs that are the source of 
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pathogenic response in the host. Some of these eggs find their way into the feces or urine, 
are excreted and the cycle begins again. The intermediate host, a freshwater snail and the two 
free-living aquatic stages are known to be subject to environmental stresses such as tempera-
ture1 and shear forces present in the water column.2 For S. japonicum, the species that causes 
schistosomiasis in east and southeast Asia, transmission is further complicated by the fact that 
a variety of mammals can serve as the definitive host,3 including rodents, dogs, cats, pigs and 
water buffalo, the latter of which is particularly important to sustaining transmission in the 
lower Yangtze environment.4

In China, considerable progress has been made since the 1950s controlling transmission of 
S. japonicum in humans and domestic animals. From a total of 433 endemic counties in 1959, 
the disease has been eliminated from 260 counties leaving approximately 800,000 infected 
people and another 60 million at risk.5,6 However, these represent only a small fraction of the 
worldwide total of schistosomiasis cases that the World Health Organization estimates at 200 
million, 85% of which are in Africa.7 Most of these infections are suffered by poor people, par-
ticularly children and most are preventable and treatable, although effective vaccines remain a 
hope for the future.

Where schistosomiasis transmission has been eliminated, targeted environmental modifica-
tions have often played an important role.8 Conversely, major environmental changes such as 
water development projects have often led to a sustained elevating effect on schistosomiasis 
prevalence.9 The underlying mechanisms shaping this relationship are poorly understood. An 
expansion in the preferred habitat of intermediate host snails is often implicated in these preva-
lence increases, yet few data exist to fortify this claim.10 In China, recent evidence points to the 
influence of changing water levels on intermediate host populations.11 Yet a clear mechanistic 
understanding of the processes that lead to increased disease is lacking and therefore opportu-
nities to mitigate the disease impact of water projects using engineering or design principles 
is limited.12

Schistosomes are not alone among disease systems where mechanisms bridging environ-
mental factors and epidemiological parameters have been poorly characterized. For example, 
although it has been well established that meningococcal meningitis in western Africa exhibits 
seasonal patterns, the particular causes remain uncertain and could range from low humidity to 
wind speed.13 Similarly, multiple drivers have been proposed for the seasonal nature of cholera, 
including rainfall, temperature and planktonic blooms. Yet the specific roles of these drivers 
have not been resolved and well-established dynamic features, such as the second cholera peak 
experienced in endemic regions in south Asia, have gone largely unexplained.14

Given the limited mechanistic understanding of environment-disease interactions, math-
ematical models that describe them have seldom included the effects of time-varying environ-
mental processes on transmission dynamics. Where they have been included, seasonality is 
commonly incorporated phenomenologically, using mathematical functions that are periodic 
in time and therefore describe in a generic way the seasonal variation in a parameter—a simple 
sinusoidal function is a common example. Few examples exist where seasonal forcing functions 
describe the actual processes underlying the environmental drivers of disease dynamics.15 Because 
models that incorporate seasonality are sensitive to which parameters are externally forced as 
well as the shape of their forcing, there is a pressing need to identify the actual mechanisms 
at play. These mechanisms can include seasonal behaviors of definitive hosts, environmental 
forcing of vectors and intermediate hosts, sensitivities of parasite survival in the environment 
and annual variation in host births and deaths.

Understanding the mechanisms that tie environmental change to changes in disease dynamics 
is crucial for the development of comprehensive control strategies that may be more sustain-
able and cost effective in the long run. For the case of West Nile virus, for example, simulation 
studies have suggested that concentrating pesticide spraying efforts during the spring, when 
most transmission occurs among birds, could be more effective than the current practice of 
spraying in response to human cases in the late summer and early fall when mosquito numbers 
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are already in decline.16 Ultimately, models and management practices that incorporate the 
timing of key events such as intermediate host reproduction and parasite development are es-
sential to developing more successful control strategies. Understanding these mechanisms is also 
vital for estimating the long-term impact of impending climate change at global and regional 
scales on environmentally mediated diseases, whereas current projections are, to a large extent, 
empirically-based. Indeed, it has been argued in the case of malaria, for example, that models 
which are mechanistic, based on plausible underlying drivers of the system and basic biology, 
rather than empirical relationships, are more useful for predicting and responding to, the influ-
ence of climate change.17

Table 1 summarizes the evolution from simple deterministic models, to complex spatial-
ly-explicit, individually-based models appropriate for studying re-emergent scenarios in the 
Sichuan environment, where connectivity and environmental heterogeneity structure the 
dynamics of transmission. Iterative evaluation of alternative models in the light of field data 
is the essence of the modelling process in the application presented here. Below I summarize a 
model of schistosomiasis transmission in western China which aims to incorporate mechanistic 
environment-parasite relationships, in the hopes of understanding the local determinants of 
transmission and its control in endemic settings. Spatial extensions to the model are discussed 
and an alternative, stochastic framework is proposed for application to re-emergent disease.

Modelling Schistosome Transmission
The use of mathematical models in the study of schistosomiasis dates back to the 1960s, 

when a four-parameter model was first proposed and used to explain the dynamics of endemic 
disease.18,19 Since then, a number of models have been developed and used to explore the bio-
logical and epidemiological characteristics of schistosome species and their hosts, with a ma-
jority of them focused on S. mansoni and S. haematobium20-28 and a few on S. japonicum.29,30 
This literature has three notable characteristics, it is explanatory rather than predictive, it is 
focused on phenomenological and, thereby, generalizable aspects of disease transmission and, 
for the most part, it has relied on analytical rather than computational methods of analysis. 
Koopman31 has written of the successes and limitations of these models in general and where 
they fit into a more comprehensive mathematical approach. Thus far, these models have had 
a very limited impact on field studies and control programs.27,32 One reason for this is the 
difficulty in adapting models to site-specific conditions, such as local climactic factors and 
intermediate host dynamics.

To date, we have used a model33 of schistosomiasis transmission for our work in China with 
tactical rather than strategic objectives. Our focus is on site-specific transmission and the issue of 
selecting from the limited array of feasible control modalities that are effective and sustainable 
in a particular village. This is because Chinese experience, as well as our recent investigations, 
has clearly shown considerable variability in the prevalence and intensity of human infection in 
villages with similar agriculture but that are geographically proximate.34 Hence, we regard the 
model as a platform for the synthesis of general knowledge of the mechanisms of disease trans-
mission, quantitative estimates of biological parameter values and the local factors influencing 
transmission. To that end, the model has been extended to incorporate additional phenomena 
and additional data. Here, I build on the underlying model structure and parametrization de-
scribed elsewhere,33 incorporating the influence of additional environmental phenomena.

The Model
The structure of the delay-differential equation model is shown schematically in Figure 1. 

Three state variables are tracked in the model, worm burden in each risk group, the density of 
susceptible snails in each environment and the density of infected snails in that environment. 
Here risk group refers to occupational subgroups known in this region to exhibit pronounced 
differences in the timing, intensity and location of water contact and corresponding infection 
levels, including farmers, students and others, the latter including domestic workers, teachers, 
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etc.33 Environment refers to the land in which a risk group lives and farms. Hence, for each 
occupational group, i, living in environment k, the mean worm burden is given by the solution 
of the state equation:

dw
dt

e S t C t f w wik
i w ik w ik w

w w

k� � � ��� � � � �� � ( ) ( ) ( ) iik t( )  (1.1)

where
Si(t) is the water exposure index of occupation group i and reflects the seasonal variation in 

water contact;
e-�w�w is the fraction of worms surviving the development time in humans;
� is the number of parasites acquired per cercaria per m2 skin surface contact;
f (wik) is the density dependent worm establishment function which describes a process 

in which the likelihood of developing into an adult worm is assumed to be reduced 

or both;
�w is the worm mortality rate; and
Ck(t � �w) is the mean spatial density of cercariae in irrigation system k at time t � �w. The 

time delay is due to the fact that the rate of change in the number of adult worms at time 
t is due to exposure to cercariae at time t � �w where �w is the worm development period 
in human hosts.

Modelling Cercariae-Environment Interactions
Cercariae are the free-living aquatic stage of the parasite which can infect humans and other 

mammals. They are negatively geotropic and positively phototropic, thus cercariae accumulate 
at the surface of water where they seek an appropriate mammalian host. They are highly suscep-
tible to environmental stressors, including desiccation, turbulence in the water column, water 
temperature, aquatic chemistry and light.2,35-39 Water temperature and flow are key determinants 

Figure 1. Diagram illustrating the structure of a multi-risk group model incorporating field data 
as both inputs and outputs. The host population is divided into i groups and the environment 
partitioned into k environments.
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of cercarial viability and thus Ck(t) is dependent on the infected snail population as modified 
by these environmental factors:

C t I T
r t
A

A z tk c
c

s
h k( ) ( )

( )
( )� 1 �  (1.2)

where
Ic(T1) is the temperature-dependent infectivity of cercariae, described below;
T1 is the surface water temperature, measured directly using an automated logger, or 

estimated from air temperature using a model described below; and
As is the nominal surface water area of the village irrigation system;
rc(t) the precipitation-and/or irrigation-dependent modulation of the average daily 

cercarial production [�Ahz(t)] which enters the aquatic environment, defined briefly 
below and in detail elsewhere;40

� is the cercarial production per infected snail per day;
Ah is the area of snail habitat;
zk(t) is the infected snail density.

Temperature-Dependent Cercarial Activity
Cercarial activity, including host-seeking, surface seeking, host penetration and survival are 

known to be temperature sensitive. Experiments that examine the influence of temperature on 
successful penetration and establishment in animal hosts reveal the combined effect of temperature 
on multiple activities.35 Cercariae exposed to temperatures between 15 and 30 degrees C show 
the highest worm recovery rates from mouse hosts. Above and below this range, recovery rates 
decrease, resulting in the annual infectivity cycle depicted in Figure 2 using temperature data for 
the Shian 5 study village in 2004. This relationship is incorporated in the model as Ic(T1), the 
temperature-dependent infectivity of cercariae, serving as one source of seasonal limitation of 
transmission in the framework presented here.

Flow-Dependent Cercarial Activity
Cercarial production is modulated by the availability of water in channels, rc(t), which can 

be predicted from precipitation and temperature using a conceptual rainfall-runoff model, 
IHACRES,41,42 described elsewhere40 and modeled following the simple binary formulation:

Figure 2. Daily cercarial infectivity for one year (2004) in Shian 5 as determined by water 
temperature following Upatham et al.35
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r t
q
qc
t c

t c

( )�
�

�

�
�
�

��

0
1

�

�
 (1.3)

where qt is the normalized, IHACRES-predicted channel discharge at time step t; and +c is the 
discharge threshold for cercarial release. If flow falls below the threshold for cercarial release, then 
rc(t) � 0, effectively prohibiting cercarial penetration of hosts. When the flow threshold is met 
or exceeded, rc(t) � 1 and transmission proceeds unimpeded. Thus, during and after rain events, 
when flowing water is available, cercarial dispersion and penetration can occur. This formulation 
is consistent with the ecology of Oncomelanian snails, which reside above the waterline but are 
submerged and shed cercariae when channel flows rise.43 A sample classification of daily rc(t) in 
one study site for the year 2003 is given in Figure 3.

Modelling Snail-Environment Interactions
Models of schistosome intermediate hosts have typically explored a limited number of 

functional forms and environmental variables, such as Woolhouse and Chandiwana44 and 
Woolhouse,45 who selected simple nonlinear models relating water temperature and B. globo-
sus recruitment and linear models relating mortality and water temperature. Woolhouse and 
Chandiwana46 adapted their previous model44 for flowing water environments, adding the effect 
of high rainfall. In contrast to the intermediate hosts of African schistosomes, modelling of the 
Oncomelania hupensis host of S. japonicum is rare.

Figure 3. Polar plot of annual (2003) daily water flow classifications as predicted by the 
IHACRES hydrological model. Symbols (&) represent “transmission days,” days with sufficient 
channel flow to allow for egg hatching and the coincidence of water contact and cercariae. 
Reprinted with permission from: Remais J, Liang S, Spear RC, Environ Sci Technol 2008; 
42(7):2643-2649. © 2008 American Chemical Society.
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O. hupensis snails are amphibious, inhabiting irrigation canals, riparian zones and littoral envi-
ronments. The vegetation in these sites serves to maintain a suitable microenvironment, including 
temperature and humidity, as well as providing food and refuge resources. Juveniles are submerged 
during early stages of development, while adults are often found above the water line on vegetation 
and on shaded moist soil. Adults persist under environmental stress by closing their shell opening 
with a maneuverable operculum, allowing for aestivation and making them somewhat resistant 
to dry conditions.47,48

Liang et al33 previously used a temperature-dependent recruitment model coupled with constant 
annual mortality to model seasonal abundance fluctuations of O. hupensis, but no direct measure-
ments of recruitment, mortality or environmental variables were made to construct this model. 
Others have shown that O. hupensis is highly sensitive to seasonal weather conditions including 
flooding, temperature and humidity.5,43 In response to these sensitivities, another study49 used 
a mark-recapture technique to directly measure birth and mortality processes under changing 
environmental conditions, finding temperature and heavy precipitation to be most influential in 
determining abundance. A validated population model for O. hupensis was presented, suitable for 
predicting snail abundance in changing environments. In this model, the susceptible snail state 
equation is defined as:

dx
Ek

x t t k x t kdt
g t t x t t h t E x t

x
� �� � � � � � � �

�, ( ) ,  (1.4)

where population gains in environment k are accomplished by the recruitment term g t t Ex t tx
�� ��, ,  

lagged by a temperature-dependent development time, tx, required to reach mature size (estimated 
for O. hupensis elsewhere50) and losses are accounted for by mortality term h t Et( , ), where Et is a 
vector of environmental variables at time t. Submodels g and h are defined as follows, with model 
fitting and parameters described in detail elsewhere:49

g t t ex t t

T t t

x

x

�� ���
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�� ��
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where T(t � tx) is air temperature and R(t � tx) is a count of rain events �15 mm per month at time 
t � tx and �1�6 are fit parameters; and

 (1.6)

where T(t) is air temperature, R(t) is a count of rain events �15 mm per month and �1�5 are fit 
parameters.

Fits of submodels g and h to environmental data are shown in Figure 4. Notice that the suscep-
tible snail state equation is not dependent on other, endogenous transmission model state variables. 
Consequently, the susceptible snail model can be calibrated independent of the full transmission 
model, thus economizing the computation required for calibration, described further in the chapter 
by Spear and Hubbard in this volume.

State variable zk(t), the density of infected snails in environment k, is given by the solution 
to:

dz
dt

e x tk
k k z k

z z T M t zz z� �
� � �� � �� � � �( ) ( ) ( )1

 (1.7)
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Figure 4. A) Relationship between instantaneous per capita recruitment rate for O. hupensis 
robertsoni and mean air temperature and mean number of rainfall events �15 mm (month–1). 
Climate data are lagged by ts as discussed elsewhere.49 B) Relationship between instantaneous 
per capita mortality rate for O. hupensis robertsoni and mean air temperature and mean number 
of rainfall events �15 mm (month–1). Reprinted with permission from: Remais J, Hubbard A, 
Wu Z, Spear R. J Appl Ecol 2007; 44(4):781-791. © 2007 Blackwell Publishing Ltd.
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where
xk(t) is the density of susceptible snails in environment k;
# is the fraction of those miracidia which successfully infect snails;
� is a parameter representing the degree of spatial convergence of the distribution of snail 

hosts and miracidia;
�z is the mortality rate of infected snails; and
Mk(t) is the mean density of miracidia in the irrigation system in environment k, derived 

from hatched eggs, a process described below.
The implications of an environmentally-driven snail model are shown in Figure 5 using a 

transmission model previously calibrated for Shian 5, described in detail elsewhere51 and in the 
chapter by Spear and Hubbard in this volume. The spring snail population peak generated by the 
model leads to significant infected snail numbers earlier in the year when compared to the model 
used by Liang.33 As a consequence, the onset of peak cercarial release into waterways is shifted 
back by more than a month, from late September to mid-August, a prediction that is in line with 
available cercarial concentration data from field studies in Shian 5.52 Comparisons to field data 
of this sort can highlight how environmentally-driven intermediate host models can bring model 
performance into better agreement with real world observations.

Modelling Ova-Environment and Miracidia-Environment Interactions
Total egg production from all risk groups is modeled as:

E t h g nw wk i i i k i k w
i

i
( )    ( ,  ), ,� �

1
2

� �  (1.8)

where
h is eggs per gram stool (EPG) per worm pair based on Hubbard et al;53

gi is the average stool production of a member of the ith group;
ni is the number of people in ith group whose stool is used as fertilizer;
�( , ),Wi k wi

�  is worm mating probability following May54 and described elsewhere.33 
The factor 1

2  converts mean worm burden to worm pairs.

Figure 5. Mean of 1000 simulated predictions of daily cercarial output in a simulated village 
(Shian 5) generated using the temperature- and precipitation-driven snail model (–) of Remais 
et al49 and the model (----) used by Liang et al33 Symbols (&) are mean worms recovered from 
mice (n � 94) deployed in 2001 in Shian 5 as reported by Spear et al.52
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Before hatching into miracidia, excreted eggs are subject to environmental stress. They are 
resilient, however and can persist for days on fields before being washed into irrigation channels 
by a precipitation event.40 A composite parameter representing on-field inactivation of eggs can 
be calculated from literature values of egg resilience and a simple first-order inactivation process 
can be used to express viable eggs, E*(t), as a function of the sum of decaying eggs contributed 
since the last flow event:40

E t E t ek k
T t

T

T
d* ( )    ( ) ( )� � �

�
� �

��

 (1.9)

where
Ek

*(t) is the sum of viable eggs shed by infected humans in environment k since the last 
flow event;

E(t) represents eggs excreted into environment, defined above;
.d is the decay constant governing inactivation of eggs lying dormant on fields between 

flow events;
T – �E is the time since last flow event.

Miracidia are short-lived, free-swimming and are drawn to light, accumulating near the 
surface of water where they seek an appropriate snail host. They are sensitive to water tempera-
ture and aquatic chemistry, with the former exerting a pronounced influence on viability.1,55-57 
Experimental data of the influence of temperature on miracidial infectivity have shown optimal 
activity between 15 and 30 degrees C,58 a relationship incorporated into the model of the net 
effective density of miracidia in environment k, Mk(t), a function of viable eggs in the environ-
ment, Ek

*(t):

M t I T
r t
A

E tk m
e

s
k( )    ( )

( )
( )� 1 � *  (1.10)

where
Im(T1) is the surface water temperature dependent miracidial infectivity to snails analogous 

to Ic(T1) discussed above for cercariae;
As is the nominal surface water area of the village irrigation system;
re(t) is the precipitation-and/or irrigation-dependent modulation of the average daily 

miracidial production [�E(t)] which enters the aquatic environment, defined briefly 
below and in detail elsewhere;40

� is the fraction of the total daily egg production of infected villagers returned into the 
environment as fertilizer, adjusted for the presence of sanitation.

Flow events provide opportunities for viable eggs to hatch and I therefore define re(t) analogous 
to the cercarial equation at time t as:

 (1.11)

where qt is the normalized, IHACRES-predicted discharge at time step t, as above. Here, if water 
flow falls below the threshold for egg hatching, +e, re(t) � 0 and eggs lie dormant. When the flow 
threshold is met or exceeded, re(t) � 1 and viable eggs on fields are washed into the irrigation system, 
where they hatch and can infect snails.

Model Parameters
The model was structured and parameterized to allow the use of as much of the field data as 

can be feasibly collected with the methods available in rural China. This includes environmental 
data (described below), cross-sectional data on snail population density, seasonally varying water 
contact patterns by group and survey data on the intensity of human infection. Some of these 
data are inputs to the model and some are used for parameter estimation. The issue of parameter 
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estimation is complex but central to our approach. Table 2 lists parameter values for the model 
and their literature sources. When used to study interventions (discussed in detail in the chapter 
by Seto and Carlton in this volume), a fundamental challenge is to reduce the residual uncertainty 

Table 2.  Parameter ranges and environmental inputs for transmission model 
following Liang et al.51 The distribution for all parameters is uniform except 
for log-uniform distribution for �, # and �s. Data estimates marked * are 
available in Table 4 in Liang et al.51

Parameters Interpretation and Unit Ranges References

Biological

�w Development time of worms in human host (day) 20-40 59

�w Worm natural mortality (/day) 0.000183-0.0014 59

h Eggs excreted (/worm pair/gram feces) 0.768-2.72 53

�z Patent and latent snail death rate (/day) 0.0063-0.033 60

� Cercarial production (/sporocyst/day) 20-50 61,62

hPZQ Efficacy of praziquantel 0.8-0.95 63,64

DD1 Degree-days for sporocyst development 1550-1950 65

TD1 Threshold temperature for sporocyst develop-
ment (˚C)

12-15 62

� Schistosome acquired (/cercaria/m2 contact) 0.0001-0.5 -

# Intermediate host infection (/miracidium/m2 
surface water)

0.000001-0.0005 -

�1�6 Intermediate host recruitment parameters See ref 49

�1�5 Intermediate host mortality parameters See ref 49

Site-specific

w0i Initial worm burden in the ith group Data estimate* Local data

Z0 Initial density of infected snails Data estimate* Local data

Si(t) Water contact index Data estimate* Local data

x0 Initial density of susceptible snails Data estimate* Local data

�0i Initial worm aggregation parameter Data estimate* Local data

x0 Initial mean snail density 17-35 66

�i Spatial index for the distribution and interaction 
between exposure and cercariae for ith group

Data estimate* Local data

� Spatial index for the distribution and interaction 
between snails and miracidia

1 -

Inputs

T1 Water temperature (˚C) No constraint Local data

T2 Snail microenvironment temperature (˚C) No constraint Local data

Cchemo Chemotherapy coverage Data estimate* Local data

P Rainfall (mm/day) No constraint Local data

r(t) Precipitation-driven channel flow (binary) Data estimate 40



91Modelling Environmentally-Mediated Infectious Diseases of Humans

in model output, or its behavior more broadly, after as much of the local data as possible has been 
utilized to narrow the posterior distributions of the parameter values (see chapter by Spear and 
Hubbard in this volume).

To that end, we have conducted a variety of field studies to better understand the importance 
of certain elements of the model, or to obtain parameter estimates relevant to the biology of the 
snail or parasite specific to the region in which we work. Examples are the value of the parameter 
describing the production of parasite eggs per mated worm pair per gram of stool,53 the importance 
of rainfall in determining infected snail densities and the concentration of cercariae in irrigation 
water.52 There is no question that the modelling approach, with the ultimate objective of designing 
effective intervention strategies to meet public health objectives, has led us to seek quantitative 
estimates of factors controlling disease transmission that have not been of great interest to Asian 
parasitologists since the work of Pesigan.67

Environmental Data
Modelling the environmental drivers of seasonality requires an accurate dataset of environmental 

variables, acquired by measurement where possible and prediction where not. As in all environmen-
tal monitoring, strict quality assurance measures need be taken, including instrument calibration/
certification, statistically valid sampling designs, reference sites and data verification.68,69 In the work 
described here, air temperature, barometric pressure and relative humidity are collected relatively 
easily throughout the study region using continuous loggers (Hobo Onset H21-002) sampling at 12 
minute intervals, validated with regional data available from the National Climatic Data Center.70 
Likewise, water temperature and water column height (stage) are logged at the same interval using 
similar equipment (Hobo Onset U20-001-01, U22-01) in a representative sample of irrigation 
channels. To estimate flow (m3 s�1) from stage (m) in these channels, flow measurements must be 
made at multiple flow volumes in order to construct a simple rating curve. Daily precipitation is 
collected using a combination of tipping gauges (Hobo Onset RG3-M) and manually read rain 
gauges. Where data were missing due to equipment or staff error (typically accounting for «1 
percent of data points in the study), data were obtained from the NOAA weather station located 
at the Xichang municipal airport (World Meteorological Organization ID 56571), approximately 
13 km from the study sites. Where water temperature was not directly measured, it was estimated 
from air temperature using a standard, simple linear model:71

T t T tw a( ) ( )� �� �  (1.12)

where Tw � water temperature, Ta � air temperature and � and � are fit parameters. Time lags were 
excluded from the model as the observed lags (!4 hours) were much shorter than the averaging 
period (1 day), as is typical for temperature predictions in shallow channels.72

Model Dynamics
The model described above, when parameterized as described in the chapter by Spear and Hubbard, 

generates predictions of the sort depicted in Figure 6. Mean worm burdens for the three risk groups 
in Shian 5 are summarized for 1000 simulations over the five year period 2001-2005. The impact 
of two chemotherapies, modeled as described in the chapter by Seto and Carlton in this volume, is 
shown in the Figure. One characteristic that can be explored using this simulation environment is the 
time-to-return for worm burdens after chemotherapy. As is evident in the plot, worm burden returns 
to precontrol levels in the farmer group in less than 3 years, while the student and other group require 
considerably more time to rebound, owing to their differing exposure profiles.

The seasonal rise in worm burden following the second simulated chemotherapy can be seen in 
Figure 7 which plots the acquisition (or loss by mortality) of worms in the three risk groups. Note 
that the acquisition of new worms in the Figure represents exposures to cercariae that took place as 
many as 6 weeks prior. Notable is the bimodal farmer pattern which results from exposures during the 
spring planting season. While similar activities occur during the late winter and early spring during 
the harvest of the winter crop, cercarial shedding and infectivity is limited in this period due to 
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low temperatures and limited precipitation. During the spring planting, however, temperatures just 
exceed the limits for cercarial activity and spring rains provide opportunities for the coincidence of 
cercariae and water contact. The timing and nature of interventions can be selected based on these 
seasonal patterns, as described in the chapter by Seto and Carleton in this volume.

coincidence of temperature decreases, lower snail numbers and reduced water contact activities. The 
time-varying I(T), r(t) and s(t) terms are at their minimum values in the late fall through winter 

is to explore the effects of these gating functions73 on the transmission process and their sensitivity 

Figure 6. A 5-year prediction of 1000 simulated time profiles (line: mean; envelope: 25th and 
75th percentiles) of mean worm burden for each of the three risk groups in Shian 5 following 
two chemotherapies (coverage based on field data).

Figure 7. The derivative of worm burdens following the second chemotherapy in Figure 6, 
representing the rate of worm acquisition or loss (expressed as epg/d).
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to local and regional environmental changes. Furthermore, efforts are needed to extend the model 
to account not just for environmental variables, but for their spatial distribution.

Modelling Spatial Connectivity
Human schistosomes are model organisms for the study of and response to, the spread of 

disease in space and time, as their transport through the environment takes place along discrete 
pathways. Parasites are carried in advective flows along canals and streams as both larvae and ova. 
Within intermediate snail hosts, parasites are conveyed among and between aquatic and riparian 
habitats and as adult worms, human and animal hosts serve as the transport mode. With respect 
to the S. japonicum parasite, I term these flows parasite diffusion, using the phrase to encompass 
all diffusive pathways along which parasites are transported into new and existing locales. The 
presence of suitable pathways can affect the probability of emergence of transmission, the level 
of worm burden within a community once transmission is established and how transmission 
spreads to neighboring areas. What is more, the degree to which an endemic or emergent com-
munity is connected can have important implications for the efficacy and sustainability of various 
control strategies.

In a preliminary exploration of parasite diffusion, the travel time of the free-swimming forms of 
the parasite or snail larvae due to advective transport in typical irrigation systems was estimated,74 
showing empirically that there is significant transport of viable parasite larvae within irrigation 
channels and that transport of larval stages occurs over considerable distance, with viable organ-
isms detectable as far as 400 m from source snails.38 Using these key transport parameters in a 
follow-up project, the impact of larval transport on endemic disease transmission was assessed 
using a spatial-temporal model of networked villages,75 showing that diffusion of larvae via the 
surface water pathway, on its own, influences not just the intensity of transmission in a village, 
but also the effectiveness of standard interventions. Such a model allows us to better understand 
a number of phenomena specific to the endemic situation, such as which villages serve as “sinks” 
in the network, villages where worm burden can accumulate because they lie at the bottom of a 
watershed of numerous connected upstream villages.

The implications of a connected landscape have been explored extensively in ecology, where 
metapopulation models76 describe the effect of migration between connected patches on popula-
tion conservation. Likewise, environmental and social connections can promote the persistence 
of schistosomiasis and challenge efforts to control transmission. While hydrological connectivity 
is relatively straightforward to characterize, social connectivity is considerably more difficult to 
measure and express mathematically. The indirect transmission of schistosomiasis differs from 
recent epidemiological modelling of social connectivity and contact networks for communicable 
disease spread.77-83 Within the context of the endemic transmission situation, small-scale human 
mobility can spread parasites from village to village. This effect may be small though in compari-
son to other social behaviors, such as the renting or selling of water buffalo which, if infected, can 
potentially release much larger numbers of eggs into the environment. While these factors might 
be modeled much like hydrological connectivity over the small scale via inter-village flows, they 
differ from the hydrological situation in that these processes can occur over much larger spatial 
scales and much less predictably. While difficult to estimate precisely, we look to future field data 
to inform the probabilities that define the movements of heterogeneous hosts; much theoretical 
and empirical work is needed in this area.

Extending the Modelling Framework
Our current research attention has shifted from endemic disease to disease re-emergence, a 

phenomenon we have documented in the mountainous region of Sichuan Province.84 For study-
ing re-emergence, human infection may be more appropriately modeled by risk groups with 
stochastic parasite establishment in a heterogeneous environment. The simplest form would 
be a stochastic compartmental model, where the risk group structure would be maintained 
with each compartment being comprised of a number of identical individuals. However, the 
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static representation of the aggregation of parasites in humans in the deterministic model, even 
within our risk groups, does not translate easily to the re-emergent situation where, initially, the 
population is parasite-free. Hence, an individually-based model is preferred.31 Individual-based 
micro-simulation models have been utilized in studying schistosomiasis transmission in endemic 
settings, but without our emphasis on environmental factors.85 In ecology there has also been 
considerable interest in individually-based models.86 There, the analog to our discrete population 
of humans is a population of animals in a heterogeneous, but continuous environment. There 
are particularly interesting approaches being explored which might allow us to naturally utilize 
our GIS data base and GPS-based maps in an individually-based model.87

Figure 8. A diagrammatic conceptualization of the re-emergence model. The frame of reference 
of the flowchart is the interaction of one individual with the ditch environment. Stochastic 
introduction processes include host migration and import of cercariae and miracidiae, while 
cercarial exposure, egg distribution and hydrologic transport processes are implemented on 
a spatially-explicit, segmented mapping of the ditch environment.
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Figure 8 schematically represents the elements of a new model in which the stochastic in-
troduction of parasites is implemented by means of migration of infected hosts and advective 
parasite transport. Heterogeneous ditch environments, then, serve as platforms wherein eggs are 
released from infected individuals who, along with uninfected individuals, traverse the waterway 
environments and are potentially infected by contact with cercarial contaminated water. Stochastic 
implementations of the egg release and cercarial exposure processes are particularly suitable for a 
system where transmission is strongly conditioned by both environmental and behavioral factors 
that defy deterministic formulation. Moreover the stochastic model proposed here provides the 
structure to capture the potentially large influence of chance events that have been recognized to 
govern early epidemic dynamics, even in relatively large populations.88-90

Conclusion
The wide array of processes discussed herein can be conceptualized at various spatial and 

temporal scales, evaluated for their relative abilities to capture relevant transmission dynamics, 
including seasonal dynamics, and incorporate available field data. Measuring the potential drivers 
of seasonality may be relatively straightforward in the case of climate, but measuring and formal-
izing patterns of human behavior, particularly in a spatially explicit context, remain formidable 
challenges.91 Indeed, iterative evaluation of alternative models in the light of field data is the es-
sence of the modelling process in our application. Ultimately, quantifying and synthesizing the 
interaction between environmental and social determinants in transmission models offers great 
promise for developing novel modes of control in diverse environments.
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