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A prerequisite to understand neuronal function and characteristic is to classify neuron correctly. The existing classification
techniques are usually based on structural characteristic and employ principal component analysis to reduce feature dimension.
In this work, we dedicate to classify neurons based on neuronal morphology. A new feature selection method named binary
matrix shuffling filter was used in neuronal morphology classification. This method, coupled with support vector machine
for implementation, usually selects a small amount of features for easy interpretation. The reserved features are used to build
classificationmodels with support vector classification and another two commonly used classifiers. Compared with referred feature
selection methods, the binary matrix shuffling filter showed optimal performance and exhibited broad generalization ability in five
random replications of neuron datasets. Besides, the binary matrix shuffling filter was able to distinguish each neuron type from
other types correctly; for each neuron type, private features were also obtained.

1. Introduction

To accelerate the understanding of neuronal characteristics
in the brain, the prerequisite is to classify neurons correctly.
It is therefore necessary to develop a uniform methodology
for their classification. The existing classification techniques
are usually based on structural functions and the numbers
of dendrites to fit the models [1]. As neuronal morphology
is closely related to neuronal characteristics and functions,
neuroscientists have been making great efforts to study
neurons from the perspective of neuronalmorphology. Rene-
han et al. [2] employed intracellular recording and labeling
techniques to examine potential relationships between the
physiology and morphology of brainstem gustatory neurons
and demonstrated a positive correlation between the breadth
of responsiveness and the number of dendritic branch points.
In the study by Badea andNathans [3], detailedmorphologies
for all major classes of retinal neurons in adult mouse were

visualized. After analyzing the multidimensional parametric
space, the neurons were clustered into subgroups by using
Ward’s and 𝐾-means algorithms. In the study by Kong et al.
[4], retinal ganglion cells were imaged in three dimensions
and the morphologies of a series of 219 cells were analyzed.
A total of 26 parameters were studied, of which three param-
eters, level of stratification, extent of the dendritic field, and
density of branching, were used to get an effective clustering,
and the neurons could often bematched to ganglion cell types
defined by previous studies. In addition, a quantitative anal-
ysis based on topology and seven morphometric parameters
was performed by Ristanović et al. in adult dentate nucleus
[5], and neurons were classified into four types in this region.
A number of neuronal morphologic indices such as soma
surface, number of stems, length, and diameterwere designed
[6], which makes it possible to classify neurons based on
morphological characteristics.
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In the study by Li et al. [7], a total of 60 neurons were
selected randomly and five of the twenty morphologic char-
acteristics were extracted by principal component analysis
(PCA), after which neurons were clustered into four types.
Jiang et al. [8] extracted four principal components of neu-
ronal morphology by PCA and employed back propagation
neural network (BPNN) to distinguish the same kinds of
neuron in different species. However, the above studies [2–
5] only focused on a particular neuronal type or specific
region of the brain, aiming to solve specific issues rather
than classify neurons systematically. In this form, only a
few samples were selected and the classification results were
not independently tested, which is not persuasive enough.
Moreover, the methodologies used in previous studies [7, 8]
were mainly based on PCA and cluster analysis. PCA is the
optimal linear transformation to minimize the mean square
reconstruction error, but it only considers second order
statistics, and if the data have nonlinear dependencies, higher
order statistics should be taken into account [9]. Besides, the
principal component was a compression of attributes, and it
was hard to interpret the respective contribution. Therefore,
feature selection (FS) is necessary, which is able to simplify
the model by removing redundant and irrelevant features.

Available feature selection methods fall into three cat-
egories, (i) filter methods, in which inherent features of
datasets are used to rank variables, and the algorithm com-
plexities are low. However, redundant phenomena are usually
present among the selected features, which may result in
low classification accuracy. Univariate filter methods include
𝑡-test [10], correlation coefficient [11], Chi-square statistics
[12], information gain [13], relief [14], signal-to-noise ratio
[15], Wilcoxon rank sum [16], and entropy [17]. Multivariable
filter methods include mRMR [18], correlation-based feature
selection [19], and Markov blanket filter [20]. There are
also (ii) wrapper methods, where the training precision
and algorithm complexity are high, which usually leads
to overfitting. Representative methods include sequential
forward selection [21], sequential backward selection [21],
sequential floating selection [22], genetic algorithm [23], and
ant colony algorithm [24]. SVM and ANN are usually used
for implementation. There are also (iii) embedded methods,
including support vector machine recursive feature elimi-
nation (SVM-RFE) [25], support vector machine with RBF
kernel based on recursive feature elimination (SVM-RBF-
RFE) [26], support vector machine and T statistics recursive
feature elimination (SVM-T-RFE) [27], and random forest
[28], which use internal information of the classification
model to evaluate selected features.

In this work, a new feature selection method named
BMSFwas used. It not only overcame over fitting problem in a
large dimensional search space but also took potential feature
interactions into account during feature selection. Seven
types of neurons, including pyramidal neuron, Purkinje
neuron, sensory neuron, motoneuron, bipolar interneuron,
tripolar interneuron, and multipolar interneuron, that have
different characteristics and functions in the NeuroMor-
pho.org database were selected, being derived from all the
existing species or brain regions (up to version 6.0). BMSF
was used to reduce features nonlinearly, and support vector

classification (SVC)model was built to classify neurons based
on the reservedmorphological characteristics. SVM-RFE and
rough set theory were used to give a comparison with the
introduced feature selection methods, while another two
classifiers including the back propagation neural network
(BPNN) and Näıve Bayes (NB), which are widely used in the
pattern recognition field, were employed to test the robust-
ness of the BMSF. A systematic classification of neurons
would facilitate the understanding of neuronal structure and
function.

2. Materials and Methods

2.1. Data Sources. Data sets used in this work were down-
loaded from the NeuroMorpho.org database [6, 29]. Neuro-
Morpho.org is a web-based inventory dedicated to densely
archiving and organizing all publicly shared digital recon-
structions of neuronal morphology. NeuroMorpho.org was
started andmaintained by the Computational Neuroanatomy
Group at the Krasnow Institute for Advanced Study, George
Mason University. This project is part of a consortium for
the creation of a “neuroscience information framework,”
endorsed by the Society for Neuroscience, funded by the
National Institutes of Health, led by Cornell University
(Dr. Daniel Gardner), and including numerous academic
institutions such as Yale University, Stanford University, and
University of California, San Diego (http://neuromorpho
.org/neuroMorpho/myfaq.jsp). The data sets used in this
study were documented in Table 1. A total of 5862 neurons
were selected, and training and test sets were divided ran-
domly in the percentage of 2 : 1 in each neuron type. Finally,
we obtained five pairs of data sets, eachwith random samples.

2.2. Feature Extraction and Selection. Dendritic cells in the
NeuroMorpho.org database were cut into a series of com-
partments, and each compartment was characterized by an
identification number, a type, and the spatial coordinates of
the cylinder ending point, the radius value, and the identifi-
cation number of the “parent.” Although the digital descrip-
tion constituted a completely accurate mapping of dendritic
morphology, it bore little intuitive information [30]. In this
work, 43 attributes that held more intuitive information were
extracted with L-measure software [31], and related morpho-
logical indices and descriptions are shown in Table 2. For
convenience, we gave an abbreviation for each neuronal mor-
phological index, as listed in the second column of Table 2.

It was considered redundant among attributes. Feature
selection was able to save the cost of computational time
and storage and simplify models when dealing with high
dimensional data sets, and it was also useful to improve
classification accuracy by removing redundant and irrelevant
features.

2.2.1. Binary Matrix Shuffling Filter. For rapid and efficient
selection of high-dimensional features, we have reported a
novel method named binary matrix shuffling filter (BMSF)
based on support vector classification (SVC). The method
was successfully applied to the classification of nine cancer
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Table 1: Summary of training and test sets numbers in each neu-
ronal type.

Neuron type Number of
training sets

Number of
test sets Total

1 Pyramidal 3172 1586 4758
2 Motoneuron 298 149 447
3 Sensory 261 130 391
4 Tripolar 94 48 142
5 Bipolar 48 24 72
6 Multipolar 24 12 36
7 Purkinje 11 5 16
Total 3908 1954 5862

datasets and obtained excellent results [32].The outline of the
algorithm is as follows.

Firstly, denoting the original training set as (𝑦
𝑖
, 𝑥
𝑖,𝑗
),

which includes 𝑛 samples and 𝑚 features, where 𝑖 =
1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, we randomly generate a matrix
with dimensions 𝑘 × 𝑚 with entries being either 1 or 0,
representing whether the feature in that column is included
in the modeling or not. Where 𝑘 is the given number of
combinations (𝑘 = 50 in this paper), the number of 1 or 0
in each column (each feature) is equal.

Secondly, for each combination, there will be a reduced
training set from the original training set according to
the subscripts of those selected features, and classification
accuracy can be obtained through tenfold cross validation.
By repeating this process 𝑘 times, 𝑘 values of accuracy are
obtained.

Thirdly, taking the 𝑘 values of accuracy as the new
dependent variable, the 𝑘 × 𝑚 random 0 or 1 matrix
as the independent variable matrix, a new training set is
constructed. To evaluate the contribution of a single feature
to themodel, we change all the 1 in 𝑗th column to 0 and all the
0 in that column to 1 (keeping the other columns unchanged)
to produce two test sets with all the elements of 0 or 1 in 𝑗th
column.The newly produced training set is used to build the
model to predict the two kinds of test sets, and the predictive
vectors 𝑍

1
and 𝑍

0
are then obtained.

Comparing the mean value of vectors 𝑍
1
and 𝑍

0
, if the

mean value of 𝑍
1
is bigger than that of 𝑍

0
, the feature cor-

responding to this column tends to give better classification
performance. Otherwise, this feature should be excluded.
Repeating this process, the features are screened in multiple
rounds until no more can be deleted.

Detailed procedures can be found in our previous study
[32].Thismethod is able to find a parsimonious set of features
which has high joint prediction power.

2.2.2. Support Vector Machine Recursive Feature Elimination.
SVM-RFE is an application of recursive feature elimination
(RFE) using the weight magnitude as the ranking criterion.
It eliminates redundant features and yields more compact
feature subsets. The features are eliminated according to
a criterion related to their support to the discrimination

function, and the support vector is retrained at each step.This
method was first successfully used in gene feature selection
and afterwards in the fields of bioinformatics, genomics,
transcriptomics, and proteomics. For the technical details of
the method, refer to the original study by Guyon et al. [25].

2.2.3. Rough Set Theory. Rough set theory, introduced by
Pawlak [33] in the early 1980s, is a tool for representing
and reasoning about imprecise and uncertain data. It con-
stitutes a mathematical framework for inducing minimal
decision rules from training examples. Each rule induced
from the decision table identifies a minimal set of features
discriminating one particular example from other classes.
The set of rules induced from all the training examples
constitutes a classificatory model capable of classifying new
objects. The selected feature subset not only retains the
representational power but also has minimal redundancy. A
typical application of the rough set method usually includes
three steps: construction of decision tables, model induction,
and model evaluation [34]. The algorithm used in this work
is derived from the study by Hu et al. [35–37].

2.3. Classification Techniques

2.3.1. Support Vector Classification. Support vector classifi-
cation, based on statistic learning theory, is widely used
in the machine learning field [38]. In SVM, structural risk
minimization is a substitution of traditional empirical risk
minimization, and it is particularly suitable for small sample
size, high-dimensional, nonlinearity, overfitting, dimension
disaster, local minima, and strong collinear problems. Mean-
while, it also performs excellent generalization abilities. In
this work the nonlinear radial basis function (RBF) was
selected, where the ranges of parameters 𝑐 and 𝑔 for opti-
mization were −5 to 15 and 3 to −15 (base-2 logarithm),
respectively. The cross validation and independent test were
carried out using in-home programs written in MATLAB
(version R2012a).

2.3.2. Back Propagation Neural Network. BPNN is one of
the most widely employed techniques among the artificial
neural network (ANN) models. The general structure of the
network consists of an input layer, a variable number of
hidden layers containing any number of nodes, and an output
layer. The back propagation learning algorithm modifies the
feed-forward connections between the input and hidden
units and the hidden and outputs units to adjust appropriate
connection weights to minimize the error [39]. Java-based
software WEKA [40] was used to fit the model.

2.3.3. Naı̈ve Bayes. Näıve Bayes is a classification technique
obtained by applying a relatively simple method to a training
dataset [41]. ANäıve Bayes classifier calculates the probability
that a given instance belongs to a certain class. Considering
its simple structure and ease of implementation, Näıve
Bayes often performs well. Näıve Bayes models were also
implemented in the WEKA software, and all the parameters
were set by default.
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Table 3: Summary of selected features.

Feature selection
method

Feature
subset

Number of
features Selected features

SVM-RFE

I 10 SS, HT, DR, Bpl, NH, Btr, Bal, Su, SA, Lpd
II 13 HT, RP, SS, Ta1, Btr, BO, Dp, Di, Td, Fr, DR, Bar, NH
III 12 HT, FD, SS, DR, Btr, Dp, Di, Fr, BO, Td, Su, Ty
IV 14 HT, RP, SS, Ta2, Btr, Di, Dp, Fr, BO, Td, SA, Vo, Ta1, TS
V 15 HT, Lpd, SS, Bpl, Btr, Bal, NH, Ta1, Su, Di, SA, Vo, Fr, Ta2, Ty

Rough set

I 13 𝑁
𝑠
, Co, NW, SS, NH, Ty, RP, HT, He, FD, ND, Pa, Btr

II 13 𝑁
𝑠
, Co, NW, SS, NH, Ty, RP, HT, He, ND, Pa, FD, Btl

III 11 𝑁
𝑠
, RP, NW, Ty, NH, SS, Pa, He, HT, ND, FD

IV 13 𝑁
𝑠
, Pa, NW, SS, NH, Ty, RP, ND, HT, He, Btl, SA, FD

V 13 𝑁
𝑠
, Pa, NW, SS, Ty, NH, RP, He, HT, ND, Btr, SA, FD

BMSF

I 8 𝑁
𝑠
, RP, NW, PDR, HT, Bar, SS, Ta2

II 6 𝑁
𝑠
, Btol, NW, HT, Bar, Ta2

III 8 𝑁
𝑠
, Pa, NW, HT, Bar, Ta2, Bal, Lpd

IV 7 𝑁
𝑠
, Lpd, NW, Pa, PDR, Ta2, HT

V 8 𝑁
𝑠
, Btr, NW, HT, Bar, Ta2, PDR, SA

3. Results and Discussion

3.1. Selected Feature Subsets. Feature selection methods are
applied to training sets to get optimal feature subsets. For each
method, five sets of features were obtained. Table 3 shows
the reserved feature subsets derived from BMSF, SVM-RFE,
and rough set theory, respectively. Five feature subsets are
numbered with Roman numerals I to V for five replications.
The number of selected features is also listed in Table 3.

As shown in Table 3, approximately eight features on
average were reserved by BMSF, while the number of features
derived from SVM-RFE and rough set theory was more
than ten. BMSF retained fewer features, which were more
informative and easy to interpret. The feature ranking list
showed the importance of a certain feature. In the feature
subsets of BMSF and rough set, 𝑁

𝑠
ranked first in five

replications, which indicated that 𝑁
𝑠
had a strong ability to

discriminate neuron types. We calculated the frequency of
each of the selected features in the five replications. Except
for 𝑁
𝑠
, features NW, HT, and Ta2 were also reserved in five

random replications simultaneously, and their ranking lists
were similar in the five BMSF subsets.

3.2. Classification Performance

3.2.1. Comparison of Independent Test Accuracies Using Differ-
ent Models. In order to evaluate the performance of BMSF
and make a comparison with SVM-RFE and rough set,
three classifiers were employed to perform independent test.
Including the classification performance without features
selection, there were twelve classification accuracies. The
average accuracies on five random datasets are presented in
Table 4.

The independent classification accuracy is the ratio of the
total correctly classified samples to the total test samples. As
shown in Table 4, of the twelve results obtained, the optimal

classification model based on the five datasets is BMSF-SVC
(97.84%), followed by SVC without feature selection (97.1%).
Excellent classification results on the SVC classifier indicated
that all the extracted features were useful in identifying neu-
rons, and few irrelevant features were extracted. Further, after
feature selection by BMSF, the classification accuracy of SVC
increased. This phenomenon suggested that BMSF deleted
redundant features successfully and simplified models with
fewer features. On the other hand, the feature subsets derived
from SVM-RFE and rough set did not contribute to increas-
ing the accuracies on SVC; in fact, they decreased sharply. A
similar finding can be found for Näıve Bayes, as the two fea-
ture selection methods decreased the performance of Näıve
Bayes, while BMSF improved the performance. The classifier
BPNN showed little sensitivity to feature subsets, and the
classification performance was at similar levels. With fewer
features, BMSF also obtained good accuracy on BPNN, and a
simplified model may be useful in further interpretation.

The above independent accuracies indicated that BMSF
has an excellent generalization ability and robustness on the
three classifiers. We also calculated the average performance
of each feature selection method on the three classifiers and
the classification performance based on the three different
feature selectionmethods.The results are listed in the last row
and column of Table 4. The average classification accuracy
based on BMSF was also the best.

As the datasets used in this work are unbalanced (as
shown in Table 1), it is necessary to break down the indepen-
dent test accuracy to obtain the classification performance of
each cell type. Based on the predicted labels, the sensitivities
of each cell type in the five replications are presented in
Table 5.

For seven neuron types, BMSF-SVC exhibited the best
performance on pyramidal neuron, motoneuron, sensory
neuron, and bipolar neuron. Though tripolar and multipolar
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Table 4: Classification results with different classification models.

Feature selection methods Näıve Bayes (%) BPNN (%) SVC (%) Average (%)
All features 61.35 ± 26.82 91.46 ± 1.22 97.10 ± 0.43 83.30
SVM-RFE 30.78 ± 12.94 91.38 ± 0.83 93.29 ± 1.20 71.82
Rough set 51.30 ± 3.59 92.75 ± 0.46 93.05 ± 1.45 79.03
BMSF 70.53 ± 6.36 91.46 ± 1.45 97.84 ± 0.57 86.61
Average (%) 50.87 91.86 94.73

Table 5: Breakdown of independent tests results of different models (%).

Classifier FS method Pyramidal Motoneuron Sensory Tripolar Bipolar Multipolar Purkinje

NB

All 30.96 ± 1.96 18.24 ± 3.12 41.62 ± 5.47 61.26 ± 7.90 94.16 ± 4.74 98.34 ± 3.71 96.00 ± 8.94
SVM-RFE 29.22 ± 16.4 22.31 ± 3.26 29.80 ± 60.5 56.25 ± 9.66 92.50 ± 6.18 88.33 ± 21.73 96.0 ± 8.94
Rough set 52.38 ± 4.48 22.32 ± 3.08 39.20 ± 3.95 97.5 ± 2.7 94.16 ± 6.98 85.0 ± 10.87 96.0 ± 8.94
BMSF 77.26 ± 7.67 25.38 ± 3.73 38.93 ± 4.63 60.83 ± 4.0 90.83 ± 5.43 51.67 ± 21.57 92.0 ± 17.89

BPNN

All 99.10 ± 0.75 82.46 ± 9.78 57.84 ± 19.64 42.94 ± 11.76 0.00 ± 0.00 0.00 ± 0.00 52.00 ± 48.17
SVM-RFE 99.12 ± 0.36 83.22 ± 18.44 45.24 ± 23.59 62.50 ± 9.64 15.84 ± 35.42 0.00 ± 0.00 80.0 ± 34.61
Rough set 99.08 ± 0.36 78.92 ± 4.37 71.80 ± 3.09 57.06 ± 12.1 0.00 ± 0.00 0.00 ± 0.00 76.0 ± 8.94
BMSF 98.42 ± 1.08 72.00 ± 6.01 66.16 ± 16.64 60.0 ± 18.47 14.16 ± 31.67 0.00 ± 0.00 76.0 ± 43.36

SVC

All 99.56 ± 0.18 82.46 ± 6.95 93.69 ± 5.23 87.50 ± 6.07 97.5 ± 2.28 18.33 ± 17.07 96.0 ± 8.94
SVM-RFE 99.55 ± 0.13 65.38 ± 4.58 69.66 ± 15.64 69.58 ± 7.00 72.5 ± 31.26 0.00 ± 0.00 88.0 ± 17.89
Rough set 99.52 ± 0.11 77.54 ± 5.58 54.23 ± 15.09 67.08 ± 7.71 89.17 ± 5.59 0.00 ± 0.00 92.0 ± 10.95
BMSF 99.63 ± 0.14 92.46 ± 4.9 95.84 ± 1.10 83.33 ± 7.37 99.17 ± 1.86 1.67 ± 3.73 92.0 ± 17.89

neurons showed excellent performance on Näıve Bayes, they
did not do very well on other neuron types.The classification
result of multipolar neuron was poor; however, SVM-RFE
and rough set also performed less well on SVC.We found that
the predicted labels of multipolar neuron are almost the same
as those of the pyramidal neuron in all the models, which
indicated that the unbalanced datasets had an effect on the
prediction of multipolar neuron.

3.2.2. Distinguishing a Certain Neuron Type from Others by
BMSF-SVC. To evaluate whether a certain feature subset
is useful in identifying only a single cell type, the optimal
model (BMSF-SVC) in this study was employed. For seven
neurons types, six hierarchy models were established. In
each hierarchy model, it was a binary classification problem.
Due to the imbalanced datasets in this paper, accuracy and
the Matthews correlation coefficient (MCC) were used to
evaluate the established models, and recall was used to
evaluate the classification performance of single neuron type
as follows:

Accuracy = (TP + TN)
(TP + TN + FP + FN)

;

MCC = TP × TN − FP × FN
√(TP + FP) (TP + FN) (TN + FP) (TN + FN)

;

Recall = TP
(TP + FN)

,

(1)

where TP, TN, FP, and FN were true positive, true negative,
false positive, and false negative, respectively, which derived
from the confusion matrix. In this paper, positive samples

were a certain neuron type and all the rest of the neuron
types were negative samples. Positive samples were selected
according to the number of samples in each type, and the
datasets in each hierarchy are presented in Table 6. For each
neuron type, private feature subsets were obtained.

As shown in Table 6, the accuracies and MCC in
each hierarchy indicated the effectiveness of the models.
We obtained private feature subsets for each neuron type.
These features were useful in identifying the corresponding
neurons, and the perfect recall may support our conclusion.
The above finding suggested that BMSF was not only useful
in identifying all seven cell types but also able to discriminate
specific neuron types.

In this paper, we used a new feature selection method
named BMSF for neuronal morphology classification. Inter-
actions are taken into consideration to get highly accurate
classification of neurons, and this method usually selects a
small amount of features for easy interpretation. As shown
in Table 3, eight features were reserved via BMSF, which was
less than the number of features obtained by the other two
feature selection methods. The BMSF method automatically
conducts multiple rounds of filtering and guided random
search in the large feature subset space and reports the final
list of features.Though this process is wrapped with SVC, the
features selected have general applicability to multiple classi-
fication algorithms. This conclusion can be demonstrated by
the classification performance shown in Table 4.

We should point out that different runs of BMSF may
produce different lists of feature subsets. This phenomenon
arises from the fact that there are many possible characteris-
tics that may be used to distinguish neurons. For example,
feature subsets derived from rough set theory and BMSF
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Table 6: Ability to distinguish one single cell type from others and the obtained private feature subsets by BMSF-SVC.

Positive versus negative cell type Accuracy (%) MCC (%) Recall (%) Private feature subsets

{Pyramidal}
versus
{motoneuron, sensory, tripolar,
bipolar, multipolar, Purkinje}

99.10 ± 0.12 97.05 ± 0.40 99.76 ± 0.10

𝑁
𝑠
, Lpd, NW, Co, Pk2, HT, Bar, Su, PDR, Ta2
𝑁
𝑠
, Lpd, NW, Bal, Pk2, Vo, Bar, HT, PDR, Ta2
𝑁
𝑠
, Lpd, NW, Bal, Pk2, Vo, Bar, HT, Pc, Ta2
𝑁
𝑠
, Lpd, Bal, NW, HT, Pc, Vo, PDR, Ta2
𝑁
𝑠
, Lpd, Co, NW, HT, PDR, Vo, Bar, Ta2

{Motoneuron}
versus
{sensory, tripolar, bipolar,
multipolar, Purkinje}

97.26 ± 1.44 94.3 ± 3.02 94.50 ± 5.21

SS
SS, NH,𝑁

𝑠
, Ta1, SA, Ta2, HT, Su, NW, Vo

SS, NH,𝑁
𝑠
, HT, Vo, NW, Lpd, Dp, Su, SA

SS, NH,𝑁
𝑠
, Lpd, Ta1, Vo, HT, Le, Ta2, SA

SS, NH,𝑁
𝑠
, HT, SA, Ta1, Vo, ND, Le, Dp

{Sensory}
versus
{tripolar, bipolar, multipolar,
Purkinje}

90.15 ± 1.24 80.62 ± 2.46 97.85 ± 1.38

Pa
Pa, SS, SA, Ta1, ND, Pk2, Btr, NW, Pk, Btl
Pa, SS, SA, Ta1, ND, Ty, Co, Di, Btr
Pa, SS, SA, Ta1, ND, Ty, Di
Pa, SS, SA, ND, Ta1, Ty, Btr, NW, Lpd, Pk

{Tripolar}
versus
{bipolar, multipolar, Purkinje}

99.16 ± 0.56 98.32 ± 1.12 99.17 ± 1.41

NW
NW, SS, He, Pa, ND,𝑁

𝑠

NW, SS, He
NW, SS, He
NW, SS, He, Pa, ND

{Bipolar}
versus
{multipolar, Purkinje}

96.95 ± 3.07 93.86 ± 6.24 95.83 ± 2.95

𝑁
𝑠

𝑁
𝑠
, Vo, He, Ty, Su
𝑁
𝑠
, Vo, Su, Ty, He, Ta2, NW, Btor, Pk
𝑁
𝑠
, Vo, Su, NW, Ta2, Di, Pc, He, Btor
𝑁
𝑠
, Vo, Su, He, Di, Ta2, Btor, Pk

{Multipolar}
versus
{Purkinje}

100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

DR
DR
Pa
𝑁
𝑠

Pa

achieve similar classification accuracy when applied to SVC
classifier.Our goal is to find aminimal set of such features that
the combination of them can well differentiate the dependent
variables.

The reserved feature subsets on the same data set that
resulted from different feature selection methods differed
greatly. Li et al. [7] and Jiang et al. [8] selected features from
the first twenty attributes of Table 1 only, so they inevitably
ignore the attributes that were reserved by BMSF. Therefore,
feature extraction by L-measure software was necessary.
Another drawback of their feature selectionmethodswas that
they did not reduce the variables in the nonlinear manner.
For example, PCA only considers second order statistics, and
interactions cannot be taken into account.

Conventional classification techniques were built on the
premise that the input data sets were balanced; if not,
the classification performance would decrease sharply [42].
There were 3908 neurons in the training set, but the number
of neurons in each type differed greatly (Table 1). For

example, there were only 24 and 11 multipolar interneurons
and Purkinje neurons, respectively, whereas the number of
pyramidal neurons was 3172, and the unbalanced data sets
would have a negative effect on the classification results
(Table 5). Therefore, we conducted the hierarchy model for
each neuron type, and BMSF was demonstrated as useful in
distinguishing specific neuron types from others.

4. Conclusion

We introduced a new feature selection method named BMSF
for neuronal morphology classification, obtained satisfactory
accuracy for all of the datasets and each hierarchymodel, and
were able to select private parsimonious feature subsets for
each neuron type. However, it was obvious that classification
based simply on neuronal morphology was inadequate. As
time goes by, dendrites may continue to grow and axons will
generate additional terminals, which will undoubtedly lead
to changes in the vital parameters [8]. Therefore, combining



8 Computational and Mathematical Methods in Medicine

biophysical characteristics with function characteristics to
investigate the neuronal classification problem will be a
productive direction in the future.
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