
diagnostics

Review

AI-Based Radiological Imaging for HCC: Current Status and
Future of Ultrasound

Hitoshi Maruyama 1,* , Tadashi Yamaguchi 2, Hiroaki Nagamatsu 1 and Shuichiro Shiina 1

����������
�������

Citation: Maruyama, H.; Yamaguchi,

T.; Nagamatsu, H.; Shiina, S.

AI-Based Radiological Imaging for

HCC: Current Status and Future of

Ultrasound. Diagnostics 2021, 11, 292.

https://doi.org/10.3390/

diagnostics11020292

Academic Editor: Ahmet F. Coskun

Received: 18 December 2020

Accepted: 10 February 2021

Published: 12 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
h-nagamatsu@juntendo.ac.jp (H.N.); s.shiina@gmail.com (S.S.)

2 Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba 263-8522, Japan;
yamaguchi@faculty.chiba-u.jp

* Correspondence: h.maruyama.tw@juntendo.ac.jp; Tel.: +81-3-38133111; Fax: +81-3-56845960

Abstract: Hepatocellular carcinoma (HCC) is a common cancer worldwide. Recent international
guidelines request an identification of the stage and patient background/condition for an appropriate
decision for the management direction. Radiomics is a technology based on the quantitative extraction
of image characteristics from radiological imaging modalities. Artificial intelligence (AI) algorithms
are the principal axis of the radiomics procedure and may provide various results from large data
sets beyond conventional techniques. This review article focused on the application of the radiomics-
related diagnosis of HCC using radiological imaging (computed tomography, magnetic resonance
imaging, and ultrasound (B-mode, contrast-enhanced ultrasound, and elastography)), and discussed
the current role, limitation and future of ultrasound. Although the evidence has shown the positive
effect of AI-based ultrasound in the prediction of tumor characteristics and malignant potential,
posttreatment response and prognosis, there are still a number of issues in the practical management
of patients with HCC. It is highly expected that the wide range of applications of AI for ultrasound
will support the further improvement of the diagnostic ability of HCC and provide a great benefit to
the patients.

Keywords: Hepatocellular carcinoma; ultrasound; radiomics; artificial intelligence

1. Introduction

Liver cancer is the sixth most common cancer by incidence and the fourth most
common cause of cancer-related mortality worldwide [1]. Hepatocellular carcinoma (HCC)
represents primary liver cancer and develops mainly in patients with chronic liver diseases.
Although we are in an era of the possible control of viral activities, which is the major
factor for hepatocarcinogenesis, HCC is still seriously problematic [2]. The development of
HCC limits the prognosis as well as the quality of life of patients. Its management should
be properly conducted based on an accurate diagnosis.

As shown in recent international guidelines, the identification of the stage and pa-
tient background/condition need to be properly assessed to select the appropriate treat-
ment [3–5]. In general, liver function reserve by Child–Pugh score and degree of tumor
progression (tumor number and size, vascular invasion, extrahepatic metastasis), evaluated
by imaging modalities such as contrast-enhanced computed tomography (CT) and/or
magnetic resonance imaging (MRI), are key factors to decide the appropriate treatment
from multiple options, such as surgical resection, local ablation (radiofrequency ablation
or microwave ablation under ultrasound (US)/CT guidance), percutaneous ethanol in-
jection, transcatheter arterial chemoembolization (TACE), image-guided high-dose-rate
brachytherapy, chemotherapy using molecular targeted agents, liver transplantation and
best supportive care.

Because of the advantages of noninvasiveness and possible real-time observation,
ultrasound (US) is the most frequently used imaging modality for liver diseases. This
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simple technique is applied for detailed examination as well as for a first-line approach.
After the clinical use of the first-generation microbubble-based contrast agent Levovist,
several second-generation contrast agents have become available in the abdominal field [6].
A specific harmonic mode enables high sensitivity for microbubble detection while being
less affected by artefacts compared with the Doppler mode. Based on this background,
contrast-enhanced US (CEUS) has become popular due to its capacity for stable and
real-time observation with the improved detectability of peripheral blood flow under
vascular-phase imaging. In addition, the in vivo properties of contrast agents vary, and
microbubbles of Sonazoid accumulate in reticuloendothelial tissue, such as Kupffer cells.
Postvascular phase images using this property are effective for detecting occult hepatic
lesions, differentiating between benign and malignant lesions, and evaluating therapeutic
results. However, there are still several limitations in the diagnostic performance, such as
with deeply located lesions and blind spots [6,7].

Radiomics is a technology based on the quantitative extraction of image character-
istics from radiological imaging modalities [8]. The data, so-called “radiomics features”,
are used to predict clinical endpoints such as histological findings, malignant potential,
therapeutic response, and prognosis, by using artificial intelligence (AI) algorithms, which
may be beyond conventional techniques [9]. In fact, investigators have shown the effect
of radiomics signatures in detecting the risk of lymph node metastasis in patients with
colorectal and bladder cancer [10,11]. Additionally, this may be a predictive indicator for
progression-free and overall survival in patients with malignant diseases [12,13].

Changes of morphological and hemodynamic features, depending on the cellular
differentiation and variety of malignant grade, are the unique aspect and characteristic
features of HCC [2–5]. These are the most important clinical issues of the diagnosis of HCC,
which have not been solved by current imaging methods, and therefore, the solution by
radiomics is highly expected.

Against these backgrounds, this review article focuses on the application of the radiomics-
based diagnosis of HCC using US. We also reviewed recent studies employing radiomics
based on CT and MRI studies for HCC, and discussed the advantages/disadvantages of US
in this manner, as well as future directions.

2. Deep Learning

The definition of deep learning is “a particular kind of machine learning that achieves
great power and flexibility by learning to represent the world as a nested hierarchy of
concepts, with each concept defined in relation to simpler concepts, and more abstract
representations computed in terms of less abstract ones.” [14]. Deep-learning methods
indicate the representation created by composing simple but nonlinear modules that each
transform the representation at one level (starting with the raw input) into a representation
at a higher level [15].

Recent studies suggest that transfer learning on a deep learning model trained natively
on US images, and fine-tuning the model on a new data set obtained from a different medi-
cal center and/or a different device to overcome the limitations of the US data set, such
as those obtained from a single medical center and a single US device, is problematic [16].
Additionally, real-time feedback to the sonographer during image acquisition by machine
learning systems is recommended to address poor reproducibility [17]. Moreover, the auto-
matic control of US examination, settings for image quality control, and region of interest
(ROI) selection may be useful against a wide range of intra- and interobserver/operator
variability in image acquisition.

Regardless, deep learning should continue to make progress and may solve problems
that have resisted the best attempts of the artificial intelligence community for many years.

3. Workflow

Radiomics is a multistep process that requires optimization, standardization, quality
control, and algorithm refinement (Figure 1). The initial step is the setting of the imaging
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protocol for data selection. Any CT, MRI, US or positron emission tomography modality
could be used; however, the first two are frequently applied because of their reproducibility
and comparability. Next is the development of segmentation using volume of interest (VOI)
or ROI with manual, semiautomated or automated methods. The third process is feature
extraction, which consists of semantic features (qualitative features, such as lesion size,
shape, location, and necrosis) and agnostic features (defined by an advanced mathematical
algorithm). The former depends on the observer’s skill and experience, and the latter
includes two kinds of features: morphological features (shape and physical composition)
and statistical features (first-order, showing the distribution of pixel intensity values in
the VOIs, second-order, showing texture features, and higher order). The fourth step is
exploratory analysis and feature reduction with the use of correlation or univariate logistic
regression analysis, and the final step is modeling to select statistical methods for data
analysis and internal cross-validation [9]. A recent study has shown the possibility of using
a deep learning algorithm to segment the liver and HCCs automatically, suggesting a more
workflow-efficient and clinically realistic implementation of the Liver Imaging Reporting
and Data System [18].
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US, ultrasound; PET, positron emission tomography modality; VOI, volume of interest; ROI, region
of interest.

4. Diagnosis of HCC by CT/MRI Based Radiomics
4.1. Characterization

Multistep carcinogenesis is the representative progression of HCC, from dysplastic
nodules to moderately differentiated HCC [19]. As high-grade dysplastic nodules show
strong malignant potential, they are recognized as precursors of HCC. Meanwhile, in
cirrhosis patients, regenerative nodules (RNs) are also frequently detected as typical benign
nodules as a result of remodeling in the liver. In addition, there is a possibility of the
occurrence of other kinds of hepatic lesions: benign lesions such as hemangioma, focal
nodular hyperplasia (FNH) and angiomyolipoma, and malignant lesions such as cholan-
giocarcinoma and metastasis. Thus, the noninvasive characterization of hepatic lesions is a
clinical challenge.

For the differentiation between HCC and benign hepatic lesions, a CT-based radiomics
nomogram, which incorporated the rad-score and clinical factors (age, hepatitis B virus
infection, and enhancement pattern), showed an area under the receiver operating charac-
teristic curve (AUC) of 0.917 for differentiating FNH from HCC in a study performed with
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156 patients (FNH 55, HCC 101) [20]. An MRI-based study in 369 patients with 446 lesions
(HCC 222, hemangioma 224) reported an AUC of 0.89 (sensitivity 0.822, specificity 0.714)
for differentiating between HCC and hemangioma using images with in-phase, out-phase,
T2-weighted, and diffusion-weighted imaging sequences. This AUC was significantly
higher than that of the less experienced radiologist (2 years of experience) (sensitivity 0.625,
specificity 0.779; AUC 0.702, p < 0.05); however, it showed no significant difference from
the experienced radiologist (10 years of experience) (sensitivity 0.915, specificity 0.901;
AUC 0.908, p > 0.05) [21]. In addition, according to a more recent study with both CT
and MRI, fusion models that simultaneously integrated clinical characteristics achieved
average AUCs of 0.966 (CT) and 0.971 (MRI), with 10-fold cross-validation to differentiate
hepatic epithelioid angiomyolipoma from HCC and FNH [22]. Furthermore, a multicenter
retrospective cohort study performed in 178 cirrhosis patients (with indeterminate liver
nodules including other malignant lesions (cholangiocarcinoma <CC> and metastasis),
regenerative nodule, hemangioma and FNH) reported an AUC of 0.66 to diagnose HCC
using triphasic contrast-enhanced CT, and suggested the benefit of AI to enhance clinicians’
decisions by identifying a subgroup of patients with high HCC risk [23].

Another study also stressed the effect of using radiomics: contrast-enhanced MRI and
precontrast and portal-phase CT exhibited good performance in the differentiation of HCC
from non-HCC (AUC of 0.79 to 0.81 for MRI and AUC of 0.81 and 0.71 for CT). The rates of
the misdiagnosis of combined hepatocellular CC as HCC or CC using radiologists’ readings
were 69% by CT and 58% by MRI [24]. These data may ground strong recommendations
for the application of radiomics analysis, with future validation, for the preoperative
diagnosis of liver cancer and for optimal treatment decisions regarding liver resection
and transplantation.

4.2. Malignant Potential

The degree of malignant potential is an important issue for the therapeutic direction
and posttreatment outcomes of HCC patients. Two radiomics-based studies examined the
histological grade of HCC. The first study, performed in 170 patients with HCC (training
group 125, test group 45) using T1-weighted imaging and T2-weighted imaging with
clinical factors (age, sex, tumor size, alpha fetoprotein (AFP) level, history of hepatitis B,
hepatocirrhosis, portal vein tumor thrombosis, portal hypertension and pseudocapsule),
reported an AUC of 0.800 for the prediction of the histological grading of HCC presented
by Edmondson grades [25]. A more recent study using contrast-enhanced CT performed
in 297 HCC patients demonstrated an AUC of 0.8014 (sensitivity, 0.65; specificity, 0.73;
accuracy, 0.7) to differentiate between low- and high-grade HCC by radiomics signatures
in association with clinical factors [26].

Investigators have also examined the prediction of protein markers by using radiomics.
Cytokeratins are intermediate filament proteins that are expressed in epithelial cells; cytok-
eratin 8 and cytokeratin 18 are present in hepatocytes, and cytokeratin 7 and cytokeratin
19 are present in cholangiocytes. HCC tumors express the latter (cytokeratin 7 and cy-
tokeratin 19) as biliary-specific markers, and cytokeratin 19-positive HCC is considered
to be related to clinical aggressiveness, such as tumor invasion, lymph node metastasis,
and poor prognosis after resection and liver transplantation. The study performed by
Wang et al. used gadoxetic acid-enhanced MR images with a clinical model (AFP, irregular
tumor margin, and arterial rim enhancement) in 227 patients with single HCC (training set
159 patients, a time-independent validated set 68 patients), and found a C-index of 0.846,
with a sensitivity of 0.769 and a specificity of 0.818, for the identification of the cytokeratin
19 status of HCC [27].

Glypican 3 is a cell-surface protein with roles in cellular growth, migration, and
differentiation [28,29]. It is not present in benign liver tissue but is highly expressed in
HCC tissues, and it shows a close relationship with metastasis/recurrence in patients
with HCC after surgery [30]; therefore, it represents a marker for poor prognosis. For
a study using a combined nomogram integrating independent clinical risk factors, AFP
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and radiomics signatures with contrast-enhanced MRI, the AUCs were 0.926 (training
cohorts) and 0.914 (validation cohorts) for identifying HCC with glypican 3 positivity [31].
Geng et al. examined the efficacy of radiomics using MRI-based susceptibility weighted
imaging, and found AUCs of 0.905, 0.837, 0.800 and 0.760 for diagnosing patients with
positive cytokeratin 19, positive cytokeratin 7, high histopathologic grade and positive
glypican 3 [32].

The expression of the human Ki-67 protein is closely related to cell proliferation. The
antigen is demonstrated in the nucleus during interphase; however, most of the protein is
relocated to the surface of the chromosomes during mitosis. That is, the Ki-67 protein is
present during all active phases of the cell cycle (G(1), S, G(2), and mitosis), but is absent
from resting cells (G(0)) [33]. Thus, the Ki-67 protein has been widely used as a proliferation
marker for human tumor cells [34]. For the assessment of potential malignancy, a higher
Ki-67 level is considered a marker for fast progression and poor prognosis in malignant
diseases, such as HCC, breast cancer and bladder cancer [35–37]. A recent study using
radiomics data with contrast-enhanced CT showed AUCs of 0.777–0.836 to predict Ki-67
status in HCC patients, suggesting the possibility of radiomics analysis as a noninvasive
marker of the cellular proliferation of HCC [38]. Taken together, MRI- or CT-related
radiomics models may be available to predict the degree and malignant severity of HCC.

4.3. Microvascular Invasion

Microvascular invasion (MVI) is defined by tumor invasion into the intravascular
space [39]. The incidence of MVI in resected liver specimens is reported to range from
15.0% to 57.1% [40]. Studies have shown that the presence of MVI strongly suggests a
more severe malignant degree of HCC because of the sign of early recurrence [39] and
worse prognosis after surgical resection [41] or transplantation [42]. However, the presence
of MVI is diagnosed by histological examination using resected specimens after surgical
procedures; therefore, undetermined preoperative judgement of the therapeutic direction
has been a clinical problem.

Against this background, MVI is a well-documented target of AI-based studies
(Table 1). Four studies reported the effect of combined models incorporating the contrast-
enhanced CT radiomics signature and the effective clinical factors to predict MVI status;
an AUROC of 0.801 (C-indices 0.820) was reported in a study performed in 157 patients
with histologically proven HCC and with a clinical model including age, maximum tumor
diameter, AFP and hepatitis B virus antigen [43], and a C-index of 0.844 was reported in
a study performed in 304 patients with HCC and with clinical factors including AFP, hy-
poattenuating halos, arterial peritumoral enhancement, and nonsmooth tumor margin [44].
Zhang et al. showed the ability of CT-based radiomics to predict both MVI status (positive
vs. negative) and risk (high vs. low), with an AUC of 0.796 for MVI status and an AUC of
0.740 for MVI risk. Furthermore, the MVI status classifier significantly stratified patients
for short overall survival or early tumor recurrence [45]. A more recent study focused on
predictive models using eXtreme Gradient Boosting (XGBoost) and deep learning based
on CT images. The AUROCs of the radiomics–radiological–clinical (RRC) model and
three-dimensional convolutional neural network model were 0.887 and 0.906, respectively
(p = 0.83). Interestingly, moreover, based on the MVI status predicted by the RRC and three-
dimensional convolutional neural network models, the mean recurrence-free survival was
significantly better in the predicted MVI-negative group than in the predicted MVI-positive
group (RRC Model: 69.95 vs. 24.80 months, p < 0.001; three-dimensional convolutional
neural network model: 64.06 vs. 31.05 months, p = 0.027) [46].
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Table 1. Diagnostic ability of radiomics-based radiological imaging for microvascular invasion.

N Image AUC Reference

Clinical Radiomics Combined Model

47 B-mode/SWE/VI - 0.98 - [47]

482
B-mode 0.634 0.731 -

[48]

322
B-mode - 0.726

(presence/absence) -
[49]

0.806 (M1/M2)

157
Contrast-enhanced CT 0.761 0.793 0.801

[43](C-index 0.820)

304
Contrast-enhanced CT - - (C-index 0.844)

[44]

637
Contrast-enhanced CT 0.739 * 0.743 * 0.796 *

[45]0.529 ** 0.7 ** 0.74 **

405
Contrast-enhanced CT 0.875 0.888 0.897

[46](3D-CNN model 0.906)

208
MRI - 0.837 0.861

[50]

267
MRI 0.729 0.820 0.858

[51]

99
MRI - 0.867 -

[52]

AUC, area under the receiver operating characteristic curve; SWE, share wave elastography; VI, viscosity imaging; CT, computed tomogra-
phy; MRI, magnetic resonance imaging; 3D-CNN, three-dimensional convolutional neural network. * AUC for status of microvascular
invasion; ** AUC for risk of microvascular invasion.

Meanwhile, three studies demonstrated the effect of a combined model incorporating
the contrast-enhanced MRI radiomics signature and clinical factors. The first study per-
formed in 267 HCC patients reported an AUC of 0.858, with a sensitivity of 80.77% and a
specificity of 68.09%, using precontrast and contrast-enhanced MRI with gadopentetate
dimeglumine and two clinical factors (arterial peritumoral enhancement and AFP) [51].
According to the second study performed in patients with pathologically confirmed HCC
(training cohort 146 patients, validation cohort 62 patients), the AUC was 0.861 (C-index of
0.864), with a sensitivity of 89.5%, a specificity of 81.4%, and an accuracy of 83.9%, using
precontrast and contrast-enhanced MRI with gadoxetic acid and clinical factors including
AFP, nonsmooth tumor margin, and arterial peritumoral enhancement [50]. Third, Nebbia
et al. showed the highest AUC (0.867) and accuracy (79.68%) in predicting MVI status by
T2 and portal venous sequences of gadopentetic acid-enhanced MRI [52]. Based on these
data, the preoperative identification of MVI by the application of an AI-based combined
model using CT/MRI may be promising for deciding the appropriate therapeutic direc-
tion, leading to a reduction in recurrence and an improvement in posttreatment outcomes
and prognosis.

5. Prediction of Therapeutic Response by CT/MRI-Based Radiomics
5.1. Transcatheter Arterial Chemoembolization (TACE)

Two retrospective studies using MRI reported the effect of AI-based analysis for
the prediction of the response to TACE. The first study performed in 36 HCC patients
in the US showed preprocedural prediction with an overall accuracy of 78% (sensitivity
62.5%, specificity 82.1%, positive predictive value 50.0%, negative predictive value 88.5%),
using combined clinical patient data with baseline contrast-enhanced multiphasic MRI
and with gadopentetate dimeglumine [53]. Another study with 84 HCC patients from
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China revealed that the model based on diffusion-weighted image features showed an
AUC (b = 0, 0.786; b = 500, 0.729), followed by T2-weighted image features (0.729) and
apparent diffusion coefficient images (0.714). Additionally, the radiomics signature was
an independent parameter of progressive disease (PD), while clinical information had no
significance in the PD group [54].

5.2. Immunotherapy

The intratumor immunoscore, which assesses the density of CD3+ and CD8+ T cells,
is effective in determining the application of immunotherapy in HCC patients [55,56].
A retrospective study in 207 HCC patients who underwent hepatectomy demonstrated
that the combined radiomics (gadolinium ethoxybenzyl-diethylenetriaminepentaacetic
acid-enhanced MRI) and clinical model (AFP, gamma-glutamyltransferase, aspartate amino-
transferase) showed the highest ability to predict the immunoscore, with an AUC of 0.934, a
sensitivity of 0.846, a specificity of 0.841, an accuracy of 0.842, a positive predictive value of
0.611 and a negative predictive value of 0.949 [57]. According to a more recent retrospective
study performed in 48 patients with HCC who underwent hepatic resection or transplant,
MRI-based radiomics features correlated with immunohistochemical cell type markers
for T-cells (CD3), macrophages (CD68), endothelial cells (CD31), and the expression of
immunotherapy targets programmed death-ligand 1, at the protein level (r = 0.41–0.47,
p < 0.029), and programmed death receptor 1 and cytotoxic T-lymphocyte associated pro-
tein 4 at the mRNA expression level (r = −0.48–0.47, p < 0.037). In addition, the model
showed diagnostic performance (AUC 0.76–0.80, p < 0.043) for the assessment of early HCC
recurrence, although immune profiling and genomic features did not (p = 0.098–0929) [58].

These data suggest the effect of radiomics-based data to help make treatment de-
cisions by the noninvasive prediction of the response to TACE and immune-oncologic
features. Thus, if the therapeutic direction is considered to be unresponsive to TACE, it
may be changed to the use of molecular targeted agents (i.e., sorafenib). However, the
practical benefit of radiomics-based findings needs to be validated by additional studies in
a prospective setting.

6. Prediction of Posttreatment Recurrence and Prognosis by CT/MRI-Based Radiomics

The prediction of posttreatment outcomes is a pivotal issue in the management of
patients with HCC. Investigators have performed radiomics-based studies regarding the
prediction of early recurrence, and most of them have shown better results in combined
models with radiomics and clinical data than in radiomics data alone [59–68]. The diagnos-
tic abilities to predict early recurrence after surgical or nonsurgical treatment ranged from
0.785 to 0.89, according to the AUC, and 0.743 to 0.809 according to the C-index, with the
use of CT-based radiomics data (Table 2).

Table 2. Diagnostic ability of radiomics-based radiological imaging for posttreatment recurrence.

N Image Treatment AUC Reference

Clinical Radiomics Combined Model

215 Contrast-enhanced CT RFA/PEI/TACE 0.781 * 0.817 * 0.836 * [59]

203
Contrast-enhanced CT Resection - 0.79 * -

[60]Ablation

184 Contrast-enhanced CT Ablation 0.649 ** 0.791 ** 0.809 ** [61]

155 MRI Resection 0.814 * 0.728 * 0.841 * [62]

129 MRI Resection - - - [63]

470 Contrast-enhanced CT Resection 0.739 ** 0.801 ** - [64]
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Table 2. Cont.

N Image Treatment AUC Reference

Clinical Radiomics Combined Model

133 Contrast-enhanced CT Liver transplantation 0.675 ** 0.743 ** 0.785 ** [65]

295 Contrast-enhanced CT Resection 0.71 *** 0.88 *** - [66]

114
Contrast-enhanced CT Resection 0.63 * 0.89 * 0.89 *

[67]Ablation

262 Contrast-enhanced CT Resection 0.654 * 0.785 * - [68]

318 Contrast-enhanced US Ablation 0.60 0.83 0.84 [69]

Diagnostic performance: * AUROC; ** C-index; *** Time-dependent AUC. CT, computed tomography; MRI, magnetic resonance imaging;
RFA, radiofrequency ablation; PEI, percutaneous ethanol injection; TACE, transarterial chemoembolization.

Prognosis is another important posttreatment outcome that requires proper prediction.
Four retrospective studies reported the effect of the radiomics-based model on predicting
survival after TACE. A first study performed in 66 HCC patients examined the effects
of three models using pretreatment contrast-enhanced CT, and found that the combined
model using clinical data (Child–Pugh score, AFP, and HCC size) was a better predictor of
survival (hazard ratio, 19.88; p < 0.0001) than the others for predicting overall survival [70].
Similar data for predicting survival after TACE were presented by Meng et al.; a combined
radiomics–clinic model using contrast-enhanced CT showed C-indices of 0.73 and 0.70 in
the training and testing cohorts, respectively [71]. The integration of multimodal data with
contrast-enhanced CT also appears effective in predicting prognosis after TACE, showing
an accuracy (concordance index) of 0.73 and AUCs ranging from 0.85 to 0.90 in predicting
3- to 10-year survival [72]. The last study in 184 HCC patients used pretreatment contrast-
enhanced MRI with gadodiamide for recurrence-free survival, and the combined model
was the best with a C-index of 0.802 [73].

For the prediction of post-hepatectomy prognosis, three retrospective studies reported
the usefulness of radiomics-based combined data [74–76], and Zhang et al. supported those
findings with a prospective study in which there was an improved predictive performance,
with a C-index of 0.92 compared to the clinic–radiological model (C-index, 0.86, p = 0.039)
or the combined rad-score (C-index, 0.88, p = 0.016) in their prospective study [77].

Post-hepatectomy liver failure is a serious consequence in clinical practice. According
to a retrospective study of 112 HCC patients, the contrast-enhanced CT-based radiomics
score could predict posthepatectomy liver failure with an AUC of 0.762. Additionally,
the individual predictive nomogram that included the radiomics-based score, model for
end-stage liver disease (MELD) and performance status showed that the AUC of 0.896 of
the nomogram discrimination was superior to those of the others [78].

Thus, comprehensive analysis using AI techniques seems useful to predict post-
treatment outcomes and prognoses. However, most of the studies were performed in
retrospective settings, and TACE and surgical resection were the majority of the treatments
of choice. Further validation is warranted in a large cohort prospective manner, including
various treatment options, such as local ablation and molecular targeted therapy.

7. Radiomics-Based US for the Diagnosis of HCC

Preoperative diagnosis of primary liver cancer, particularly differentiation between
HCC, combined hepatocellular–cholangiocarcinoma (cHCC-CC), and intrahepatic cholan-
giocarcinoma (CC), is pivotal in decisions regarding patient management. A recent retro-
spective study analyzed US images of 668 patients with primary liver cancer, consisting of
531 HCC patients, 48 cHCC-CC patients, and 89 CC patients, and found that the overall
performance of the radiomics model in identifying different histopathological types of
primary liver cancer yielded AUCs of 0.854 (training cohort) and 0.775 (test cohort) in the
HCC vs. non-HCC radiomics model, and 0.920 (training cohort) and 0.728 (test cohort) in
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the CC vs. cHCC-CC radiomics model [79]. Furthermore, a multicenter study performed in
13 hospitals, including 2143 patients (24343 sonograms), has shown that deep convolutional
neural network of US may have the potential to assist less experienced radiologists in
improving their performance and lowering their dependence on sectional imaging in liver
cancer diagnosis [47].

The prediction of malignant potential (posttreatment recurrence and poor prognosis)
is a key issue in the practical daily care of patients with HCC, and some protein markers
and the presence/absence of MVI are used for this purpose. For the former, although the
sample size was small (47 patients with HCC), a radiomics-based study including B-mode,
share wave elastography (SWE) and viscosity imaging demonstrated high diagnostic
ability (AUC 0.94) to predict Ki-67, which is a marker to indicate the poor prognosis of
several malignant diseases [48]. For the latter, two retrospective studies using B-mode
US findings showed AUCs of 0.731 and 0.726 (0.806 for differentiation between M1 and
M2) in predicting MVI [49,80]. In addition, Yao et al. reported a higher diagnostic ability
(AUC 0.98) achieved by radiomics-based multimodal US images [48].

A retrospective study performed in 130 HCC patients using US (B-mode, CEUS with
SonoVue) for the prediction of the response to TACE demonstrated that the AUCs of
radiomics data were 0.93 by CEUS, 0.80 by time–intensity curve, and 0.81 by B-mode,
showing significant differences between CEUS and the other two (time–intensity curve,
p = 0.034; B-mode, p = 0.039) [81]. For therapeutic strategy decisions, radiomics-based
multimodal US images may also be useful for the prediction of the effect of programmed
cell death-1, with an AUC of 0.97 [48].

A more recent study, performed in 419 patients examined by CEUS within 1 week
before receiving radiofrequency ablation or surgical resection (radiofrequency ablation:
214, surgical resection: 205), analyzed the CEUS findings and found that 17.3% of ra-
diofrequency ablation patients and 27.3% of surgical resection patients should swap their
treatment; as a result, their average probability of 2-year progression-free survival would
increase by 12% and 15%, respectively [82]. Moreover, dynamic CEUS radiomics performed
well (AUC 0.84) in predicting the post-ablation early recurrence of HCC [69].

These data indicate the potential of radiomics-based US findings in facilitating opti-
mized treatment selection for patients with HCC, by characterizing and predicting malig-
nant potential and posttreatment outcomes (Table 3). However, as the numbers involved
and the quality of the study were not sufficient, further evaluation is warranted.

Table 3. AI-based US studies for HCC.

N Image Target AUC Reference

668 B-mode Histopathological types
of primary liver cancer

HCC v. non-HCC 0.775
Intrahepatic cholangiocarcinoma vs.

combined
hepatocellular–cholangiocarcinoma 0.728

[79]

2143 B-mode Liver cancer diagnosis

0.924 for focal hepatic lesions
Sensitivity (86.5% vs. 76.1%, p = 0.0084)
Specificity (85.5% vs. 76.9%, p = 0.0051)

Both superior to 15-year skilled radiologists

[47]

47 B-mode, share wave elastography
and viscosity imaging Ki-67 0.94 [48]

47 B-mode, share wave elastography
and viscosity imaging Microvascular invasion 0.98 [48]

482 CEUS Microvascular invasion 0.731 [49]

322 B-mode Microvascular invasion
0.726 (0.806 for differentiation between M1

and M2)
-

[80]
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Table 3. Cont.

N Image Target AUC Reference

130 B-mode, CEUS Response to TACE

0.93 by CEUS
0.80 by time–intensity curve (p = 0.034 vs.

CEUS)
0.81 by B-mode (p = 0.039 vs. CEUS)

[81]

47 B-mode, share wave elastography
and viscosity imaging

Programmed cell
death-1 0.97 [48]

318 CEUS Post-ablation early
recurrence 0.84 [69]

CEUS, contrast-enhanced ultrasound.

8. Radiomics-Based US for the Diagnosis of Nontumor Liver Disease

There have been some attempts made to use US technology with deep learning regard-
ing hepatic fibrosis and steatosis; as these are factors associated with hepatocarcinogenesis,
the assessment of their degree is an important process for the evaluation of the risk of
HCC development [83]. A study using the Inception-ResNet-v2 deep convolutional neural
network showed an AUROC of 0.977 in detecting histologically proven fatty liver, defined
by 5% or more hepatocytes with steatosis. The AUROC here was much higher than those
of other modalities: 0.959 by the hepatorenal index method and 0.893 by the grey-level
cooccurrence matrix algorithm. This suggests the novelty and utility of the automatic
diagnosis of the amount of fat in the liver [84].

To detect advanced liver fibrosis, two methods, hepatic surface imaging and liver
elasticity, have been investigated. For the former, a study employing a deep convolutional
neural network model to extract features from US images resulted in the highest AUROC of
0.968, compared to other models, although the sample size was relatively small (44 control
and 47 cirrhosis patients), and the diagnosis of cirrhosis was made clinically without histo-
logical assessment [85]. In the latter, a machine learning algorithm SWE color mapping
image (Aixplorer ultrasonic system; SuperSonic Imagine, Aix-en-Provence, France) found
a diagnostic ability of 87.3% accuracy, 93.5% sensitivity and 81.2% specificity, with an AU-
ROC of 0.87 to differentiate between controls and subjects (chronic liver disease, defined
by histologic examination), with 0.94 to 0.95 intraclass correlation coefficient indices of
intraobserver variability [86]. Another multicenter study including a large patient popula-
tion (398 patients with 1990 images) reported that deep learning radiomics of elastography
showed the best overall performance in predicting liver fibrosis stages, compared with two
dimensional SWE (2D-SWE) and biomarkers in patients with hepatitis B virus infection;
the AUCs of deep learning radiomics of shear wave elastography were 0.97 for F4, 0.98 for
≥F3 and 0.85 for ≥F2, which were significantly better than other methods, except 2D-SWE
in ≥F2 [87].

9. Radiomics in the Field of Point of Care US (POCUS)

In general, point-of-care US (POCUS) is defined as “US performed by the clinician
providing care, which is brought to the location where the patient is receiving care ‘at the
patient’s bedside,’ regardless of where that may be located (and even if the bed is just
theoretical)” [88]. From the aspect of emergency medicine, the term indicates clinician- or
physician-performed US at bedside, with focused and mobile settings [89]. US directly
performed by the clinician who performs treatment provides prompt assessment of the
patient condition, and may enhance the decision of management direction [90]. In the
medical care of patients with HCC, biopsy and local treatment (ablation and percutaneous
ethanol injection) are usually conducted under US guidance, which is operated by the
hepatologist or radiologist. Furthermore, the operator must examine the target tumor
location and adjacent structures such as vessels, bile ducts, gut, heart and diaphragm,
and identify the presence of ascites, pleural effusion, portal vein thrombosis, and portal
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vein tumor thrombosis, for the recognition of the pretreatment patient condition and
postprocedure complications.

An AI-based unique attempt has been made for POCUS using deep learning models
with sets of thousands of images derived from a large database of US images, which include
both normal and pathologic findings for the targeted conditions. With this background,
deep learning models have been introduced as novel technologies to improve the accuracy
and efficacy of POCUS imaging, by automated image interpretation and by matching
various algorithms for specific patient conditions [91]. The results of these trials suggest
the potential utility of deep learning radiomics of elastography as an alternative to the
current SWE system in the noninvasive assessment of hepatic fibrosis.

10. Summary and Future Perspectives of AI-Based US

Obviously, US imaging may be the most commonly used imaging modality in the
abdominal field. Investigators have shown the effect of the US-based radiomics approach
in the prediction of tumor characteristics and malignant potential, by the assessment of
the presence/absence of MVI and Ki-67, posttreatment response and prognosis. However,
evidence has shown that the actual significance of AI-based US examination is still far
behind the effect of CT or MRI. This may be discussed by the comparison of advantages
and disadvantage between US and CT/MRI; the advantages of US are the simplicity, with
near-noninvasiveness and possible real-time observation, and the lack of these points may
be listed as the disadvantage of CT/MRI. Meanwhile, the disadvantages of US are operator-
and patient-dependent variations. These factors may account for the poor objectivity and
reproducibility of the US images; however, the higher objectivity and reproducibility of
the data are the advantages of CT/MRI. That is, there is a trade-off relation between US
and CT/MRI, and particularly, the disadvantages of US have a great influence on each step
of the workflow of radiomics, which may also be linked to the small number of US-based
radiomics studies.

The major future direction of US-based radiomics may depend on how to utilize US
data, such as law data, cine clip data including multiple frames, and 3D data. Moreover,
comprehensive integration using a broad spectrum of laboratory data may help to im-
prove the potential of AI-related US examination. The advantage of radiomics is operator
independence, which may resolve the shortcomings of US.

11. Conclusions

The evidence from studies employing radiomics analysis for HCC enhances the
positive effect of using AI-based US analysis. It is highly expected that the wide range of
applications of AI for US will support the further improvement of the diagnostic ability of
HCC, and provide a great benefit to the patients.
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