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Adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) are known to be
involved in the physiological response to hypoxia, and their expression/activity may be
modulated by chronic sustained or intermittent hypoxia. To date, A2AR and D2R can
form transient physical receptor–receptor interactions (RRIs) giving rise to a dynamic
equilibrium able to influence ligand binding and signaling, as demonstrated in different
native tissues and transfected mammalian cell systems. Given the presence of A2AR and
D2R in type I cells, type II cells, and afferent nerve terminals of the carotid body (CB),
the aim of this work was to demonstrate here, for the first time, the existence of A2AR–
D2R heterodimers by in situ proximity ligation assay (PLA). Our data by PLA analysis
and tyrosine hydroxylase/S100 colocalization indicated the formation of A2AR–D2R
heterodimers in type I and II cells of the CB; the presence of A2AR–D2R heterodimers
also in afferent terminals is also suggested by PLA signal distribution. RRIs could play
a role in CB dynamic modifications and plasticity in response to development/aging
and environmental stimuli, including chronic intermittent/sustained hypoxia. Exploring
other RRIs will allow for a broad comprehension of the regulative mechanisms these
interactions preside over, with also possible clinical implications.

Keywords: carotid body, type I cells, adenosine A2A receptors, dopamine D2 receptors, heterodimes, in situ PLA

INTRODUCTION

In mammals and humans, the carotid bodies (CBs) are chemosensory organs located at the
bifurcations of the common carotid arteries with a critical role in maintaining homeostasis during
both development/aging (Di Giulio, 2018; Sacramento et al., 2019) and environmental variations
(e.g., levels of O2, CO2, and arterial blood pH) (Iturriaga and Alcayaga, 2004; Iturriaga et al., 2016;
Prabhakar and Peng, 2017; Di Giulio, 2018; Iturriaga, 2018) with also a sensing function with
respect to metabolic factors (Porzionato et al., 2011; Conde et al., 2018; Cunha-Guimaraes et al.,
2020; Sacramento et al., 2020).

The CB regulatory function is strictly related to its specific organization. Morphologically, in the
CB parenchyma two types of cells can be distinguished: “neuron-like” chemosensitive type I cells,
positive for tyrosine hydroxylase (TH), and “glial-like” supportive type II cells, positive for glial
fibrillary acidic protein (GFAP) (Pardal et al., 2007; Tse et al., 2012). Sensitive innervation of the CB
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is mainly mediated by afferent terminals of the carotid sinus
nerve, branch of the glossopharyngeal nerve, arising from
neurons located in the petrosal ganglion (PG).

Neurotransmission in the CB involves a complex interplay
of excitatory and inhibitory signals (Iturriaga and Alcayaga,
2004; Nurse, 2005; Fitzgerald et al., 2009; Porzionato et al.,
2018; Stocco et al., 2020). Type I cells produce several
neurotransmitters [e.g., dopamine, noradrenaline, adrenaline,
acetylcholine, serotonin, adenosine, adenosine 5′-triphosphate
(ATP)] and neuromodulators (e.g., enkephalins, neuropeptide Y,
calcitonin gene-related peptide, galanin, endothelins, bombesin,
adrenomedullin, kisspeptins, leptin) (Varas et al., 2003; Iturriaga
and Alcayaga, 2004; Porzionato et al., 2008), in turn acting
in an autocrine/paracrine manner on a broad spectrum of
different ionotropic/metabotropic receptors located in afferent
nerve fibers, type I cells, and type II cells, these latter also
showing a role in the coordination of chemosensory transduction
(Nurse, 2014; Porzionato et al., 2018; Stocco et al., 2020). Among
these receptors, some metabotropic G protein-coupled receptors
(GPCRs) (e.g., A2A, D1/2, H1/2/3, M1/2, 5-HT2A, and others)
are also involved; in particular, A2A and D2 have attracted the
attention of many researchers, resulting among the most studied
GPCRs (Aldossary et al., 2020).

The presence of A2AR was verified in rat (Gauda, 2000;
Kobayashi et al., 2000; Xu et al., 2006; Bairam et al., 2009)
and human (Fagerlund et al., 2010) CB specimens, where it
showed to be expressed in type I cells, colocalizing with tyrosine-
hydroxylase (TH) (Gauda, 2000; Gauda et al., 2000; Kobayashi
et al., 2000; Bairam et al., 2009) or β-III-tubulin (Fagerlund et al.,
2010). Considering the methodological approaches, different
techniques were adopted, including in situ hybridization analysis
(Gauda, 2000), immunohistochemistry (Kobayashi et al., 2000;
Fagerlund et al., 2010), Western blot analysis (Bairam et al.,
2009), and Ca2+ imaging technique (Xu et al., 2006). Also,
D2R presence was reported in CB type I cells in rats (Czyzyk-
Krzeska et al., 1992; Holgert et al., 1995; Gauda et al., 1996,
2001; Bairam and Khandjian, 1997; Gauda, 2000; Kinkead et al.,
2005; Wakai et al., 2015), rabbits (Bairam et al., 1996b; Bairam
and Khandjian, 1997; Bairam et al., 2003), cats (Bairam and
Khandjian, 1997), and humans (Fagerlund et al., 2010). CB
specimens were analyzed through in situ hybridization (Czyzyk-
Krzeska et al., 1992; Holgert et al., 1995; Gauda, 2000), RT-PCR
(Bairam et al., 1996b, 2003; Bairam and Khandjian, 1997; Kinkead
et al., 2005), and immunofluorescence (Wakai et al., 2015).

Apart from type I cells, some data support the expression of
A2AR and D2R also in type II cells (Kaelin-Lang et al., 1998;
Leonard and Nurse, 2020). Additionally, A2AR (Gauda, 2000;
Gauda et al., 2000; Conde et al., 2006, 2017, 2012; Zhang et al.,
2018; Sacramento et al., 2019) and D2R (Czyzyk-Krzeska et al.,
1992; Schamel and Verna, 1993; Bairam et al., 1996a,b) were also
demonstrated in PG neurons and afferent fibers in the CB.

As demonstrated for transfected mammalian cell systems and
different native tissues (i.e., central nervous system, mammary
gland, liver, cancer tissues), A2AR and D2R can establish
transient physical receptor–receptor interactions (RRIs) giving
rise to a dynamic equilibrium between their specific monomeric
form and homo/heterocomplexes (dimers or receptor mosaics)

(Ferré et al., 2014; Guidolin et al., 2015). Such RRIs, in turn,
likely modulate ligand binding and signaling, thus affecting
the physio-pathological features but also the pharmacology of
the nervous system.

Despite that the presence of A2AR and D2R has been broadly
recognized in the CB, the possible existence of A2AR–D2R
heterodimers was never verified before, but only hypothesized in
a previous work (Porzionato et al., 2018). Thus, in this study,
rat and human CB specimens were investigated by proximity
ligation assay (PLA) technique to assess the eventual interaction
between A2AR and D2R, thus corroborating the above working
hypothesis and possibly opening the doors to the analysis of
further possible RRIs in the CB.

MATERIALS AND METHODS

Tissue Collection
The animal study was reviewed and approved by the ethical
committee of Padua University, in agreement with the Italian
Department of Health guidelines (Authorization No. 702/2016-
PR of July 15, 2016). Human tissues were managed by the
Body Donation Program of the Section of Human Anatomy,
University of Padova (Macchi et al., 2011; Porzionato et al.,
2012), according to European, Italian, and Regional guidelines
(De Caro et al., 2009; Riederer et al., 2012). Excision was further
authorized by the Italian law No. 10 of February 10, 2020, entitled
“Rules regarding the disposition of one’s body and post-mortem
tissues for study, training, and scientific research purposes”
(Boscolo-Berto et al., 2020). Donors’ written informed consent
was signed upon joining the Body Donation Program; here,
Donor’s authorization expressly allowed to use Body and Body
Parts also for research purposes, after donation.

Rat CBs were excised from 5 adult Sprague-Dawley rats;
tissue isolation occurred immediately after euthanasia. Human
CBs were obtained at autopsy from 5 adult subjects [3 males,
2 females; mean age 46 years, standard deviation (SD) ± 3.6]
with no clinical sign of chronic pulmonary and/or cardiovascular
diseases. Eventual pharmacological therapies that could have
influenced the CB plasticity constituted a further exclusion
criterion. Autopsies occurred within 30 h after death, according
to Italian Law. On the basis of our previous experience
(Porzionato et al., 2005, 2006, 2011), the tissues are viable
and adequate for immunohistochemistry/immunofluorescence
studies after this death–autopsy interval.

According to routine protocols, once isolated, the CBs were
promptly fixed in 10% phosphate-buffered formalin for 72 h,
dehydrated through ascending alcohols and xylene, clarified
through xylene, and paraffin embedded.

Immunohistochemical Analysis
Preliminarily, the primary antibodies used were tested by
immunohistochemistry; this is an important step before PLA
assay, whose performance critically depends on the antibodies’
quality as the GPCR antibodies are notoriously problematic
(Michel et al., 2009; Trifilieff et al., 2011).
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Longitudinal serial sections of the whole fixed carotid
bifurcation (5 µm in thickness) were prepared, dewaxed
according to routine protocols, and immunostained by anti-
A2AR antibody (monoclonal mouse antibody; ab79714, Abcam,
United Kingdom) and anti-D2R antibody (polyclonal rabbit
antibody; ab150532, Abcam). The anti-A2AR antibody and the
anti-D2R antibody were used with a dilution of 1:100 and 1:200,
respectively; antigen retrieval occurred before both staining with
high pH (EnVisionTM FLEX, High pH, K8012) and low pH
(EnVisionTM FLEX, Low pH, K8005) buffer. The sections were
incubated using the DAKO Autostainer Plus Staining System
(EnVisionTM FLEX, High pH). Immunostaining specificity was
confirmed by sections incubated without primary antibody,
which did not show immunoreactivity.

Proximity-Ligation Assay (PLA)
PLA technology allows easy visualization of endogenous protein–
protein interactions at the single-molecule level. The method
relies on the use of combinations of antibodies coupled to
complementary oligonucleotides that are amplified and revealed
with a fluorescent probe. Each single protein–protein interaction
is visualized as a fluorescent spot.

In situ PLA was performed according to the manufacturer’s
instructions on 5-µm rat and human CB slices using the
following: mouse anti-A2A primary antibody (dilution: 1:100);
rabbit anti-D2R primary antibody (dilution: 1:200); Duolink R©

in situ PLA detection kit (DUO92014, Sigma-Aldrich, St
Louis, MO, United States); Duolink R© anti-rabbit PLUS probe
(DUO92002, Sigma-Aldrich); and Duolink R© anti-mouse MINUS
probe (DUO82040, Sigma-Aldrich). Briefly, the slices were
blocked with Duolink R© blocking solution, in a humid chamber
for 60 min at 37◦C and then incubated with the primary
antibodies (anti-A2AR and anti-D2R) solution prepared in the
antibody diluent solution; incubation occurred in a humid
chamber for 1 h at room temperature (RT). Thereafter, the
primary antibody solution was tapped off and the slices were
washed with wash buffer at RT, before incubation with the
anti-rabbit and anti-mouse secondary antibody-conjugated PLA
probes in a preheated humidity chamber, for 1 h at 37◦C. After
hybridization, ligation and amplification steps were performed.
For TH and S100 colocalization analysis, after the amplification
step, the slices were rinsed in wash buffer and (a) incubated
with anti-TH (1:6,000) in Antibody Diluent solution (Dako) or
(b) incubated with anti-S100 (1:7,000) in a humid chamber at
4◦C, overnight. Subsequently, after a wash in PBS, incubation
was performed using mouse Alexa Fluor-488 (1:100; 1 h at
RT) for TH or rabbit Alexa Fluor-488 (1:500; 1 h at RT)
for S100. Thereafter, the sections were rinsed in PBS and
mounted with Vectashield mounting medium for fluorescence
with DAPI (Vector Laboratories, Burlingame, CA, United States)
for 15 min at RT.

Immunofluorescence and PLA signals were analyzed
and acquired with Zeiss800 confocal microscope equipped
with 63× oil objective (NA = 1.4). For each field of view,
z-stacks were acquired for a total thickness of 10 µm.
Images were acquired enabling the identification of the
A2AR–D2R heterodimers at confocal microscopy as red dots.

In order to better detail the localization of the red dots
with reference to nuclei and membranes of different cell
types, images were analyzed with the help of z projections
and 3D volume rendering through different perspectives.
This permitted to better localize the red dots without bias
due to plane overlapping. In particular, Z-stacks were
acquired and exported with ZenBlue software. For image
visualization in 2D, z projections were performed with FIJI
software, while 3D volume rendering was reconstructed with
IMARIS software.

Negative control experiments were performed avoiding the
conjugation of the primary antibodies with the Duolink R© Probes;
in turn, no positive reaction occurred, and no red dots were
visualized. The specificity of the double immunolabeling was
verified by replacing the primary antibodies with PBS.

Quantification of the PLA signal was performed on z-stack
images, and the number of red dots was manually counted with
ImageJ, using the cell counter plugin. The average data referring
to the density of positive PLA elements± SD are related to images
acquired from at least 3 randomly chosen fields from three slides
of each animal/patient. The percentages of colocalization of red
dots with TH and S100 immunostainings were also calculated.

RESULTS

A2AR and D2R by Immunohistochemistry
Adenosine A2AR and dopamine D2R were identified through
immunohistochemistry in both rat and human CBs (Figure 1).
Considering 3′-diaminobenzidine tetrahydrochloride (DAB)
distribution, A2AR- and D2R-positive elements were mainly
localized in correspondence of type I cells, being similarly
arranged in clusters. However, partial immunostaining of
A2AR and D2R also in type II cells and PG nerve terminals
cannot be excluded.

Detection of the A2AR–D2R Heterodimers
by PLA
PLA is an antibody-based method to detect biomolecules in
physical proximity, and thus, it is recognized as an important
experimental approach to demonstrate physical RRIs when
native molecules are localized within a radius of 0–16 nm, a
distance considered crucial for heteromer formation. Only in
case of physical closeness of proteins will a signal be produced.
Here, possible heterodimerization between A2AR and D2R was
verified through PLA. Under a confocal microscope, in both rat
and human CBs, most red dots were recognized close to the
DAPI-stained nuclei but not inside them, supporting location
at the plasma membrane level; 3D visualization of the tissues
allowed for a better topographical analysis (Figures 2, 3). As
it regards the few red dots which were far away from the
nuclei, we cannot exclude a localization in afferent terminals
from the carotid sinus nerve. A homogeneous distribution of
heterodimers was observed in all specimens with a mean density
(± standard deviation) of (3.5± 0.67)× 10−3 heterodimers/µm2

and (5.9 ± 1.4) × 10−3 heterodimers/µm2 in rat and human
samples, respectively.
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FIGURE 1 | Distribution of adenosine A2AR and dopamine D2R in rat and human CB. Positive immunostaining in clusters of roundish cells is consistent with type I
cells, although some positive elongated cells may be considered as type II cells. Scale bar: 50 µm.

After PLA, specific TH and S100 immunostaining was
also performed to distinguish type I and type II cells.
This methodological approach allowed to assess by confocal
microscopy the localization of the A2AR–D2R heterodimers with
respect to the CB constituent cells. In all stained specimens,
S100-immunopositive cells, corresponding to type II cells, were
specifically visualized as yellow elements; TH immunoreactivity
was observed in the cytoplasm of CB type I cells and visualized
in green (Figure 4). We cannot exclude possible visualization of
TH-positive afferent nerve fibers, as also PG terminals may be TH
immunoreactive (Katz et al., 1983; Katz and Black, 1986).

In rats, the percentages of TH and S100 colocalizations of red
dots were 51.49 ± 5.97 and 55.84 ± 3.63, respectively. In human
samples, the percentages of TH and S100 colocalizations of red
dots were 60.65± 8.49 and 50.75± 6.30, respectively. Significant
differences were not found between TH and S100 colocalizations
in the two different species.

As previously stated, the presence of red dots far away from
nuclei and possibly positive for TH may be interpreted as
localization of A2AR–D2R heterodimers in PG terminals, as they
may express A2AR (Gauda, 2000; Gauda et al., 2000; Conde
et al., 2012; Zhang et al., 2018; Sacramento et al., 2019) and
D2R (Czyzyk-Krzeska et al., 1992; Schamel and Verna, 1993;
Bairam et al., 1996a,b).

DISCUSSION

Type I CB cells release many different neurotransmitters (i.e.,
acetylcholine, adenosine, ATP, dopamine) with excitatory or

inhibitory effects (Iturriaga and Alcayaga, 2004). Among the
main receptors mediating adenosine and dopamine function in
the CB, A2AR, and D2R are included. Experimental data support
the presence of A2AR (Gauda, 2000; Gauda et al., 2000; Kobayashi
et al., 2000; Xu et al., 2006; Bairam et al., 2009; Fagerlund et al.,
2010) and D2R (Czyzyk-Krzeska et al., 1992; Holgert et al., 1995;
Gauda et al., 1996, 2001; Bairam et al., 1996b, 2003; Bairam and
Khandjian, 1997; Gauda, 2000; Kinkead et al., 2005; Fagerlund
et al., 2010; Wakai et al., 2015) in CB type I cells. Kaelin-Lang et al.
(1998) also recognized, by in situ hybridization on rats, A2AR-
positive elements likely attributable to type II cells. Even referring
to D2R, a recent paper by Leonard and Nurse (2020), considering
the possible inhibitory role of dopamine on type II cell function,
suggests D2R localization in type II cells. Our data indicated the
presence of A2AR–D2R heterodimers both in type I and II cells of
rats and humans.

PG neurons and terminals are known to express A2AR (Gauda,
2000; Gauda et al., 2000; Conde et al., 2012; Zhang et al., 2018;
Sacramento et al., 2019) and D2R (Czyzyk-Krzeska et al., 1992;
Schamel and Verna, 1993; Bairam et al., 1996a,b). Moreover,
afferent terminals in the CB may also express TH (Katz et al.,
1983; Katz and Black, 1986). Thus, red dots far away from
nuclei and colocalizing with faint fluorescent staining may be
interpreted as nerve localization of A2AR–D2R heterodimers.

Typically, A2ARs are coupled to Gs protein, whose activation
increases the cAMP levels, promoting an excitatory behavior
(Weaver, 1993; Lahiri et al., 2007; De Caro et al., 2013). In the CB,
the increase of adenosine levels determined by hypoxia induces
the increase in intracellular cAMP through stimulation of A2AR
(Lahiri et al., 2007). Adenosine activation of A2AR also triggers
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FIGURE 2 | (A) Evidence for the existence of A2AR–D2R heterodimers in rat
CB samples by PLA. Red dots showed the proximity of adenosine A2AR and
dopamine D2R, indicating A2AR–D2R heterodimerization. The merged images
highlighted the A2AR–D2R localization with respect to the cell nuclei
(blue-fluorescent DAPI). Scale bar: 25 µm. (B) Representative 3D volume
rendering of a sample area from (A) allowing assessment of red dot
localization with respect to the cell nuclei. (C) Representative image of
nuclei/red dots apparently appearing as superimposed (white dotted square in
the image; corresponding magnification on the right side insert) and visualized
in detail through z projection (lower right insert), thus showing a localization
adjacent to the nucleus, but not inside it. Scale bar: 20 µm.

Ca2+ rise during hypoxia (Kobayashi et al., 2000; Tse et al.,
2012). Similarly, A2ARs also mediate the effect of hypercapnia
(Sacramento et al., 2018). Conversely, D2Rs are coupled to
inhibitory G1/G0 proteins and their activation decreases cAMP
levels with the onset of an autocrine/paracrine inhibitory signal
(Zeng et al., 2007; Wakai et al., 2015; Zhang et al., 2018). Hypoxia
is also responsible for dopamine release from CB type I cells
and activation of postsynaptic D2R (Prieto-Lloret et al., 2007)
and D2R activation exerting inhibitory effects (Gonzalez et al.,
1994) on ventilation, both during rest (Zapata and Zuazo, 1980)
and hypoxic exposure (Nishino and Lahiri, 1981), although direct
activation of D2R in PG terminals could also have a modulatory
(Alcayaga et al., 1999; Alcayaga et al., 2003) or even excitatory
effect (Alcayaga et al., 2006; Iturriaga et al., 2009), depending on
species involved.

FIGURE 3 | (A) Evidence for the existence of A2AR–D2R heterodimers in
human CB samples by PLA. Red dots showed the proximity of adenosine
A2AR and dopamine D2R, indicating A2AR–D2R heterodimerization. The
merged images highlighted the A2AR–D2R localization with respect to the cell
nuclei (blue-fluorescent DAPI). Scale bar: 25 µm. (B) Representative 3D
volume rendering of a sample area from (A) allowing assessment of red dot
localization with respect to the cell nuclei. (C) Representative image of
nuclei/red dots apparently appearing as superimposed (white dotted square in
the image; corresponding magnification on the right side insert) and visualized
in detail through z projection (lower right insert), thus showing a localization
adjacent to the nucleus, but not inside it. Scale bar: 20 µm.

Another possible regulative mechanism exists for these
receptors, based on direct reciprocal interactions. The formation
of A2AR–D2R complexes was highlighted in transfected cells,
including SH-SY5Y (Hillion et al., 2002; Xie et al., 2010)
and HEK-293T cells (Navarro et al., 2014), neuronal primary
cultures of rat striatum (Navarro et al., 2014) and enkephalin-
containing GABAergic neurons from the mammal striatum
(Fink et al., 1992; Fuxe et al., 1998; Trifilieff et al., 2011).
A2AR–D2R heterodimers are key modulators of striatal neuronal
function (Taura et al., 2018); here, heterodimerization showed
to modulate GABAergic striato-pallidal neuronal activity.
Reciprocal antagonistic interactions occur within the A2AR–
D2R heterodimer (Fuxe et al., 2005). In particular, A2AR
ligands decrease both the affinity and the signal intensity of
D2R ligands (Ferré et al., 2016), determining the increased
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FIGURE 4 | TH and S100 immunofluorescence in representative rat and human CB samples after A2AR–D2R PLA. Red dots showed A2A–D2 receptors
heterodimers; anti-TH (visualized in green) and anti-S100 (visualized in yellow) staining allowed to distinguish type I and type II cells, respectively. Cell nuclei were
recognizable after DAPI staining (visualized in blue) in the merge images. Scale bar: 25 µm.

excitatory activity of adenosine, while D2R agonists decrease
the binding of A2AR ligands (Fernández-Dueñas et al., 2018),
causing increased inhibitory activity of dopamine. For instance,
after incubation of striatal membrane preparations with the
A2AR agonist CGS21680, the affinity of the high-affinity D2R
agonist-binding site decreases (Fuxe et al., 1998; Guidolin et al.,
2018). A2AR–D2R interactions may be modulated by different
drugs (some of which with well-known effects on the CB);
for instance, the psychostimulant effects of caffeine are also

mediated by the blockage of the allosteric modulation within
the A2AR–D2R heterodimer, by which adenosine decreases
the affinity and intrinsic efficacy of dopamine at the D2R
(Bonaventura et al., 2015).

Existence of RRI (A2B–D2) in CB chemoreceptors was first
postulated by Conde et al. (2008) to explain the possible
mechanism involved in catecholamine release by the CB.
Thereafter, due to the glomic expression of a huge amount of
different G protein-coupled receptors, our group hypothesized
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a possible heterodimerization between many other different
receptors in the CB (Porzionato et al., 2018). Thus, the aim
of this experimental work was to verify the existence of RRIs
in the CB, suggesting a possible experimental strategy for its
future characterization but also a new interpretive key for a broad
comprehension of the regulative mechanisms it presides over.

To date, many biochemical and/or biophysical methods are
available to demonstrate receptor colocalization. Among them,
the PLA technique allows easy visualization of endogenous
protein–protein interactions at the single molecule level (Ristic
et al., 2016). Our data by PLA analysis confirmed the existence
of A2AR–D2R heterodimers in both type I and type II cells of
the CB, indicating that RRI may have a role in the functional
modulation of these cells.

The identification of A2AR–D2R RRI in type II cells further
supports a role for these cells in chemosensory modulation, in
accordance with other authors (Kaelin-Lang et al., 1998; Tse
et al., 2012; Leonard and Nurse, 2020). This finding, to be
further detailed, could be particularly intriguing as A2AR–D2R
heterodimers have also been identified in astrocytes (Cervetto
et al., 2017, 2018; Pelassa et al., 2019; Guidolin et al., 2020).

The confirmation of A2AR–D2R RRI across species
strengthens the idea on their contributory role in physiological
events mediated by the CB. The differences between rats
and humans in terms of amount and distribution of A2AR–
D2R RRI may conversely be ascribed to species-specific
differences and/or to potential exposure to different stimuli.
The CB is known to undergo plastic changes in response to
development/aging and various environmental stimuli, including
chronic intermittent/sustained hypoxia. Its function is strictly
related to these dynamic modifications (Iturriaga et al., 2006;
López-Barneo et al., 2009; Dmitrieff et al., 2011; Kumar and
Prabhakar, 2012; Bavis et al., 2013; Del Rio et al., 2014; Pulgar-
Sepúlveda et al., 2018; Bavis et al., 2019; Liu et al., 2019), which
can be also ascribed to the specific receptor behavior.

Various environmental stimuli could potentially modulate
A2AR–D2R RRI. For instance, A2AR can be present intracellularly
and migrate to the cell membrane upon stimulation (Arslan et al.,
2002; Milojević et al., 2006; Yu et al., 2006; Sacramento et al.,
2015). In this sense, hypoxic effects on RRI will be surely to
be evaluated, as hypoxia exerts an increase in adenosine and
dopamine release from CB chemoreceptors (Conde et al., 2012),
likely inducing a receptor-level modulation, as shown in rabbits
by Bairam et al. (2003). Chronic caffeine treatment induces
an increase in both adenosine and dopamine (Conde et al.,
2012), and neonatal caffeine treatment increases the mRNA levels
encoding for A2AR (Montandon et al., 2008; Bairam et al., 2009)

and D2 in male rats CB (not in female) (Montandon et al., 2008).
Moreover, A2AR and D2R expressions are also modulated by
age. D2R mRNA increases with maturation (Gauda et al., 2000,
2001; Gauda, 2000; Gauda and Lawson, 2000), whereas A2AR
mRNA decreases (Gauda, 2000; Gauda and Lawson, 2000). Thus,
further analyses will also have to address possible changes in
A2AR–D2R RRI in response to development/age, hypoxic stimuli,
or possible effects by other factors (drugs, metabolism, and
others), allowing for a broad comparative study in different
pathophysiological conditions.

Moreover, future perspectives of the work will include the
involvement of other methods to better detail RRI, such as
biophysical (e.g., bioluminescence– and fluorescence–resonance
energy transfer; specialized microscopic techniques; X-ray
crystallography) and biochemical analyses.
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