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Abstract

The ability to examine the behavior of biological systems in silico has the potential to greatly accelerate the pace of
discovery in diseases, such as stroke, where in vivo analysis is time intensive and costly. In this paper we describe an
approach for in silico examination of responses of the blood transcriptome to neuroprotective agents and subsequent
stroke through the development of dynamic models of the regulatory processes observed in the experimental gene
expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential
equations (ODEs) from the data relating these functional clusters to each other in terms of their regulatory influence on one
another. Dynamic models were developed by coupling these ODEs into a model that simulates the expression of regulated
functional clusters. By changing the magnitude of gene expression in the initial input state it was possible to assess the
behavior of the networks through time under varying conditions since the dynamic model only requires an initial starting
state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions.
We discuss the implications of our models on neuroprotection in stroke, explore the limitations of the approach, and report
that an optimized dynamic model can provide accurate predictions of overall system behavior under several different
neuroprotective paradigms.
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Introduction

The ability to examine the behavior of biological systems in silico

through time and under different conditions has the potential to

greatly accelerate the pace of scientific discovery in biology. Wet

lab experimental work on disease pathologies such as stroke in

animal model systems is both time intensive and costly. The ability

to develop computer models based on high-throughput measure-

ments of the system that can be interactively perturbed to test

system behavior under diverse simulated conditions would greatly

reduce the time and cost of experimental work by identifying

hypotheses that are most likely to lead to promising lines of

inquiry. For example, substantial effort has been recently devoted

to understanding the system biology of neuroprotection in stroke

by studying the transcriptomic responses prior to and following

cerebral ischemia and the alterations induced by the application of

neuroprotective preconditioning stimuli [1,2,3]. This work has

yielded extensive gene expression data on the genomics of

neuroprotection in diverse contexts and can be used to train

dynamic pathway models of neuroprotection in stroke. Such

dynamic models can in turn be used to simulate additional

experimental conditions by manipulating variables such as

removing or changing the expression of regulatory influences in

order to investigate corresponding alterations in the molecular

processes of neuroprotection over time. The ability to carry out

such simulations can help identify hypotheses about the underlying

mechanisms of neuroprotection that may have been unrealized or

considerably reduce the time and effort that would have been

needed to reach the same conclusions through in vivo and in vitro

experiments.

Within the last decade, there has been a slow but steady growth

in the application of dynamic modeling to represent biological

systems including metabolic networks, regulatory networks, and

signal transduction pathways. Mandel et al. (2004) provides an

exemplification and discussion of a host of candidate techniques

for modeling dynamic biological processes with reference to an

idealized representation of the lac operon [4]. These techniques

include; ordinary differential equations (ODEs), Petri nets,

Boolean networks, dynamic Bayesian networks, signal-flow

diagrams, agent-based modeling, and system dynamics. Of these

techniques, dynamic Bayesian networks [5,6] and Boolean

Networks [7,8] have been more widely used, but Petri nets [9]

and agent based modeling have also started to make an impact

[10]. Many of these approaches have been applied to small, well-

characterized systems, such as the lac operon, but not to model

global data from transcriptomics. Modeling approaches that

involve ODEs have traditionally focused on expert knowledge to

supply parameters for small networks of genes, but methods have

been developed to infer regulatory networks from high-throughput

transcriptomic data [11,12,13,14,15].

Our approach introduces several novel elements to the dynamic

modeling research described above. First, we derive our model

structure and parameters from high-throughput global transcrip-

tional data using a network inference method coupled with an
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optimization process. Second, we work with a set of regulatory

relationships that are representative of an entire system. Finally,

the computational model describes stroke and neuroprotection in

a higher eukaryote, the mouse. Our resulting ODE-based model

has several advantages over other modeling approaches including

the inclusion of feedback loops, which are important for many

biological processes, and the ability to predict the temporal

patterns of gene expression. Our goal in adopting this approach is

to model changes in expression levels of functional modules over

time, and to assess the interactions between these functional

modules as regulatory influences, in order to facilitate interactive

simulations of neuroprotection during cerebral ischemia.

In this paper we describe an approach to generate dynamic

systems models of networks of functional modules using predicted

causal influences from temporal transcriptomics data (Figure 1).

We first identified co-expressed gene clusters that represent

functionally coherent modules. The structure and initial param-

eters of the model (in the form of ODEs) were generated using a

method that learns steady-state relationships between regulators

and their targets based on expression data, the original Inferelator

algorithm [14,16]. A simulated annealing method was applied to

the system of ODEs that represents the initial model, to optimize

parameters for dynamic simulation over time. We found that the

optimized models perform quite well at simulating the patterns of

expression that they were trained on, providing a proof of concept

that the closed systems of ODEs is capable of accurately

representing expression in a complex system over long time scales.

Validation of the models on time course data not used for

optimization produces limited, but significant performance results

showing that the model is accurately capturing aspects of general

regulation in the system. Additionally, we validated the relation-

ships in our model by examining correspondence with interactions

from other sources. We show that this process can produce high-

level functional models from high-throughput data that are

capable of accurately describing the dynamics of the transcrip-

tomic response in blood to neuroprotective stimuli and to cerebral

ischemia over time.

Results

Model data
Gene expression data obtained from microarrays (Affymetrix)

run on mouse blood was utilized for this study (see Methods). The

mice were treated with one of three different preconditioning

stimuli: lipopolysaccharide (LPS), CpG-oligonucleotide (ODN), or

brief ischemia (15 minute stroke); or treated with saline or a sham

surgical procedure as controls. These preconditioning stimuli

provide the brain with a defined window of protection against

cerebral ischemia. The protection requires time to develop prior to

the ischemic event to allow for the necessary new gene expression

and protein synthesis to develop. In this model, the precondition-

ing stimuli or control treatments were given three days prior to

stroke, which was induced surgically using transient middle

cerebral artery occlusion (MCAO). Following stroke, precondi-

tioning leads to a neuroprotective effect demonstrated by

decreased infarct (ischemic injury lesion) size [1,17,18]. It has

been shown that preconditioning dramatically affects gene

expression in the brain [1] and blood ([19] and unpublished

observation) prior to and following stroke. To understand the

dynamics of the blood changes in gene expression, microarrays

were run on blood samples collected at 3, 24, and 72 hours

following preconditioning and at 3 and 24 hours following stroke.

Though this is a limited number of time points to parameterize

regulatory models, the dataset provides a good starting point for

establishment of methods for predictive modeling in complex

eukaryotic systems. Particularly, the five parallel time courses with

different pretreatment conditions are valuable to assess the ability

of resulting models to predict novel behavior.

Defining functional modules using expression patterns
across multiple conditions

To establish the actors in the model with predictable expression

we first defined functional modules from the set of significantly

changing probes (see Methods). Functional modules are clusters of

co-expressed genes that have coherent functions. To define these

functional modules we clustered the expression data from all

treatments considered using a hierarchical clustering approach.

This process produces a dendrogram that can be used to divide the

data into an arbitrary number of clusters. To determine the

clustering division (i.e. the number of clusters) that best represents

functional modules in the system we assessed the functional

coherence of sets of clusters at different clustering divisions.

Specifically, for any given clustering we determined the functional

enrichment of each cluster in terms of biological process as

described in the Gene Ontology (GO) [20]. All categories that

were found to be significantly enriched (using several p-value

thresholds, see Figure 2) in a cluster were considered to be

enriched categories. The functional coherence was then calculated

as the total number of genes that were annotated with at least one

enriched category. This approach provides a simple, yet intuitive

measure of how coherent functional groups are in the clustering

structure defined from the data. The results of this analysis show

that maximum functional coherence is achieved with 25 clusters

(Figure 2). We found that the mean in-cluster correlation in

expression between genes for all 25 clusters was 0.59 whereas the

mean between-cluster correlation was 0.28, showing that the

expression patterns were also largely coherent in these clusters. It is

important to define functional modules because the utility of the

model depends on the predicted outputs (mean expression levels of

functional modules defined here) reflecting coherent biological

functions that are executed by the system in response to the

treatment. Though many of the clusters represented are too large

Author Summary

Computational modeling aims to use mathematical and
algorithmic principles to link components of biological
systems to predict system behavior. In the past such
models have described a small set of carefully studied
molecular interactions (proteins in signal transduction
pathways) or larger abstract components (cell types or
functional processes in the immune system). In this study
we use data from global transcriptional analysis of the
processes of neuroprotection in a mouse model of stroke
to generate functional modules, groups of genes that
coherently act to accomplish functions. We then derive
equations relating the expression of these modules to one
another, treating these individual equations as a closed
system, and demonstrate that the model can be used to
simulate the gene expression of the system over time. Our
work is novel in describing the use of global transcriptomic
data to develop dynamic models of expression in an
animal model. We believe that the models developed will
aid in understanding the complex dynamics of neuropro-
tection and provide ways to predict outcomes in terms of
neuroprotection or injury. This approach will be broadly
applicable to other problems and provides an approach to
building dynamic models from the bottom up.

Dynamic Models of Gene Expression in Stroke
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to be considered true functionally coherent modules, we felt that

this was a good starting point for further model development given

the coherence of the functional categories and expression patterns

for this set of conditions.

Initial steady-state model inference
To learn the parameters in a model system of ODEs that relate

the expression levels of clusters to one another we applied a

modification of the original Inferelator [14,16] algorithm (version

1.1). This algorithm uses an approach called L1 error regression

(also known as Lasso) to choose a parsimonious set of regulatory

influences that can explain the expression of each cluster

maximally [21,22]. We have previously described elements of this

approach in this and other systems [23,24,25,26]. The result is a

model abstracted from high-throughput transcriptomic data that

mathematically expresses the relationships between clusters. To

enable dynamic simulation models, our approach infers the

influence of clusters on each other but excludes individual

regulator genes (such as transcription factors) as explicit regulatory

influences. The original Inferelator 1.1 approach includes

individual regulator genes, but is not designed to enable dynamic

simulation. It is capable of limited temporal prediction when based

on time course data, but does not consider relationships between

different ODEs in the model. The Inferelator approach was

extended to enable inference for such dynamic, coupled systems

and Bayesian parameter estimation was applied. The resulting

models were capable of predicting the expression profiles in yeast

over time with good accuracy [13]. Similarly, our abstraction

(depicted in Figure 1) allows the model to be treated as a closed,

coupled system of ODEs where the expression levels of all clusters

at any given time step can be calculated from their expression

levels at the initial time. The resulting model can be simulated over

time given only an initial starting state (see below), which is not

possible using the original Inferelator approach.

The initial steady-state model can be used to predict the

expression of target clusters given the known expression levels of

the input regulatory influences (in this case the regulatory

influences are other clusters). Although the Inferelator is capable

of incorporating time course data explicitly in its inference process,

we chose to treat data from each time point as a steady-state

measurement since the time steps were relatively long and of

variable length. We assessed the performance of the model using a

cross-validation approach in which multiple models are trained on

subsets of the data, by leaving out the data corresponding to a

treatment time course, and then evaluated on the excluded time

course data as previously described [23,24,25,26]. Prediction of

the expression levels for a cluster in this steady-state model

requires input of expression levels for the regulatory influences, in

this case the clusters themselves, for each condition being

predicted. Using this approach we found that there was relatively

high correlation of 0.73 (range of 21.0 to 1.0) between the

predicted and observed expression levels, across the 25 conditions

examined (five preconditioning treatments at five time points

each). Considering only the LPS preconditioning time course, the

correlation was somewhat higher at 0.78, as were the other time

courses alone: CPG-ODN (0.80), ischemic preconditioning (0.82),

saline treatment (0.92), and sham surgery (0.81). We have

previously reported similar results using models developed with

the Inferelator that consider individual genes as regulatory

influences, rather than entire clusters [23,26]. These models can

be used to perform limited types of simulations, such as predicting

expression of target clusters after in silico deletion of a regulatory

influence. However, a significant limitation of this kind of model is

that the expression levels of the input regulatory influences must be

measured for every time point in order to be able to make

predictions. Our dynamic model only requires specification of the

initial state to simulate the subsequent time steps, potentially for a

broad range of different initial conditions.

Figure 1. Overview of abstract dynamic modeling approach. 1) Inferelator 1.1 infers a parsimonious set of potential regulatory influences
whose expression can explain the expression of the target cluster maximally, but does so independently for each cluster. 2) The actual structure of
the inferred network would consider that the regulators are members of clusters and that the network structure is complex and cyclical. 3) The
regulatory influence model can be represented by a regulatory influence matrix and used to simulate the closed system of ordinary differential
equations over time. 4) The optimization process (see text) is used to improve the ability of the model to simulate the system over time (i.e. calibrate
to temporal data). 5) The resulting optimized model retains much of the structure of the initial model.
doi:10.1371/journal.pcbi.1002722.g001

Dynamic Models of Gene Expression in Stroke
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Dynamic simulation of expression levels using an inferred
model

We were interested in determining if the initial steady-state

model generated by the Inferelator could be used as the basis for

dynamic simulation to describe how the expression levels of all

clusters in the model change over time. Accordingly we

transformed the model into a matrix of coefficients in which the

rows refer to regulatory influences and the columns refer to their

targets. This matrix is the basis for a linear system of ODEs that

can be solved in closed form for specific parameter choices, and

more generally using standard ODE solvers. The resulting

dynamic model was used to simulate the expression levels of the

target clusters in the system given only one known input variable,

which was the initialization state from the first time point in each

preconditioning treatment. The simulated expression profile was

then compared to the observed expression profile for that

preconditioning treatment for each cluster at multiple times using

correlation as a basis of comparison as above. We used a

correlation measure for optimization, as opposed to a more

standard measure such as the root mean square deviation

(RMSD), because we are more interested in capturing the pattern

of expression rather than the magnitude of the fold-change in

expression. We found that this dynamic model using only the

Inferelator-derived structure and parameters yielded a correlation

with the observed data of only 0.36 for LPS and similarly poorly

for the other time courses (Table 1). The results are not surprising

given that the inference approach employed by Inferelator 1.1

considers clusters independent from one another, and not as a

system of coupled ODEs.

Figure 2. Functional coherence of clusters defines functional modules. To ascertain a reasonable number of clusters to consider in our
model abstraction we calculated the normalized functional modularity (Y axis) for varying numbers of clusters (X axis) from the same hiearachical tree
derived from the expression data. Functional modularity was defined as the number of genes annotated with a biological process gene ontology
category that was functionally enriched in the gene’s parent cluster with a p-value less than the threshold indicated (colored lines). The results show
that 25 clusters provides a peak of functional modularity, especially for more coherent functional categories with lower p-values.
doi:10.1371/journal.pcbi.1002722.g002

Dynamic Models of Gene Expression in Stroke
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Though the performance of the dynamic model using param-

eters derived by Inferelator 1.1 was moderate, we were interested

in determining if the model contained useful information, in the

form of its coefficients and/or structure that could be used as a

basis for further dynamic model development. Two aspects of the

model are critical in determining how accurately it simulated

temporal profiles: its structure in terms of the pattern of regulatory

influences between clusters, and the coefficients of each of these

regulatory influences that form the system of ODEs. We

investigated the information content of the coefficients of the

model as well as the structure of the model by performing several

different randomizations of the existing model. We first preserved

the structure of the model but perturbed the coefficients for each

edge (nonzero values) by randomly resampling all nonzero values

from the initial matrix. We calculated the mean (0.087) and

standard deviation (0.167) of the correlation measures for 100 such

resampled matrices and found that the performance of the initial

matrix (0.36) was significantly different from the performance of

the model using the randomized matrices (p-value,0.05),

indicating that the model contains significant predictive value.

To examine this result further we resampled coefficients in the

model from a uniform distribution for nonzero values, which

produced similar results. We next investigated the structure of the

network by randomly permuting all values in the matrix. This

process creates a new structure of regulatory influences between

the clusters, but preserves the overall number of such influences

between clusters as well as the distribution of coefficients. The

mean (0.029) and standard deviation (0.149) of the correlation

measures using 100 such scrambled matrices indicate that the

model using the initial matrix had significantly different perfor-

mance than models using scrambled matrices (p-value,0.02),

suggesting that the initial model derived using the ODEs from

Inferelator contains significant value in the form of its structure as

well. These results are summarized in Figure 3.

Optimization of model for dynamic simulation
To improve the performance of the dynamic model we

employed simulated annealing to optimize the initial matrix

against observed patterns of expression from the data. Similar

regulatory network model parameter estimation was accomplished

using a Metropolis-Hasting Monte Carlo approach in a Bayesian

formulation [13]. Simulated annealing randomly perturbs model

parameters (the regulator/cluster coefficients in this case), and

then compares the performance of the perturbed model with the

original using a fitness function. Perturbations that improve

performance are retained in the model and deleterious perturba-

tions can be retained to help ensure greater exploration of

parameter space. Retention of some short-term deleterious

perturbations is based on a probability that is decreased over the

simulation, resulting in gradually more conservative changes to the

model as annealing proceeds. Our fitness function evaluates the

performance of each test matrix by the correlation of its simulated

expression values with the observed expression values. We used

each of the different pretreatment time courses for the optimiza-

tion, initializing the model with expression levels at the 3 hour

time point, as described above. Optimization was carried out in

two rounds, using the best model from the first round as the

starting point for the second round, as described in Methods.

Addition and removal of regulatory influences was allowed to

explore alternate structures for the model. As in [13] we also

optimized a parameter for each cluster that represents a cluster

expression degradation rate, to account for factors like normal

mRNA degradation and turnover. The second round begins with

a lower probability of accepting deleterious perturbations to allow

some exploration of parameter space without large deviation from

the initial matrix. An optimized model should provide much better

performance than the initial model, and may refine the structure

of the initial model to accomplish this. We found that when the

probabilities for addition and removal were both set to a value of

0.01 the resulting models were much more complicated (i.e. they

had more components connected). Comparing the performance of

the model resulting from optimization using these probabilities

with one generated when the edge addition probability was set to

0.001 revealed that more conservative edge addition resulted in a

more parsimonious model with higher performance. Hence, we

used this value in the current study.

We optimized the initial matrix against each of the time courses

from individual pretreatments separately, and show the results

from the LPS-optimized matrix here (all results are presented in

Table S1). The results of the optimization process for the LPS time

course are shown in Figure 4. This plot shows the evolving

performance of each optimization run, for both rounds of the

process. The best dynamic model resulting from this process has a

performance (correlation with observed expression profile) of 0.71

which is comparable to performance given by the steady-state

Inferelator-based model, when evaluated against the LPS treat-

ment time course that was used in the optimization procedure. It is

important to stress that the steady-state Inferelator model requires

the expression levels of input regulatory influences to make

predictions of the expression levels of the target clusters and, in this

case, the regulatory influences are other clusters, which is very

different from the dynamic model as it requires only an initial

state. This demonstrates that it is possible to develop a dynamic

model that can accurately simulate the expression levels of all

clusters over time with very good accuracy from an initial steady-

state model inferred from transcriptional data.

We examined both the significance of the performance obtained

in the optimized model and the sensitivity of the optimization

result to the initial matrix for model optimization to each

pretreatment. For the former we randomized the optimized model

as described above for the initial model. Results indicate how

significant the performance of the optimized model is relative to

models with randomized coefficients and randomized structures.

We first examined the performance of the best model relative to

scrambled and randomized versions of the same matrix (as above),

resampling coefficients but preserving model structure (resampled

and uniform random in Figure 5) and restructuring the model

(scrambled). These results for the LPS pretreatment are shown in

Figure 5 and show that the optimized model has a significant

predictive value over all the randomized models (p-value,1e-7).

Table 1. Optimization results.

Pretreatment Inferelatora Dynamicb Optimizedc BestCrossd

LPS 0.78 0.36 0.71 0.48

CpG 0.80 0.26 0.80 0.56

Preconditioning 0.82 20.32 0.67 0.24

Saline 0.92 0.66 0.79 0.51

Sham 0.81 20.34 0.71 0.10

aPerformance of the Inferelator-based model in steady-state prediction.
bPerformance of the Inferelator-based model in dynamic prediction.
cPerformance of the best optimized model for that pretreatment.
dPerformance of the best model optimized to another pretreatment.
doi:10.1371/journal.pcbi.1002722.t001

Dynamic Models of Gene Expression in Stroke
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The expression patterns predicted by the LPS-optimized model

are shown in Figure 6. For each cluster with more than five genes

we show the observed (black line), predicted (green line), and

random (red line) expression patterns for the LPS time course. For

the random prediction we show the average prediction from 25

randomly restructured models (coefficients randomized in the

model). These results show that the model can do quite well at

recreating many of the patterns of expression of the time course on

which it was optimized.

Our approach generates an ensemble of 25 models. We wanted

to compare these models and determine if a combined model

might give better performance than individual models. Accord-

ingly, we assessed the variability in the model structures in the

ensembles by counting the numbers of times each edge is

represented in the ensemble. We found that there is a large

degree of concordance between the models in terms of their

structure, but that some edges seem to be present in all models

whereas other edges are represented in only a subset of models.

The distribution of edge counts is shown in Figure S1 and the

consistency of the edges in the model is shown in Figure S2. The

absence of edges with low counts (1–15) in part reflects the

structural decision we made to limit the probability of adding

edges in the optimization process. Additionally we found that the

range of weights for each edge in the ensemble was quite large

(Table S2). This is likely due to the fact that the models are

optimized using a fitness measure based on correlation, and this

means that the magnitudes of predicted expression values (and

thus model edge weights) can vary

Figure 3. An Inferelator-based influence model provides statistically significant performance when treated as a system of ordinary
differential equations (ODEs). The Inferelator-based influence model was treated as a system of ODEs and simulated over time. Expression levels
of the simulation were compared with observed values of expression by correlation (Y axis) for the initial model (red dot) or for 100 randomized
matrices. The matrices were randomized by replacing all non-zero values with other non-zero values (resampled) or from a uniform distribution
(uniform), or the locations of all values in the matrix were reassigned (scramble). The results (as a box and whiskers plot) show that the Inferelator-
based initial matrix produces simulation over time with a performance that is significantly better than that using random permutations of the matrix.
doi:10.1371/journal.pcbi.1002722.g003

Dynamic Models of Gene Expression in Stroke
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To examine the performance of combined models we took edge

weights of the combined model as either the mean or median of

weights from the ensemble. Either of these approaches resulted in

models with performance that was representative of the perfor-

mances in the ensemble for the time course used in the

optimization, but not better than the best model in the ensemble.

We examined performance of these models both on the time

course used for optimization as well as the other time courses

(cross-validation) with similar results (see Table S1).

To test for sensitivity to the initial matrix, we optimized using

randomly selected initial models. This was to determine how

important the initial model provided by the Inferelator is to the

final optimized performance. We repeated the optimization

process starting with 25 matrices with the same structure as the

original matrix, but with the weights randomized. After the two

rounds of optimization we found that the mean performance of the

model using the 25 final matrices was slightly lower than those

produced by optimization using the original initial matrix (mean

0.60 versus 0.66, respectively, p-value 2e-7 by t-test) indicating that

the initial weights are important to the final outcome of the

optimization. This shows that the optimization works well even

when starting with a randomized model, but performs significantly

better when the initial model is provided by the Inferelator.

We next examined the question of whether the structure of the

initial model was important to the outcome of the optimization

process. We randomized the structures 25 times by randomly

permuting the initial weights in the matrix and proceeded with the

optimization process. After the second round of optimization we

found that the performance of the 25 final matrices was

significantly worse than those produced by optimization of the

original matrix (0.62 versus 0.66, p-value 5e-3) indicating that the

initial structure provided by the Inferelator is very important to the

outcome of the process. Though the optimization process itself

allows restructuring of the model, it is unlikely that large-scale

restructuring will take place since individual changes (addition or

removal of an edge) are evaluated individually. Thus modifications

Figure 4. Performance trajectories of models during simulated annealing process. The two-stage simulated annealing (SA) process
described was applied using the Inferelator-based model as a starting matrix. The performance (Y axis) of each of the 25 models in each stage are
shown over the steps (X axis) in the SA process. The results show that the optimization process can dramatically improve the performance of the
initial model.
doi:10.1371/journal.pcbi.1002722.g004

Dynamic Models of Gene Expression in Stroke
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to the initial structure of the model are expected to be conservative

(see Conclusions).

Evaluation of optimized model
Thus far, to evaluate the optimized dynamic model, we applied it to

the same data that had been used for the optimization process to

determine whether it was successfully predictive. However, this can

result in overstatement of results due to overfitting data. To more

rigorously evaluate the performance of the dynamic model we

determined the performance of the best model optimized against the

LPS preconditioning time course on the dataset for each of the other

conditions. The results of this analysis indicate that the model can

provide reasonable predictions of behavior in the LPS (correlation

0.74), CpG-ODN (0.41, p-value 0.01) and saline (0.39, p-value 0.004)

time courses but that it fails to accurately predict behavior under the

brief ischemia preconditioning treatment (correlation 0.01) and sham

treatment. To assess the similarity between responses in each treatment

we calculated the correlation between gene expression ratios from all

differentially expressed genes at each comparable time point from

different treatments, and report the results as the mean correlation

between treatments (Table 2). This shows that the time courses are

somewhat correlated with each other, but retain enough differences to

provide a good evaluation of the models’ abilities to generalize. The

performance of each cluster for each time course examined is shown in

Table 3.

The simulated and observed expression values from the LPS-

optimized model are shown in Figure 7 over the different

preconditioning treatment time courses for several representative

clusters. Predictions for the remaining clusters are presented as

Figure S3. While several predicted patterns for other time courses

are consistent with the data, many other predicted patterns are

not. Nevertheless, this result shows that for some clusters the

Figure 5. The optimized model performs significantly better than randomly perturbed models. The best optimized model was simulated
over time to provide predictions of expression levels for clusters. Correlation (Y axis) of the simulated versus observed data is shown for the best
optimized model (red dot) and for 100 randomized matrices (boxes). The matrices were randomized by replacing all non-zero values with other non-
zero values (resampled) or from a uniform random distribution (uniform), or the locations of all values in the matrix were reassigned (scramble). The
results (as a box and whiskers plot) show that the optimized model is capable of simulation over time with a performance that is significantly better
than randomized versions.
doi:10.1371/journal.pcbi.1002722.g005
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optimized model can approximately capture patterns of gene

expression under multiple preconditioning treatments, even when

those patterns are quite different. The correlation values for these

plots are shown in Table 3. It is clear that simulations for some of

the clusters do not change from treatment to treatment (clusters 8

and 10 in Figure 6) but others display markedly different patterns

of expression under the different pretreatment conditions (clusters

5 and 17 in Figure 6).

Validation of inferred model edges using orthogonal
interaction data

Although our inferred and optimized model seems to be

consistent with existing data, at least within the limitations of the

results presented above, we were concerned that this could be due

to overfitting of the data and/or to our model being one of many

possible consistent models that is not necessarily biologically

relevant. Our derived model does not make specific predictions of

gene-to-gene interactions or influences, but rather relates the

general expression patterns of clusters of genes. Therefore to

examine the consistency of this model with data from external

sources we used the following strategy. We used interaction data

from four independent data sources; regulatory binding site

interaction from chromatin immunoprecipitation (ChIP) experi-

ments [27], physical protein-protein interactions [28], known gene

regulatory network neighborhoods [29], and high-confidence

inferred functional relationships from integrated data [30]. For

each cluster in our model we determined the number of known

interactions between a gene/gene product in the cluster and genes

in each of the other clusters. To determine a p-value for the

interactions we counted interactions gathered by randomizing the

known edges for each external interaction dataset 1000 times.

Those cluster-to-cluster relationships with a p-value of less than

Figure 6. Expression patterns for an LPS-optimized model. The LPS-pretreatment observed (black lines) and predicted (green lines)
expression patterns for clusters containing more than five genes are shown. The expression patterns from a randomized consensus model (red lines)
are also shown. The X axes indicate the log2 fold-change expression for the observed pattern and the predicted and random expression patterns
were scaled to this range. The Y axis shows time from 0 to 100 hours post-pretreatment.
doi:10.1371/journal.pcbi.1002722.g006

Table 2. Correlation of gene expression between
pretreatment time courses.

LPS CpG Pre Saline Sham

LPS — 0.617 20.039 0.394 0.700

CpG 0.617 — 0.113 0.592 0.754

Preconditioning 20.039 0.113 — 0.063 0.049

Saline 0.394 0.592 0.063 — 0.689

Sham 0.700 0.754 0.049 0.689 —

Mean 0.418 0.519 0.047 0.434 0.548

doi:10.1371/journal.pcbi.1002722.t002
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0.05 were considered to be true positive (TP) matches if there was

a corresponding edge in our inferred model for each interaction

dataset, and true negatives (TN) if the p-value was greater than

0.05 and there was no inferred edge. The accuracy for each

dataset was calculated as TP+TN/(TP+TN+FP+FN) and these

results are presented in Table 4. We present the complete results

from this analysis for each cluster-to-cluster relationship as Table

S2.

These results show that each independent dataset has a modest

correspondence with our inferred model ranging from 61–67%.

Each of these different sources of interaction data is limited, either

by the coverage it provides or by the amount of accuracy it might

have. Therefore we evaluated the maximum accuracy obtainable

by combining results from each interaction dataset by simply

counting a match as a true positive or true negative if it was

validated by any interaction dataset. While this method would not

be appropriate to evaluate the prediction accuracy since it would

be impossible to choose a priori which interaction dataset result to

choose, it does provide a reasonable way to validate our model

based on its overlap with existing interaction data. The combined

accuracy of 82% shows that while the model is not perfectly

aligned with these existing datasets, it seems to be fairly consistent

with existing biological knowledge.

We also found that the number of protein-protein interactions

linking genes inside a cluster were highly significant, with most

clusters having a p-value of 0 (out of the 1000 random counts; see

Table S2). This is in contrast to the ChIP-based regulatory

interactions, which mostly did not have interactions within

clusters. These observations support our initial validation of

functional modules (Figure 2) and indicate that the clusters in our

model are coherent functional modules that are regulated

coordinately and exert regulatory influences on other functional

modules.

Comparison of injurious and non-injurious predicted
models

A key question in neuroprotection and stroke concerns the

regulatory differences between injurious conditions (no pretreat-

ment) and non-injurious (neuroprotective pretreatment). By

grouping together like conditions we can gain insight into these

differences. We did this by assessing the concordance of models

generated for each set of injurious conditions (saline and sham

treatment) and models generated for each set of non-injurious

conditions (LPS, CpG or brief ischemic pretreatment). An edge

was considered to be present in the final injurious or non-injurious

model if it was present in 50% or greater of the models from each

of the member conditions from either group (that is, one or two

models in the injurious set and two or three in the non-injurious

set). The weight of the final edge was taken as the mean of weights

Table 3. Performance of LPS-optimized model on individual clusters.

Simulation Performance

Cluster Functional label Gene Count LPS CpG IP* Sham Saline

cluster_1 apoptosis 587 0.57 0.49 20.49 0.50 20.43

cluster_2 hemopoiesis 275 0.93 0.71 0.09 20.49 20.47

cluster_3 cell migration/blood coagulation 1324 0.80 20.76 20.38 20.42 0.63

cluster_4 cell division/defense response 934 0.61 0.22 20.41 0.79 20.80

cluster_5 metabolic process 824 0.79 0.15 0.85 20.57 0.39

cluster_6 cell differentiation 280 0.77 20.33 0.70 20.17 20.61

cluster_7 inflammatory response 58 0.75 0.81 0.87 20.59 0.34

cluster_8 cell differentiation 84 0.82 0.64 20.47 0.90 20.39

cluster_9 NK cell/leukocyte mediated immunity 140 0.08 20.16 0.19 0.82 0.08

cluster_10 blood coagulation 410 0.88 0.91 0.32 0.80 20.55

cluster_11 inflammatory response 637 0.79 0.75 0.54 20.09 0.43

cluster_12 mitosis 510 0.88 0.74 0.08 0.70 20.54

cluster_13 innate immune response 474 0.10 0.27 20.54 0.47 20.35

cluster_14 inflammatory response 129 0.97 0.86 0.73 20.56 0.50

cluster_15 apoptosis 288 0.97 0.99 0.64 0.50 20.32

cluster_16 cell differentiation 84 0.04 0.09 0.43 20.48 0.40

cluster_17 development 226 0.75 20.18 0.96 0.67 0.47

cluster_18 response to stimulus 52 0.57 0.43 0.51 20.45 0.40

cluster_19 immune response 22 0.79 0.81 20.52 0.75 20.45

cluster_20 - 4 0.32 0.61 20.44 0.86 20.08

cluster_21 - 5 0.97 0.65 0.47 20.08 0.53

cluster_22 - 1 0.53 20.25 0.47 20.75 0.30

cluster_23 - 1 0.95 0.38 0.59 20.42 0.53

cluster_24 - 1 1.00 0.74 0.02 0.63 20.19

cluster_25 - 1 0.45 0.68 20.37 0.93 20.24

*IP, ischemic preconditioning.
doi:10.1371/journal.pcbi.1002722.t003
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from the sets, with the primary goal of assessing differences in

differences in the weights between injurious and non-injurious

models, either in terms of presence/absence of an edge or a

reversal in function from activation to repression or vice-versa. A

comparison of the resulting models is shown in Figure 8. In this

figure solid lines represent model edges that are conserved between

both conditions in terms of presence and sign, dashed lines

represent edges that are present in one but not the other condition

(see Table S3 for details), and cross-hatched lines indicate edges

where the sign is opposite in each condition. This analysis

highlights that the outgoing edges from cluster 5 are all different

between injurious and non-injurious conditions. This suggests that

genes or subsets of genes in cluster 5 may play an important role in

induction of neuroprotection during stroke. These results are

discussed further below.

Discussion

In this paper we demonstrate how a steady-state model derived

from high-throughput data that describes inferred relationships

between regulatory influences and their targets can be used to

produce dynamic simulation models capable of making accurate

predictions over extended periods of time. We explored the ability

of these models to predict expression under conditions not used for

optimization and found the predictive ability, while limited, to be

significant. This work represents an advancement in the applica-

tion of dynamic models that are based on high-throughput

transcriptional data sampled at low temporal resolution. The

model depends on considering groups of coexpressed and

functionally related genes as both the targets of regulatory

influences and as the originators of these influences. This has the

advantage of creating a simple closed model for which the

transcriptional levels of all regulatory influences are predicted and

allows the model to function as a system of ODEs that can be

solved using standard tools. The steady-state model produced by

the original Inferelator requires input of observed expression levels

of the regulatory influences to make predictions, limiting its utility

for making novel predictions. That is, at a given time or in a given

condition, the regulators must be measured in order for the gene

expression values of the functional modules to be predicted by the

steady-state model. Although our approach requires using the

observed data for initial model inference, the resulting dynamic

model is capable of simulating other treatment time courses given

only the initial state of the system, or extrapolating to further time

points not measured. Additionally, the dynamic model couples

ODEs used in the initial steady-state model, allowing explicit

temporal evolution of the system. Calibrating the dynamic model

to observed expression levels produces results that are shown to be

significant, indicating that it can provide a good starting place for

further optimization to produce a better model.

Using our optimized dynamic model, we found that the

relationships between regulatory influences and their putative

target clusters can be used to simulate the system over time with

Figure 7. Cross-predictive performance of an LPS-optimized model. Relative expression levels (log2 fold change expression) are plotted over
time (X axis) for the predicted (green line) and observed (black line) expression levels for the indicated cluster. Several representative clusters are
shown and the remaining plots are included as Figure S3.
doi:10.1371/journal.pcbi.1002722.g007

Table 4. Interaction datasets validate network model.

Dataset Accuracy

CHIP 60.9%

PPI 66.8%

Regulatory 64.3%

Functional 64.3%

Any 82.0%

doi:10.1371/journal.pcbi.1002722.t004
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statistically significant performance. Our modeling approach

represents a way to derive dynamic models from steady-state

static models that represent an abstraction of the system from

high-throughput transcriptional data. Previous efforts similar to

this have focused on very detailed models (for example [31]) or

very high-level abstract models (for example [32]) that incorporate

a large amount of preexisting knowledge to establish relationships

between components, generally not incorporating high-through-

put data. A notable exception is work by Madar, et al. describing

an enhancement of the original Inferelator algorithm that is

capable of dynamic simulations similar to our approach [13].

These approaches provide an alternative to previous methods by

allowing the creation of models capable of simulating the

expression levels of important functional processes over time

derived in a largely automated fashion from high-throughput data.

The resulting models can then serve as prototypes to be further

evaluated and refined by experts.

One caveat of our results is that the optimized model does not

perform as well on data that was not used for the optimization. In

general the predicted patterns of expression for the evaluation time

courses (see, for example, Figures 8 and S3) are not of high enough

quality to draw conclusions about the state of the system under

different conditions given only the simulated data. Because of this

uncertainty, the ability to estimate confidence for predicted

Figure 8. Comparison between neuroprotected and injurious networks. Clusters containing more than 5 genes are shown (green squares)
as determined by our functional clustering approach. The influences between clusters are shown as directed edges with red arrows indicating a
positive influence (activation) and blue T lines indicating a negative influence (repression). Dashed lines indicate relationships that are significantly
different between injurious and non-injurious conditions, either absent in one or opposite sign. General functional categories chosen from
statistically enriched functions are indicated in grey boxes.
doi:10.1371/journal.pcbi.1002722.g008
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behavior in the absence of observed data (such as was available

here) is limited at best. However, the performance of the resulting

optimized model on the data sets obtained from the other

conditions indicates that it can make predictions with a statistically

significant performance overall and performs very well for specific

clusters. Universally the models optimized on each treatment had

the least cross-predictive capability on the brief ischemia

preconditioning time course. Examination of the gene regulation

within this dataset reveals that, as a whole, the dynamic expression

is dramatically different than the other three conditions (LPS,

CpG-ODN, saline; see Table 2). Thus, since preconditioning with

brief ischemia uniquely affects many of the dynamic changes in

gene expression, we would expect that the model would not

perform as well on this dataset. This result suggests that our model

construction process may be most applicable for conditions that

are similar in functional nature to those used for the optimization,

such as the Toll-like receptor ligands LPS and CpG-ODN. We are

currently working on ways to optimize the model to the entire set

of preconditioning treatment time courses, while at the same time

preserving the generalizability of the final model. Our current

work provides a model with potential for applications that could

directly impact development of new and/or improved treatments

that result in preconditioning against stroke.

We chose to use correlation to compare the predicted

expression patterns with observed patterns. Previously, the root

mean square deviation (RMSD) measure or other similar error

measures have been used to evaluate performance for similar

problems. Unlike measures of error, correlation does not account

for similarity in the magnitude of the two vectors being compared.

Rather, it simply compares the relative patterns of expression. For

this study we were more interested in getting the overall pattern of

expression correct rather than matching absolute magnitude,

which corresponds to fold-change in expression relative to baseline

in this case. Models optimized using RMSD as a fitness criteria

reached a mean normalized RMSD (error as percentage of the

expression range) of approximately 30%, which is not exceptional.

Evaluating these RMSD-optimized models using correlation

revealed that they had essentially the same performance as the

un-optimized model and many clusters showed trivial behavior,

monotonically increasing or decreasing (data not shown). For some

practical applications of these models a correlation-based ap-

proach would be insufficient. For example, when predicting

expression levels that are associated with a phenotype that

manifests as differences in magnitude between outputs under

different conditions, an error measure would need to be used,

potentially combined with correlation to ensure that patterns of

expression are accurate.

An important limitation of the current model is that the

experiments all include a significant disruption of the system in the

middle of the time course in the form of the ischemic stroke

induced at hour 72. Our dynamic model does not explicitly

incorporate this event, which dramatically alters the regulation of

gene expression. The effect of the stroke on gene expression is

captured in this experiment, but is only poorly understood.

Therefore, using the current dataset including stroke as an input to

the model is not possible. An implicit assumption in our modeling

approach is that the relationships between regulators and targets

are fixed. The Inferelator approach and our dynamic ODE

optimization process both aim to define these relationships based

on existing data. The optimization process therefore learns the

stroke stimulus from the data. We can predict the effects of

changing early expression of particular clusters on the eventual

output (ischemic injury) given our current model, but further

experiments would be needed to validate these predictions. An

important next step for model construction will be to consider the

disruption in the model explicitly.

The time course experiments used in this analysis all had five

time points. This is a limited number of points to parameterize the

relationships between 25 clusters. Combining networks to create

injurious and protected networks alleviates this limitation to a

certain extent in terms of confident regulatory relationships, but

the resulting models should be considered to be underdetermined.

Including more data points in these models will be necessary to

strengthen these models. Finally, a significant limitation of our

models is that the clusters used as functional modules are still quite

large and are likely to perform multiple functions. This fact

prevents inference of mechanistic relationships between regulators

and functional processes and pathways that would be desirable for

this kind of approach. However, our validation results indicate that

the functional modules defined are fairly coherent and supported

by external data sources. We believe that the inclusion of more

data points, which would allow parameterization of larger models,

will allow the use of smaller, more focused clusters in the model.

Additionally, development of methods to better delineate func-

tionally coherent modules [23,26] will allow the models to be more

biologically interpretable. Further analysis will be required to

determine if successful prediction for these clusters is biologically

relevant.

The specific successes and failures of the dynamic model may

provide important information on the role of certain gene clusters

in neuroprotection and stroke. For example, the model shows

strong predictive value for gene expression in clusters 14 and 15

for LPS, CpG-ODN, and brief ischemic preconditioning but has

low predictive values for saline and sham (Table 2; Figure S3).

Preconditioning with LPS, CpG-ODN, or brief ischemia all

provide protection against the cerebral ischemic event in this

model while the saline treatment leads to significantly worse

damage. Evidence strongly indicates that these preconditioning

paradigms alter the gene regulation that occurs prior to and

following stroke to promote neuroprotection [2,3,18]. Thus, the

clusters that are most predictive for all three preconditioning

paradigms may reveal gene regulation that is important for

neuroprotection. Clusters 14 and 15 functionally represent genes

related to inflammation and apoptosis. Cluster 14 contains the

gene tumor necrosis factor alpha (TNFa), which is a gene that is

critical to preconditioning-induced protection. This is demonstrat-

ed by the loss of the neuroprotective effects of LPS and CpG-ODN

preconditioning in mice deficient in TNFa [18,33,34]. Addition-

ally, cluster 15 contains many interferon (IFN)-stimulated genes. A

recent study that utilized the genomic brain data that correspond-

ed to the genomic blood dataset utilized in this study showed that

LPS, CpG-ODN, and brief ischemic preconditioning commonly

reprogrammed the response to ischemia towards IFN regulated

gene expression [1]. This suggests a role for IFN signaling in

neuroprotection since the IFN-associated genes were only present

in the preconditioning-induced neuroprotective environment.

Consistently, the importance of IFN signaling is highlighted by

the loss of preconditioning-induced protection against cerebral

ischemia in IFN-regulatory factor 3 and 7 deficient mice [1,35].

Finally, the dynamic model showed strong predictive ability in

cluster 2 for LPS and CpG-ODN, but not for the other conditions.

Cluster 2 is functionally representative of general metabolic

processes. Research investigating the genomic response following

stroke in mice preconditioned with brief ischemia shows that brief

ischemia dramatically alters the expression of genes that are

important to metabolism [2]. This shift in metabolic gene

regulation may explain why the dynamic model did not accurately

predict the outcome for brief ischemic preconditioning in cluster 2.
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Taken together, the results of the dynamic model appear to reflect

some of the biological commonalities and discrepancies between

the datasets. While the goal is to create a dynamic model that is

predictive of multiple conditions in stroke, the results of this

dynamic model already demonstrate its usefulness in understand-

ing and discriminating which functional genes clusters are

potentially important to each preconditioning paradigm, neuro-

protection, and stroke.

Comparison of models derived from the neuroprotective and

injurious states revealed that a number of predicted edges seemed

to be different, either in presence and absence of an edge or in the

sign of the weight of the edge (Figure 8). Examination of these

differences shows that all the outgoing edges from cluster 5 are

different in the neuroprotective versus injurious models. This

suggests that cluster 5 may play a particularly pivotal role in

neuroprotection, either in establishment of neuroprotection or

post-stroke response to injury, or both. There are several members

of this cluster that play known roles in endotoxin tolerance, a

process thought to be closely related to neuroprotection against

stroke [1]. Three negative regulators of signaling, Dusp1 (Mkp-1),

Irak3 (IrakM), and Socs1 are members of the cluster, and knock-

out mice have been shown to be more susceptible to endotoxin

shock. Additionally, NFkbia and NFkbiz, both inhibitors of NFkb
activity, are present in this cluster. We and others have shown that

NFkb activity is associated with protection against stroke [36]. In

the current analysis no definitive links can be drawn between

individual genes and importance in neuroprotection, but these

observations are consistent with the idea that negative regulation

of TLR pathways and NFkb is pivotal in the process of

neuroprotection [37]. Future modeling efforts will include specific

investigation of the role of TLR inhibition in neuroprotection.

We have shown how transcriptomic data can be used to

construct a dynamic model of gene expression at the level of

functional modules in a largely automated way without the use of

any prior knowledge about the system. The model is capable of

accurately predicting the expression levels of component modules

given only an initial starting state for key functional clusters. Our

study also identifies several caveats and limitations that remain to

be addressed, either through addition of more detailed expression

data to our existing process, or by refinement of our methods. To

our knowledge this is the first application of a modeling approach

like this to data from a complex disease process in a vertebrate

organism, specifically a mouse model of ischemia. Our approach

provides a way to formulate prototype dynamic models from high-

throughput data that can provide valuable insight into disease

processes.

Methods

Data sets and processing
Microarray data were obtained from a transcriptional study of a

mouse model of neuroprotection during stroke [1]. The dataset

used for modeling is the accompanying blood samples from the

previously published brain transcriptional analysis [1]. In brief,

groups of C57BL/6 mice (n = 4/treatment/time) received either

preconditioning alone, preconditioning plus injurious ischemia

(45 min MCAO), or injurious ischemia alone. Preconditioning

paradigms included: LPS (0.2 mg/kg; i.p.), CpG (0.8 mg/kg; i.p.),

saline (i.p.), short-term MCAO (12 min), or sham MCAO

(12 min). For groups receiving preconditioning alone, mice were

euthanized at 3, 24 or 72 hr post preconditioning. In groups

receiving preconditioning plus injurious ischemia, MCAO was

performed 72 hr following the preconditioning stimulus and mice

were euthanized at either 3 or 24 hr post occlusion. Six untreated

mice were included as a baseline control group. Microarray assays

were performed in the Affymetrix Microarray Core of the Oregon

Health & Science University Gene Microarray Shared Resource.

Labeled cRNA target was quality-checked based on yield and size

distribution. Quality-tested samples were hybridized to the

MOE430 2.0 array. The array image was processed with

Affymetrix GeneChip Operating Software (GCOS). The original.

CEL files have been deposited in the Gene Expression Omnibus

under the accession number GSE32529. We used the robust

multichip average method (RMA; [38]) normalized probe

intensities to evaluate significantly changing probe sets and filtered

for p-value,0.05 and fold changes greater than 2.0 to give 7352

significant probe sets.

Clustering, functional enrichment and modularity
Hierarchical clustering was used to define functional modules

from the filtered transcriptional data using the hclust command in

the R statistical software (http://www.r-project.org/) and Ward’s

linkage [39]. The resulting hierarchical tree was used to divide the

data into 5 to 50 clusters (in steps of 5). Each set of clusters was

then assessed for functional modularity using the following

approach. Clusters were assessed for functional enrichment using

the GOStats library in R [40]. Each cluster was used as a set of

genes to determine functional enrichment versus all other

differentially expressed genes.

A functional coherence score was calculated by counting the

number of genes appearing in at least one functional category that

was enriched at a given threshold of significance over all clusters in

that set. The pseudocode for the algorithm is as follows:

Use hierarchical clustering to construct a tree of gene

expression profiles

For each clustering division:

For each cluster present at this division:

Calculate functional enrichment in this cluster versus all

other genes

Identify functional labels that are significantly enriched

in the cluster versus all other genes at a specified level

of significance

Count number of genes that are annotated with at least

one significant label (Gc)

Functional coherence for this division is the sum of Gc over

all clusters in that division

This metric provides a measure of functional modularity that is

easy to interpret and can be adjusted by varying the significance

threshold.

Inferelator model inference
The Inferelator [13,14] version 1.1 was used to infer a predicted

causative gene regulation model. In the inference the mean

expression pattern of each cluster was used both as a target for

inference (i.e. to predict expression) and as a potential regulatory

influence. Although the Inferelator allows use of non-linear

combinations of regulatory influences in the inference process,

we did not consider these in our model to allow the treatment of

the resulting model as a linear system of coupled ODEs. The

performance of the model was evaluated by constructing five

independent models, each leaving one time course out for

evaluation as previously described [23]. The performance results

were calculated as the mean of performance results for each

cluster, normalized by the number of genes in that cluster [23].

This initial model requires that the expression levels of the input

regulatory influences, in this case other clusters, are known and
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that these can be combined to provide a predicted expression

pattern for the target cluster.

To derive an initial model for dynamic simulations the

coefficients for each regulatory influence were averaged over each

of the five evaluation models, and those influences that were

inferred in fewer than three models were excluded. Regulatory

influences with coefficients having an absolute value less than 0.1

were also excluded. This eliminates regulatory influences with low

impact on the final model and limits the final number of regulatory

influences in the model.

Dynamic simulations
Our main model for the time evolution of gene cluster

expression can be described as follows. Suppose we have Nc

clusters, and let ci represent the mean expression level of cluster i

for i~1,2, . . . ,Nc. Our model equations are:

dci

dt
~{

ci

ti

z
X
l=i

ailcl , i~1,2,:::,Nc ð1Þ

where ti is a cluster expression decay constant and ail is the sum of

weights for the influence of all regulators in cluster l on cluster i.

Note that the right-hand side can be written as a single sumP
l

ailcl if we define aii to be 21/ti. The system of ODEs may be

written in matrix-vector form as:

dc

dt
~Ac, ð2Þ

where c~ c1,c2, . . . ,cNcð Þ’ and

A~

{t{1
1 a12 a13 � � � a1Nc

a21 {t{1
2 a2Nc

a31 {t{1
3

..

.
P

..

.

aNc1 aNc2 � � � {t{1
Nc

2
66666664

3
77777775
:

The solution is readily calculated at any time given the matrix A

and initial expression levels.

Initial values for the system were taken to be the expression

value of each cluster at t0 = 3 h, the earliest time point, for each

time course. Performance of the simulation was evaluated as the

mean of the correlations of the simulated expression for each

cluster with the observed expression for that cluster at times 3, 24,

72, 75, and 96 h post-treatment, normalized by the number of

genes in that cluster (analogous to the performance metric used for

the Inferelator-based model evaluation). We provide our R code

for these simulations as Dataset S1.

Optimization
To optimize the initial matrix for dynamic simulation over time,

we employed a standard simulated annealing approach that was

separated into two stages. In the first stage 25 independent

simulated annealing runs of 5000 steps each were performed using

the initial matrix A derived using Inferelator 1.1 as a starting point.

The initial probability of accepting a deleterious change was set to

0.80. The cooling factor was 0.002 per step and the size of

perturbations in the matrix elements was determined on a random

relative scale:

yn~yizyi � f ð4Þ

where yn is the new perturbed value in the matrix, yi is the initial

value for that location and f is a pseudorandom uniform deviate

between 20.6 and 0.6. At each step the probability of adding an

influence in a location that had previously been 0 was set to 0.1%,

and the probability of removing a non-zero influence was set to

1%. Aside from these exceptions perturbations were only allowed

for non-zero values in the matrix. This first stage provided a set of

optimized models with high heterogeneity to explore the variable

space around the initial matrix. The matrix producing the best

performance in the first stage was chosen to serve as the initial

matrix for the second stage of optimization.

The second stage of optimization was performed in the same

manner as the first to generate 25 additional models, but was

allowed to proceed for 25000 steps. The initial probability of

accepting deleterious perturbations was set to 10%, with all other

parameters remaining the same as in the first stage. This stage

allowed the simulation to explore the variable space around the

best performing matrix from the first stage in order to refine the

model. The best performing matrix from this stage was chosen as

the final model. A third stage of optimization was found to provide

no improvement to the best models and is not included in the

results (data not shown).

For simulated annealing optimization the fitness function was

the performance of the simulation, defined as the correlation

between the simulated and observed expression levels, for each

pretreatment time course. Initial values for the simulation were

taken as the 3 h time point from the corresponding time course.

The final model was then evaluated for its performance on the

other time courses using the 3 h time point from the other time

courses as initial model values.

To evaluate the significance of the results obtained by

optimization we compared performance of the optimized model

to the model using randomly perturbed matrices, as was done with

the initial matrix prior to optimization. To study the dependence

of the optimized model on the initial matrix, the matrix was

perturbed randomly and the simulated annealing process

described above was repeated on the perturbed matrices. To

assess the dependence of performance on the initial Inferelator-

derived values for the matrix, non-zero values in the matrix were

randomly permuted (referred to here as resampled) such that the

structure of the model was preserved. This was repeated 100 times

and a p-value calculated based on the distribution of performance

values from the resampled matrices. A second test in which

random numbers drawn from a uniform distribution between 22

and 2 were assigned to non-zero values in the matrix (uniform) was

also used to assess the impact of the initial values. Finally, the

dependence of performance on the structure of the model was

assessed by randomly permuting all values in the matrix

(scramble). These approaches were also used to evaluate the

significance of the performance of the final optimized matrix.

Validation of model using external datasets
To validate the cluster-to-cluster relationships in our model we

used edges from four different sources. Regulatory interactions

(regulator to target relationships) derived from CHIP experiments

were obtained from the ChEA database [27] giving 2506 edges

between 1587 genes included in our model. Protein-protein

interactions were obtained from the Human Proteome Research

Database (HPRD) [28], and identifiers were mapped to mouse

using gene symbols giving 2974 edges between 1393 genes

included in our model. Though some interactions identified in

Dynamic Models of Gene Expression in Stroke

PLOS Computational Biology | www.ploscompbiol.org 15 October 2012 | Volume 8 | Issue 10 | e1002722



human may not be preserved in mouse, overall they are likely to

be consistent across organisms [41]. Known gene regulatory

interactions were obtained from the Molecular Signatures

Database (MSigDB) [29] giving 1895 edges between 570 genes

in our model. Functional interactions derived from computational

integration of multiple data source were obtained from high-

confidence (score.0.5) interactions made by MouseNet [30]

giving 2307 edges between 1023 genes in our model.

We counted the number of interactions between clusters in our

model then compared that number to counts from analyses with

randomly rewired edges (same genes and number of edges with

randomized gene labels), repeated 1000 times to obtain p-values

for the count. For undirected edges (HPRD and MouseNet)

relationships were counted for both directions. For relationships

present in our model (optimized weight between two clusters is

non-zero) we counted a true positive (TP) if the p-value was less

than 0.05 for the interaction count, otherwise counted a false

negative (FN). Likewise, for relationships not present in our model

a true negative (TN) was counted if the p-value was more than

0.05, otherwise a false positive was counted. Accuracy was

calculated as TP+TN/(TP+TN+FP+FN).

Supporting Information

Dataset S1 Prototype code for dynamic simulations
performed in the paper.
(TGZ)

Figure S1 Distribution of edge counts in LPS optimized
model ensemble. The number of times an edge appears in the

25 models from the LPS-optimized ensemble is shown as a

histogram.

(PDF)

Figure S2 Edge consistency in model ensemble. Clusters

containing more than 5 genes are shown (green squares) as

determined by our functional clustering approach. The influences

between clusters are shown as directed edges with arrows

indicating a positive influence (activation) and T lines indicating

a negative influence (repression). Line coloring indicates the

number of models in the LPS-optimized ensemble that the edge

appears in, grey edges are not present in the LPS-optimized model

but were present in the original model.

(PDF)

Figure S3 Cross-prediction plots for the LPS-optimized
model. Relative expression levels (log2 fold change expression)

are plotted over time (X axis) for the predicted (green line) and

observed (black line) expression levels for the indicated cluster.

(PDF)

Table S1 Optimization results for model ensembles
from all pretreatments (data file).

(XLSX)

Table S2 External validation of network model using
different interaction sets.

(XLSX)

Table S3 Edge consistency between models and injuri-
ous versus non-injurious combined models (data file).

(XLSX)
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