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Erythrocyte morphological
symmetry analysis to detect
sublethal trauma in shear flow

Antony P. McNamee'*, Michael J. Simmonds!, Masataka Inoue?, Jarod T. Horobin?,
Masaya Hakozaki?, John F. Fraser* & Nobuo Watanabe?"*

The viscoelastic properties of red blood cells (RBC) facilitate flexible shape change in response to
extrinsic forces. Their viscoelasticity is intrinsically linked to physical properties of the cytosol,
cytoskeleton, and membrane—all of which are highly sensitive to supraphysiological shear
exposure. Given the need to minimise blood trauma within artificial organs, we observed RBCin
supraphysiological shear through direct visualisation to gain understanding of processes leading to
blood damage. Using a custom-built counter-rotating shear generator fit to a microscope, healthy
red blood cells (RBC) were directly visualised during exposure to different levels of shear (10-60 Pa).
To investigate RBC morphology in shear flow, we developed an image analysis method to quantify
(a)symmetry of deforming ellipsoidal cells—following RBC identification and centroid detection,
cell radius was determined for each angle around the circumference of the cell, and the resultant
bimodal distribution (and thus RBC) was symmetrically compared. While traditional indices of RBC
deformability (elongation index) remained unaltered in all shear conditions, following ~100 s of
exposure to 60 Pa, the frequency of asymmetrical ellipses and RBC fragments/extracellular vesicles
significantly increased. These findings indicate RBC structure is sensitive to shear history, where
asymmetrical morphology may indicate sublethal blood damage in real-time shear flow.

Haemolytic blood damage, to varying degrees, is an unavoidable reality of all current generation mechanical
devices indicated for cardiovascular circulatory support'. While haemolysis in artificial organs has several deter-
minants, exposure to supraphysiological shear stresses greater than tenfold the upper limits of normal circulation
is now considered the primary candidate to cause red blood cell (RBC) membrane rupture and destruction®.
Recent investigations of shear-induced RBC damage have identified (through direct and indirect assessments)
that the physical properties of the cytosol, cytoskeleton, and plasma membrane undergo functional and struc-
tural alteration in response to supraphysiological shear exposure’™'}; this occurs prior to complete cell destruc-
tion/haemolysis'. Prolonged exposure to supraphysiological shear stress may even propagate abnormal RBC
morphology’?, and increase the presence of extracellular vesicles and membrane fragments'*-"7.

Due to infrastructure challenges, many of the reported shear-RBC observations have been performed follow-
ing cessation of exposure to shear stimuli. The need remains for development of methods able to detect the onset
of near real-time sublethal damage during shear flow. Watanabe et al.'® reported the use of a counter rotating
shear system fit to a microscope for direct RBC observation. Using this apparatus, shear induced cell fragmenta-
tion and haemolysis was identified in real-time at 40-s of accumulated exposure to 288 Pa. Given the ability of
this system to detect haemolytic ‘end-points’ in continuous shear flow, it is plausible that this apparatus could
also have the sensitivity to investigate markers of blood cell deterioration prior to haemolysis.

Following exposure to supraphysiological shear stresses (below levels which induce detectable haemoly-
sis), several investigations have reported that the morphology of RBC is substantially altered, with increased
echinocytes'>'*1%2°, dumbbell shaped RBC?!, and large extracellular vesicles'® being observed. Extending recent
work!® of the RBC shape change that occurs at the point of RBC lysis, and based on the physical changes that have
been reported to occur to the RBC membrane®>?, we believe that alterations in cell morphology could provide a
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valid indicator of accumulated sublethal trauma in shear flow, where decreased cell stability would present with
asymmetrical ellipsoidal morphology.

To detect RBC structural abnormalities in shear flow, an image analysis method would provide a powerful
advancement for real-time analyses. Several researchers have developed and applied image processing methods
to inspect RBC morphology at stasis in peripheral blood smears for the purpose of cell counting, static shape
assessment?*, analysis of RBC aggregates® and pathological diagnosis of: malaria®, sickle cell disease?, and
acanthocytosis?®. Only few analysis methods have been developed for flowing RBC with ellipsoidal or parachute
shapes®~, with common methods of RBC deformability analysis utilising parameters based on various ratios
employing the major and minor axes of the cell’’-**. Currently, no image analysis technique has been proposed
to detect morphologically aberrant RBC, indicative of sublethal damage, while still in shear flow.

Therefore, the aim of the present study was to: (i) investigate the onset of initial morphological alterations
during exposure to supraphysiological shear stress that remains below the haemolytic threshold; and (ii) develop
a new image analysis method for the detection of morphologically-aberrant RBC in shear flow.

Materials and methods

Blood sample preparation. Blood was carefully collected from two informed and consenting healthy
male volunteers (aged 20-30 years) in accordance with the international guidelines for haemorheological labo-
ratory techniques®. Briefly, venepuncture was performed using a 21-G needle and syringe, and subsequently
transferred into a blood tube containing 1.8 mg-mL™" K,EDTA anticoagulant within 90 s of tourniquet appli-
cation. To facilitate accurate shear stress quantification and control, the non-Newtonian properties of blood
were overcome by 200 times dilution in a solution of polyvinylpyrrolidone (PVP; molecular weight 360 kDa) in
phosphate buffered saline with a known viscosity of 30 mPa-s, pH of 7.4, and osmolality of 290 mOsmol-kg™*. All
experimental protocols were completed within 4 h of initial blood collection. The experimental protocols of the
present study were reviewed and approved by the Griffith University Human Research Ethics Committee (refer-
ence number: 2016/712) and the Shibaura Institute of Technology Ethics Committee (#17-003-1, #17-003-2),
which conforms with the Declaration of Helsinki.

Experimental procedure. The present study deployed a custom-built counter-rotating shear generator
as previously described'”*. Briefly, this system contains a transparent Couette-type counter-rotating shear
chamber mounted on an inverted microscope (IX73, Olympus Corp., Tokyo Japan) equipped with a high-speed
CMOS camera (optiMOS™ sCMOS Camera, QImaging, Surrey, Canada), and illuminated by an halogen lamp
(TH4-200, Olympus Corp., Tokyo Japan). Given the opposing shear profile of the counter rotating plates, RBC
suspensions positioned towards the middle of the chamber should remain in a stable location. Small samples of
RBC-PVP solutions may be loaded into this system, and directly visualised while being exposed to shear.

Selection of shear stress conditions. To investigate whether the onset of RBC sublethal damage was
associated with increased detection of aberrant morphology, the specific shear conditions chosen for the present
study were carefully considered. Simmonds et al.'’, identified RBC first experience shear-induced rigidification
(i.e., subhaemolytic damage) following 300-s of exposure to shear magnitudes between 30 and 40 Pa. Thus, to
examine shear-induced RBC morphology alterations, four discrete shear stresses were chosen centred around
the ~35 Pa threshold; (i) 5 Pa above and below (40 and 30 Pa)—to determine the influence of subtle sublethal
damage accumulation, (ii) 25 Pa above (60 Pa)—to induce non-tolerable sublethal damage with high confidence,
and (iii) 25 Pa below (10 Pa)—to represent a physiological shear control that would be highly tolerable; RBC
in vivo survive cyclical exposure to this shear stress for a lifespan of up to~ 120 d.

For the present study, the shear generator mounted on the inverted microscope was used for continuous
monitoring of fresh RBC-PVP suspensions exposed to shear stresses of 10, 30, 40, and 60 Pa over a 300-s dura-
tion. Videos were captured through a 40 x objective lens (LUCPLFLN 40 x/0.60) at 10 frames per second, and the
acquired videos were analysed for average RBC elongation index (EI) in shear, total RBC counts, and ‘abnormal’
RBC counts (i.e., defined as RBC with non-symmetrical morphology—detail provided below).

RBC deformability. The deformability of RBC in shear flow was determined through manual analysis of
single cells at specific time intervals across the 300-s shear duration. Given RBC are ellipsoidal in shape when
deforming in a viscous medium, RBC deformation was determined by measuring the length of the major (A)
and minor (B) axes to calculate an EI, using the equation: EI=(A — B)/(A+B).

Detection of asymmetrical RBC. Before initiation of experimentation, care was taken to optimise the
recording environment by setting microscope objective focal distances, enhancing contrast (for improved RBC
edge visualisation), and adjusting light intensity for uniform image quality. These pre-processing steps reduced
the need for post-processing and thus also the complexity of image analysis. Following image capture, to identify
and detect RBC for symmetrical analysis, an image analysis process was developed. Firstly, background illumi-
nation of each frame was corrected using the rolling-ball algorithm, and cell edges were made more prominent
by enhancing image contrast. With deployment of the Sobel edge detector, large changes in pixel intensity were
able to isolate outlines of each cell in frame. To minimise influence of small noise particles prior to cell count-
ing, a Gaussian smoothing filter was applied (6=5). Cell counting was performed by multi-point selection at
each calculated local maxima in the image, where each maxima required at least a prominence of 50 over the
noise threshold to be accepted. Each point identified the location of a single cell. The sum of the points (cells)
in each frame could then be calculated and exported to a time-matched array. Images of single cells could also
be segmented and extracted from the original image. Asymmetry analysis was performed through the follow-
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Figure 1. Proposed method for red blood cell (RBC) asymmetrical analysis: Following identification of RBC
in shear flow (A), each cell must be binarised, edges detected, and analysed for centroid identification (B). The
radius from the centroid is subsequently determined for each angle around the circumference of the cell and
plotted (C); the central nadir is mathematically determined by splitting the dataset into left and right sides, each
half is analysed for asymmetry by determining difference in area under the curve. For cells with theoretically
“perfect” symmetry, this value would be zero.

ing process: 1. each individual cell was rotated to vertically align the cell’s apex (Fig. 1A) before the exported
image was binarised through thresholding of each image’s histogram. Cell edges were then segmented from
the background, and each cell was analysed for centroid identification (Fig. 1B). An edge detection routine
was performed searching outward from the centroid for each angular degree in a counterclockwise direction
around the circumference of the cell and plotted (Fig. 1C). The central nadir of the plot was mathematically
determined, splitting the dataset into two peaks (A, and A,). Both peaks were analysed for comparative sym-
metrical deviation by determining the absolute relative difference in the calculated area under each curve (ie.,
[{A; — A;}/A,x100]). For cells with greater symmetry, this value approaches zero. A critical threshold of sym-
metrical RBC was determined by x + 2o of ellipsoidal cells.

Statistical analysis. All data were analysed with commercially available software (MATLAB; MathWorks;
Image], National Institutes of Health; Prism 9, GraphPad Software).

Normality testing was investigated for each dataset using Shapiro-Wilk and Kolmogorov-Smirnov normality
tests, with confirmation via inspection of Q-Q plots. RBC deformability (i.e., the elongation index of individual
cells) in each shear condition was identified to be non-parametric, thus group comparisons across time were
performed using the Kruskal-Wallis test with multiple comparisons. Symmetrical variation for normal and
abnormal shaped RBC were identified to have parametric distributions, thus comparisons were performed using
an independent samples t-test. Significance was determined at an alpha of 0.05 for all comparative measures.
Data is presented as mean * standard error unless otherwise stated.

Results

Micrography of cells in shear. Micrographs of RBC in shear flow are illustrated in Fig. 2. While only nor-
mal ellipsoidal RBC are observed at the 300-s timepoint of exposure to 10, 30, and 40 Pa (Fig. 2A-C), the 60 Pa
shear condition (Fig. 2D) induced RBC with ‘unstable’ abnormal morphology and increased the presence of cell
fragments/extracellular vesicles.

RBC deformability. The EI of individually analysed RBC is presented in Fig. 3 for the 300-s duration of
each shear condition of the present study. Within each shear condition, the median EI value of all analysed cells
at each time point did not significantly decrease.

RBC asymmetry analysis. Using RBC from the 60 Pa shear condition identified to have representative
normal and abnormal morphology, symmetrical analysis was performed on a subset of cells and presented in
Fig. 4. Cell identification, segmentation, and binarisation of RBC is illustrated in Fig. 4A for RBC with normal
and abnormal morphology. The area-normalised radius from the cell’s centroid to the edge was determined
around the circumference and plotted (Fig. 4B). For each individual plot, the central nadir was identified and
symmetrical deviation between the comparative area under the curve of left- and right-peaks was calculated
(Fig. 4C). The upper limit of symmetrical RBC (x 4 20 of normal cells) was determined to be 2.77%; thus,
cells with symmetrical variation above this threshold were determined to be asymmetrical. RBC with abnormal
morphology had significantly increased symmetrical variation of area under the curve compared with normal
ellipsoidal RBC (p <0.001).
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Figure 2. Micrograph of red blood cells (RBC) in shear flow instantaneously imaged at 300 s of exposure
to 10 Pa (A), 30 Pa (B), 40 Pa (C), and 60 Pa (D). RBC with abnormal morphology (*) and RBC fragments/
extracellular vesicles (1) can be observed.
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Figure 3. The elongation index of visualised red blood cells exposed to 10, 30, 40, and 60 Pa over the 300-s
duration. *p <0.05. **p<0.01.

Number of asymmetrical RBC in 60 Pa shear flow. Following RBC exposure to each shear condi-
tion, only the 60 Pa sublethal condition exhibited substantial increases in RBC with altered morphology over
the 300-s duration. The ensemble average of RBC elongation index and the percentage of RBC with detected
abnormal morphology in the sublethal 60 Pa shear condition and physiological 10 Pa control are presented in
Fig. 5. While mean EI remained unaltered across the 300-s duration for both conditions, by contrast to the 10 Pa
physiological control with no asymmetrical RBC, the fraction of RBC with asymmetrical morphology in the
sublethal 60 Pa condition substantially increased after ~ 100 s of continuous shear exposure.
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Figure 4. Asymmetry analysis for red blood cells (RBC) identified to have normal and abnormal morphology
in shear flow. Following identification of a cell, each cell was binarised, edges detected, and centroid identified
(A). The radius from the centroid to the cell’s edge was measured around the circumference (B). Comparative
symmetrical variation significantly differed between normal and abnormal RBC (C). The symmetrical upper
limit at 2.77% represents X + 20 for normal symmetrical deviation. ***p <0.001.
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Figure 5. Elongation index and frequency of asymmetrical RBC in 10 and 60 Pa shear conditions. While the
ensemble average elongation index remains unchanged for both conditions, the fraction of asymmetrical RBC
in the 60 Pa increases beyond ~ 100 s of cumulative exposure, while the 10 Pa condition remains unchanged.
Asymmetrical RBC are presented as a percentage of total cell counts per frame.

Discussion

In the present study, RBC morphological responses to supraphysiological shear stress between 10 and 60 Pa were
recorded in a counter-rotating shear generator over 300 s. The salient findings were: (i) the average EI of RBC in
shear flow did not change throughout the course of any shear condition; (ii) RBC with abnormal morphology
presented only in the 60 Pa condition, with their occurrence accumulating after ~ 100 s of exposure; (iii) the image
analysis method we employed for detection of abnormal RBC through (a)symmetrical analyses distinguished
between cells with normal and abnormal morphology. These findings collectively indicate that detection of asym-
metrical morphology of RBC may provide a sensitive marker to delineate the onset of sublethal blood damage in
real-time viscous shear flow. This method of structural analysis may yield insights into the mechanistic process
of mechanically induced RBC deterioration/fragmentation.

It is well known that the biophysical properties of RBC are sensitive to chemical assault®’, physiological
aging®!, and accumulated stress—strain history®®*, yet in the present study, traditional methods of assessing EI
(deformability) in shear flow remained unchanged, even following the onset of detectable cell fragments. Prior
reports of RBC EI in lower shear flows <20 Pa (assessed with indirect ektacytometry) are congruent with the
unchanged EI response presented in Fig. 3—especially the 10, 30, 40 Pa condition®’. In the 60 Pa shear condition
however, even following marked increases in asymmetrical and fragmented cells, still no change in group EI
responses were detected. Given ektacytometry generates a single output from laser diffractometry, this technique
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has been identified to be vulnerable to the presence of mixed subpopulations of biophysically altered cells*!,
highlighting the methodological benefits of direct visual inspection for RBC subpopulation assessment. While
ektacytometry was not used in the current study, the presence of morphologically altered cell populations able to
be observed in Fig. 2 (with narrowed central region and artificially smaller ellipse short axes) could potentially
induce increased group EI responses from laser diffractometry and partly explain the transiently increased EI-
stability previously reported in 64 and 100 Pa shear flows”2. Moreover, given greater shear history accumulation
likely induces the onset of substantial fragmentation of these morphologically aberrant cells, subsequent RBC
counts are predicted to eventually decrease, which has been reported to decrease group EI values*. Collectively
the observed changes in RBC morphology may partly explain the biphasic grouped EI response previously
reported in studies employing ektacytometry.

In contrast with traditional RBC ektacytometry investigations adopting stress—strain curve assessment fol-
lowing preconditioning shear treatment, considerably longer exposure duration was required for the onset of
shape-altered RBC (Fig. 5). At comparable shear exposure to the present study, Simmonds and Meiselman’ were
able to first detect significant cell rigidification following 64 Pa for only 4 s, with longer duration conditioning
times resulting in exacerbated rigidification. The stress-strain assessment of these RBC identified that impaired
RBC mechanics were most evident during subsequent exposure to lower shears (typically within physiologi-
cal ranges of < 10 Pa), while RBC mechanics tended to revert towards expected values when examined under
16+ Pa. Our direct visualisation approach tends to support this prior report that employed ektacytometry, and
we hypothesise that greater accumulation of non-tolerable shear (i.e., increased shear magnitudes or durations
of exposure) would likely increase rates and counts of asymmetric RBC, prior to the onset of haemolysis. While
not the focus of the present investigation, it is plausible that initial shear-induced (over)stretching of RBC may
propagate phospholipid translocation'®?, destruction of spectrin-membrane junctional attachment sites*’, and
forced unfolding of spectrin networks causing internal skeletal fragmentation***. Collectively, these biophysical
alterations to RBC may partly separate the external lipid bilayer (still able to deform) from internal structural
architecture of the cell, inducing the observed asymmetric morphology and altering subsequent low-shear sta-
bility as evidenced through increased cell tumbling, and decreased alignment and elongation; at least within
successive physiological ranges of shear®. To observe this speculated cell mechanics, following exposure to
the 60 Pa shear condition, a qualitative extension was performed where 1 Pa of shear stress was subsequently
applied; substantial cell tumbling, variation in size/morphology, cell blebbing, and RBC aggregates could easily
be observed (see supplementary video 1). In the present study, if the continuous shear bouts had instead been
intermittent, it is likely that the low shear rigidification observed in other studies would have been detected well
before the onset of morphological alterations. Nevertheless, both the low shear rigidification and morphologi-
cal alteration are likely part of the same haemolytic process of shear-induced division/fragmentation. Deeper
mechanistic inspection of mechanobiological/shear induced structural weaknesses of RBC would be of value,
given potential targets for interventional protection or damage modulation may be identified.

Although the shear stress conditions utilised in the present study were limited to supraphysiological shears
that are reported not to induce significant increases in plasma free haemoglobin (i.e., haemolysis), an increase in
RBC-derived microparticles was identified following prolonged exposure to 60 Pa. Such microparticle increase
in a ‘subhaemolytic environment’ has been recently reported'’; given cell fragmentation represents lethal dete-
rioration of RBC, perhaps the haemolytic threshold determined by conventional assessment of RBC destruc-
tion measured via free haemoglobin requires reconsideration. Indeed, release of cytosolic haemoglobin into
surrounding media represents end-point cell destruction; however, our data suggest that bulk fragmentation (a
lethal transition for RBC) can still be observed in the ‘subhaemolytic’ 60 Pa condition. Thus, given the presented
complexity of the RBC deterioration process, reconsideration of defining characteristics of marked cell destruc-
tion, and which domains should be categorised as ‘lethal/sublethal’ require review. By contrast to previously
reported haemolytic thresholds®>#, the present study advocates for consideration and implementation of more
sensitive indicators of RBC damage.

To detect damaged RBC in real-time shear flow, the current study proposed a new image analysis method to
delineate abnormal RBC though ellipsoidal symmetrical assessment. As illustrated in Fig. 4, the angle series of
RBC shape data using area-normalised radius of individual cells was successfully able to separate abnormal cells
that had transgressed from control morphology. Inclusion of target area standardisation of radial measurements
enhances the versatility of such an approach for future potential industrial use, by enabling uptake on various
systems with different levels of microscopic magnification, elongation due to shear, and cell types/volume. The
proposed method of cell analysis may also enable more accurate automated techniques for shape/morphology
assessment (at stasis and in flow) able to quickly evaluate levels of haemopathology (e.g. level of echinocytosis
or severity of sickle cell). It should be noted that while the 30 mPa-s viscosity solution in the current study facili-
tated the specific requirements for accurate shear quantification and control, the approach for shape assessment
in flow may be limited in lower (more physiologically relevant) viscosity solutions where the viscosity ratio of
RBC cytosol to plasma will be > 1.

Conclusion

The current study successfully visualised the onset of RBC morphological deterioration through asymmetric
elongation under sublethal supraphysiological shear stress. While the majority of RBC remained ellipsoidal and
symmetrical under all shear conditions, following prolonged exposure to 60 Pa, ~20% of asymmetrical fragmen-
tating RBC were detected. Our newly proposed image analysis method of symmetrical assessment was able to
detect the presence of abnormal cells and may provide the foundations for future systems for rapid automated
detection of sublethal blood trauma.
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Although the complex shear profiles within cardiovascular devices differ drastically from our simplified shear

flow conditions in the current study; it is likely that similar morphological abnormalities and fragments will still
present in the small subregions that exert extreme magnitudes of shear stress onto subpopulations of blood.
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