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Stochastic Spin-Orbit Torque 
Devices as Elements for Bayesian 
Inference
Yong Shim   , Shuhan Chen, Abhronil Sengupta & Kaushik Roy

Probabilistic inference from real-time input data is becoming increasingly popular and may be 
one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary 
research has revealed that stochastic functionalities also underlie the spiking behavior of neurons in 
cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other 
unconventional computing platforms have recently started adopting the usage of computational units 
that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, 
we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of 
such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/
MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable 
probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially 
pave the way for hardware that directly mimics the computational units of Bayesian inference.

Spin-orbit torque generated by an underlying heavy metal has recently emerged as an energy-efficient mechanism 
for magnetization reversal1–3 and domain wall motion4–7. Nanomagnet switching due to input charge current 
flowing through the heavy-metal (HM) underlayer is mainly attributed to spin-Hall effect (SHE)8, wherein, a 
transverse spin current is injected in the nanomagnet lying on top. While magnets with in-plane anisotropy 
can be switched directly by spin-orbit torque (SOT), perpendicular magnets require an external magnetic field 
for deterministic switching. Recent proposals have also explored deterministic switching in perpendicular mag-
nets without the assistance of any external field9–11. While such spin-orbit torque induced magnetization switch-
ing has been extensively studied in the deterministic regime, it is intrinsically probabilistic due to the inherent 
time-varying thermal noise involved in the magnetization dynamics.

This work firstly attempts to experimentally validate prior theoretical proposals for utilizing spin-orbit torque 
switching nanomagnets as biased random number generators where the bias can be tuned using the magnitude 
of the input stimulus by operating the magnets in the stochastic regime12–16. Based on the experiment, we extend 
the concept to a three-terminal device structure that can be easily interfaced with CMOS peripherals for ena-
bling different genres of unconventional computing scenarios. The device-circuit configuration based on the 
stochastic spin-device and CMOS interface circuits forms a core hardware primitive and can be used for versatile 
applications ranging from neuromorphic12–14 to combinatorial optimization15,16. As a second contribution, we 
propose a Bayesian inference engine by exploiting the controllable stochastic switching of the nanomagnets. Each 
nanomagnet along with peripheral CMOS circuits form a key element, a variable, of the Bayesian Network (BN) 
and generates Poisson spike pulse train. The probabilistic information is transferred through the interconnected 
variables by following pulse based arithmetic17. The efficiency of such spintronic-enabled probabilistic Bayesian 
networks stems from the direct mapping of the key stochastic computing element to the underlying stochastic 
device physics of the spin devices.

Device fabrication and spin-orbit torque (SOT) driven stochastic switching
The probabilistic switching was characterized in a 1.2 μm wide Ta (10 nm)/CoFeB(1.3 nm)/MgO (1.5 nm) 
Hall-cross structure in presence of a 100 Oe in-plane external magnetic field. The in-plane magnetic field is 
required to achieve switching of the PMA (perpendicular magnetic anisotropy) free layer in presence of in-plane 
polarized spins generated by current flowing through the heavy metal underlayer.

Figure 1(a) depicts the Hall-bar structure. Input current flows between the terminals I+ and I− while the 
magnetization state is determined by the anomalous Hall effect resistance detected between terminals V+ and 
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V−. Initially the magnet is reset by passing a sufficient magnitude of current between I+ and I− terminals in 
the negative x direction. Subsequently, a current is passed in the positive x direction and the final state of the 
magnet is determined. The magnitude of the current is varied and over 50 measurements are taken per current 
magnitude to determine the probability of switching of the magnetic stack. The experiment was repeated over 
multiple devices and consistent probability switching characteristics were obtained. Figure 1(b) represents the 
variation of switching probability of the magnet with variation in the magnitude of the input current pulse (with 
the pulse width being fixed at 10 ms) while (c) depicts that the switching probability can be tuned by varying the 
pulse width as well (with pulse amplitude being fixed at 0.6 mA). Prior proposals have exploited such non-linear 
switching probability characteristics for neuromorphic12–14 as well as Ising computing15,16. Additionally pulse 
width duration serves to control the rate of change of switching probability with variation in the input current 
magnitude which, in turn, impacts the performance of such computing systems in presence of noise and process 
variations in the spin-devices and CMOS peripherals14.

Extension to three-terminal device and possible applications.  The experiment in the previous 
section provides proof-of-concept for a large number of theoretical proposals that have exploited probabilistic 
SOT-driven magnetization dynamics in a three-terminal device structure shown in Fig. 2 (center). The three ter-
minal device structure, shown in Fig. 2, can be designed by fabricating a Magnetic Tunnel Junction (MTJ) stack 
on top of the ferromagnet-heavy metal layers. Note that, the conventional MTJ device consists of two ferromag-
netic layers, which are separated by a Tunneling Barrier (TB) between them. The top layer is called the Pinned 
Layer (PL) and the bottom layer is called the Free Layer (FL). The magnetization of the FL can be manipulated 
by an input spin current injected from the heavy metal underlayer while the magnetization of the PL is fixed in 
a particular direction. When the magnetization of the two ferromagentic layers is located in the same direction, 
the resistance across the tunneling junction has a smaller resistance (RP) compared to the opposite case (RAP). 
While the write current flows between terminals T1 and T2 and probabilistically switches the magnet (probability 
determined by current magnitude), the read path between terminals T3 and T2 determines the final state of the 
magnet after the switching process.

Note that the only difference between the fabricated samples and the device structure (shown in Fig. 2) is 
the read-out operation. While the magnet switching dynamics is similar to the fabricated samples, through the 
injection of spin current, the read-out mechanism is through a MTJ structure lying on top of the heavy metal. The 
tunnel junction exhibits a much larger resistance variation (typically 2–3 times) corresponding to the two stable 
magnetization states that, in turn, leads to compatibility with peripheral CMOS technology. The subsequent text 
and applications discussed in this article are based on the device measurements shown in Fig. 1. Consequently, all 
conclusions presented in this article are based on experimentally measured stochastic switching characteristics of 
the magnet. However, for performing the CMOS circuit-level simulations we consider that the device resistance 
that can be sensed is similar to values obtained from standard MTJ stacks compatible with CMOS technology. 
Such devices can be scaled down to dimensions exhibiting barrier height of the order of ~10–20kBT. Further 
scaling can potentially result in device state update during “read” operation as the device becomes increasingly 
sensitive to the input bias current.

The controllable stochastic switching element can be potentially used in various applications as shown in 
Fig. 2. For instance, neuromorphic applications inspired by brain functionalities consist of a set of pre-neurons 
transmitting information to a set of post-neurons through synapses. Such a computing framework can be mapped 
to a crossbar array of stochastic switching elements (serving as synapses) driving stochastic post-neuronal devices. 
The device can be interfaced with peripheral transistors to implement stochastic Spike-Timing Dependent 
Potentiation (P) and Depression (D) learning rules which dictate the variation of synaptic switching probability 

Figure 1.  (a) Nanoscale Hall-bar structure consisting of Ta (10 nm)/CoFeB (1.3 nm)/MgO (1.5 nm)/Ta (5 nm) 
(from bottom to top) material stack. Input current flows between terminal I+ and I− while the magnetization 
state is detected by change in the anomalous Hall-effect resistance measured between terminals V+ and 
V−. The device is subjected to an in-plane external magnetic field of magnitude 100 Oe. (b) Variation of the 
magnet switching probability with variation in magnitude (amplitude) of the input current pulse. The pulse 
width was fixed at 10 ms. The switching probability is 0% at 0.47 mA and 100% at 0.54 mA. (c) Variation of the 
magnet switching probability characteristics with variation in the duration of the input current pulse. The pulse 
amplitude is fixed at 0.6 mA. The switching probability is 6% at 1 ms while it attains a value of 98% at 50 ms. Note 
that the switching probability characteristics depicted in (b,c) are for two different samples and similar behavior 
was repeatedly observed over other fabricated devices.
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with spike timing ΔT. Similarly, stochastic neural functionality can be implemented by interfacing the neuronal 
device with a Reference MTJ. For details, please refer to refs12–14. Stochastic switching property of the device can 
also provide a natural annealing property in Ising computing systems for solving optimization tasks by assisting 
the system to move out of a local minima15,16. Here we explore Bayesian inference networks and utilize the prob-
abilistic switching characteristics in response to pulse current magnitude of the sample, depicted in Fig. 1(b), as 
the core enabling element for probabilistic inference.

Micromagnetic simulation for device modeling.  In this section, we provide a simulation framework 
that can be utilized to model the stochastic device physics of the spin-devices. The probabilistic switching charac-
teristics of the ferromagnet can be analyzed by Landau-Lifshitz-Gilbert (LLG) equation with additional term to 
account for SOT generated by the heavy-metal (HM) underlayer18,
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kB is Boltzmann constant, TK is the temperature and δt is the simulation time-step. Additional effects like consid-
ering field-like torque and Dzyalohinskii-Moriya Interaction (DMI) can be also included in the modelling 
framework6,20.

Figure 3 depicts two independent stochastic LLG simulations. The magnet was taken to be circular in shape 
with diameter 40 nm and thickness 1.3 nm with a barrier height of 31.44 kBT. The magnet damping factor was 
taken to be 0.012221. A spin-Hall angle of 0.121 was assumed for the Tantalum heavy metal layer of thickness 
10 nm. The magnet was subjected to an in-plane magnetic field of strength 100 Oe and a current pulse (I) of 
magnitude 900 μA and duration 2 ns. As shown in the figure, the magnet stochastically relaxes to either of the 
two stable magnetization directions. Note that this section serves to outline the simulation framework that can 
be used to model the stochastic magnetization dynamics. We directly use the experimental probability switching 
characteristics obtained from Fig. 1 for the Bayesian Network implementation discussed next.

Bayesian Network based on Stochastic MTJ
Bayesian Network (BN) is a graphical model to represent conditional independencies between each variable, 
where the nodes in a BN represent random variables and links represent direct dependencies among the varia-
bles22–24. A simple Bayesian Network is shown with four variables in Fig. 4(a) 25. It illustrates dependencies among 
the variables – whether it is cloudy (‘C’), whether it is rainy (‘R’), whether the sprinkler is on (‘S’), and whether 
the grass is wet (‘W’). Here we assume that each variable is binary (True or False, could be ‘1’ or ‘0’). As shown 
in Fig. 4(a), the dependencies between variables are quantified using conditional probabilities (in Conditional 
Probability Table (CPT)) associated with each transition to a particular node from its parent nodes in the net-
work. Due to its simple conditional independence statement expressed in graph, BN helps to reduce the number 
of variables required to compute a probabilistic inference. Based on the basic BN, the inference operation tries to 
estimate the probability of the hidden causes, on the given observed situation25. As an example, let us assume that 
we observe wet grass and attempt to estimate the cause. There are possibly two hidden causes, either the Sprinkler 
is on or it is raining. Here we can use Bayes’ rule (shown below) to calculate posterior probability of each cause,

Figure 2.  A three terminal device structure consists of Magnetic Tunnel Junction (MTJ) on top of the Heavy 
Metal (HM) underlayer. (Center) The stochastic switching of the device in the presence of thermal noise can 
be exploited in various applications such as neuromorphic computing (Left), Ising spin model (Right top), and 
Bayesian Network (Right bottom).
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where A are the hidden causes and B is the observed evidence. Implementation of a Bayesian inference network 
on conventional general-purpose computers is inefficient in terms of area and energy consumption since a large 
number of complex floating point calculations need to be performed to compute the probability of occurrence of 
a particular variable since multiple causal variables are involved in the network. Hence, various approaches for 
BN hardware implementation have been proposed based on synthesizable hardware such as Field Programmable 
Gate Arrays26,27, fully digital system with stochastic digital circuit28,29, analog based probabilistic hardware for 
inference30,31, and mixed-signal approach (Muller C-Elements)32. However, multiple transistors are required to 
implement the functionality of a single stochastic element, thereby leading to an inefficient design. In this work, 
we demonstrate the manner in which the stochastic switching behavior of ferromagnet-heavy metal structures 
can directly mimic the core behavior of such controllable random number generators.

Poisson spike generation based on stochastic switching of nanomagnet.  Instead of using con-
ventional floating point calculations to estimate the probability of a certain inference process, pulse based com-
putation17 can be exploited. Here the probability of inference operation can be estimated by counting the number 
of pulses from each variable over a large enough time window. The main idea behind this approach is that the 
variable of the BN is represented by a Poisson pulse train generator that converts the probability information 
into the frequency of the output pulses. Based on the controllable stochastic switching of the nano-sized magnet 
with thermal noise, the Poisson spikes can be generated with the aid of simple CMOS peripherals as shown in 
Fig. 4(b). Here the device is interfaced with a reference resistor to generate a Poisson spike/pulse train where the 
number of spikes in a large enough time window encode information about the frequency and magnitude of the 
incoming spike train. The operation can be explained by considering a write/read/reset cycle. Let us consider the 
case for a single stochastic element in Fig. 4(c) that receives input from another stochastic element. Note that each 
element represents a particular node in the BN. During the write phase, the causal stochastic element which is 
transmitting spikes from the previous stage inverter generates a write current IWR through the heavy metal. The 
magnitude of the write current is determined by the corresponding current source which is tuned according to 
the CPT. The current source is activated with a frequency equivalent to the frequency of the incoming spike train. 
After the write cycle, the read cycle is used to determine whether the device has switched and is reset to the initial 
state in case of a switching event. Hence, the frequency of the output train is directly proportional to the switching 
probability (determined by the magnitude of the current source which is tuned depending on the corresponding 
entry in the CPT) and the pulse train frequency from the causal element. The pulse train frequency from the 
causal stochastic element encodes the probability of occurrence of the corresponding event while the current 
source being driven by that element encodes the conditional probability of occurrence of the receiving element.

Information transfer through the network.  The detailed implementation of the core components (var-
iable and edge) proposed for the BN is shown in Fig. 5(a). The MTJ device along with two current sources and 
few other circuit elements constitute each variable of the BN. Note, here we depict two current sources for each 
of Write (WR) and Reset (RST) operations. Two switches at either sides of the nanomagnet control the direction 
of current flow during each operation. The inverter at the output node for level conversion is combined with a 
latch and forms a Clocked Latch (C-LAT). This Clocked Latch operates in sync with the Read (RD) signal and can 
amplify small voltage changes at the Vx node. In addition, this unit stores the value from the result of stochastic 

Figure 3.  Two independent simulations of stochastic Landau-Lifshitz-Gilbert (LLG) equation with thermal 
noise for a magnet with perpendicular magnetic anisotropy (along z direction) are shown.
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switching. This provides two important benefits: (1) It prevents an interaction from the changes in voltage during 
the Read operation to the rest of the network. Without this intermediate storing stage, unwanted analog voltage 
fluctuation during the Read operation can be amplified and be transmitted to the next stage. (2) Also, it makes the 
system operate in a pipelined manner, and hence contributes to make the system synchronous. The stored value 
in C-LAT represents result of current stochastic switching. When the output level of C-LAT (VMTJ) is combined 
with the Write command, the output pulse from each node is generated. Note that, depending on the level of 
VMTJ, either of Vo+ or Vo− can generate a pulse at a time. In case the level of VMTJ is logic ‘1’, then only Vo+ node 
can generate a pulse when the Write pulse is presented to the AND gates. On receiving this pulse, corresponding 
current pulse at the next stage is generated.

Abovementioned operations are illustrated with a timing diagram in Fig. 5(b). Based on global clock signal 
(CLK), three main pulses are generated for Write, Reset, and Read operations (WR, RST, and RD). These three 
signals are broadcasted through global signaling and used by all the variables and interfaces. Let us assume that 
the initial magnetization direction is parallel configuration (lower resistance than RREF), hence Vx node is at a high 
voltage level (Vh). Since the switching probability of the initial node is set to be 0.5, the magnet flips its state with 
50% chance. The Vx node reflects such a switching frequency and can have two possible states (Vh and Vl). This small 
voltage difference is amplified and stored in the Clocked Latch (VLAT/VLATB) on receiving the Read command pulse. 
The stored value - stochastic switching result - is now converted into a pulse when this value is combined with the 
global Write command. Depending on the switching results, either Vo+ or Vo− transmits a pulse to the next variable, 
and thereby can generate a current pulse with desired amplitude as we specified through the CPT.

Implementation of BN and inference operation.  Based on the implementation of the variable and edge 
in the previous section, we discuss the implementation of the entire network (in Fig. 4(a)). Figure 6 shows a com-
plete view of the BN implementation using the proposed device-circuit configuration. Each variable is made up of 
a single stochastic device with the required peripherals. The next state of each variable is determined by control-
lable stochastic switching which contributes to the generation of a Poisson spike train. The switching frequency 
information is transferred to the next variable as a pulse through the aforementioned interface circuitries. Note 
that, four AND gates are adopted at the beginning of the last variable to generate a multiplication output between 
two Poisson spike trains. Based on the complete network in Fig. 6, we can infer the probability of each variable, 
i.e. P(Sprinkler), P(Rain), and P(Wet), which is difficult to get directly from the CPT. This could be accomplished 
just by counting the number of output pulses corresponding to each variable for a long enough time duration. For 
instance, if 28 pulses are counted at the Vs+ output of ‘Sprinkler’ node over 100 write cycles, this means that the 
probability of ‘Sprinkler is on’ is estimated to be 28%.

Moreover, estimation of more complex inference is also possible by introducing additional arithmetic building 
blocks such as division and multiplication between two Poisson pulses (Fig. 7(a)). Let us consider the same question 
that was mentioned in the earlier section, i.e. the probability of ‘Sprinkler is on’ in a given situation of ‘Wet grass is true’. 

Figure 4.  (a) A simple Bayesian Network with 4 variables along with Conditional Probability Table (CPT) to 
show independence between variables25. (b) Generation of Poisson pulse train based on stochastic switching of 
nanomagnet with aid of CMOS peripherals. (c) Information transfer between neighboring variables through 
CMOS interface circuits.

Figure 5.  (a) Detailed implementation view of BN variable and interconnection between neighbors. (b) Timing 
diagram used to perform probabilistic estimation based on the proposed BN implementation.
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By the definition of conditional probability, this could be written as ∩= | = = = = =P S W P S W P W( 1 1) ( 1 1)/ ( 1). 
Here the intersection function between the two probabilities can be interpreted as multiplication between two Poisson 
spike trains which could be implemented by an AND gate. The only remaining function to be implemented is the divi-
sion operation. Recently, the method of performing division operation between two Poisson spike trains by matching 
the rate of spiking of two internal signals has been proposed in ref.29. Figure 7(b) depicts the concept of the division 
operation between two Poisson spikes and practical implementation of the divider is shown in Fig. 7(c). Let us first 
describe the division operation using Fig. 7(b). There are two input pulse trains with different spiking rate to the divi-
sion unit (with current inputs I1 and I2 to the proposed device-circuit configuration, named as MTJ1, MTJ2). Here we 
denote spiking rate of upper and lower pulse trains as ‘S1’ and ‘S2’ respectively. Likewise, the rate of spiking from the 
output node is denoted as ‘SO’. Note, the current input pulse to the output MTJ device (MTJ3) is generated from addi-
tional CMOS logic gates (named as ‘Counter & Feedback Logic’). By multiplying the two pulses, ‘S2’ and ‘SO’, using 
AND gate, the resultant spiking rate becomes ‘S2*SO’. Here the main idea is that once the ‘Counter & Feedback Logic’ 
controls the spiking rate of MTJ3 device to match the spiking rate of ‘S1’ and ‘S2*SO’ to be the same, then the rate of 
output spiking becomes SO = S1/S2. For this functionality, the Counter logic counts the number of pulses from each of 
‘S1’ and ‘S2*SO’ over a predetermined time duration. If the comparison results show ‘S1’ is more than ‘S2*SO’, then the 
Feedback logic raises the spiking rate of output ‘SO’ so that ‘S2*SO’ rate also increases. By following this simple feed-
back rule, the division operation can be achieved. Figure 7(c) shows the implementation of the divider unit based on 
this approach. The device-circuit configuration to generate an output Poisson spike train is identical to the one we used 
to implement the variable in BN. The only difference is the rate of spiking (i.e. amplitude of input current pulse), is 
controlled by the ‘Counter & Feedback Logic’ inside the dotted box. The ‘Counter & Feedback Logic’ consists of two 
digital up-counters to count the number of spikes from two inputs, digital comparator, subtractor, and timing control-
ler (TCON).

Results
The functionality of the BN was verified by performing a simulation of the entire network based on the proba-
bility switching characteristics depicted in Fig. 1(b). Figure 8(a) represents the timing waveforms and average 
number of spikes produced for various events which approximates the actual analytical solution to a reasonable 
degree of precision. Figure 8(b) depicts that the probability distribution function (PDF) of the two conditional 
events (S|W) and (R|W) approach the actual analytical solution as the number of samples increases.

It is worth noting here that Bayesian inference and in general, the class of unconventional computing plat-
forms that can be enabled by such stochastic magnetic elements, are inherently resilient to variations and noise 
in the computational units. For instance, we perform an analysis of the network performance in presence of ran-
dom Gaussian transient noise added to the input charge current provided by the CMOS current source through 
the heavy metal layer. Note that ~60 μA (0.48–0.54 mA) of current range is being exploited from the switching 
probability characteristics of the magnetic stack (Fig. 1b) for proper functioning of the Bayesian network. We 
utilize a 6-bit DAC to provide the input current through the heavy metal, thereby providing ~1 μA of current 
resolution (LSB). Table 1 depicts the mean and standard deviation of the output P(R|W) of the network for 1,000 
samples with varying amplitudes of the Gaussian noise (from 1 LSB ~ 1 μA to 3 LSB ~ 3 μA). As expected, the mean 
value remains close to the case without noise. Although the variance of the PDF distribution increases by a small 
amount, it can be reduced by increasing the number of sample points used for inference (Fig. 8b).

Discussion
Prior proposals have considered experimental demonstration of spin-orbit torque driven magnetic heterostruc-
ture switching for unconventional computing platforms like associative memory operations33. However, the pro-
posals typically exploit analog and deterministic Hall-bar switching (the resistance of the Hall-bar varies in an 
analog fashion depending on the magnitude of the input current) as the core computing element. In contrast, 
we are exploiting binary and stochastic Hall-bar switching for our proposal. Such probabilistic computation is 
expected to replace deterministic computing platforms (based on such post-CMOS technologies) since at highly 
scaled dimensions such devices are not expected to exhibit multi-bit analog resolution. In contrast, stochas-
ticity will become increasingly predominant. Therefore, exploring probabilistic computing platforms based on 
stochastic device switching that encode information in time (through probabilistic update of binary elements) 
rather than space (through deterministic analog computing elements) will become important. This work can 

Figure 6.  Implementation of the BN with 4 variables based on the proposed device-circuit configuration.



www.nature.com/scientificreports/

7Scientific REPOrTS | 7: 14101  | DOI:10.1038/s41598-017-14240-z

potentially stimulate efforts at developing stochastic computing platforms that embrace the underlying stochas-
ticity of highly-scaled nanomagnets.

In conclusion, in this article we provided proof-of-concept experiments demonstrating probabilistic spin-orbit 
torque induced magnetization reversal. Such stochastic devices can provide a direct mapping to the computing 
elements of Bayesian inference, Deep Belief Networks and probabilistic neuromorphic applications.

Methods
Sample Fabrication.  The device was fabricated by utilizing two consecutive steps of e-beam lithography. 
Silicon with ~2000 A thick thermal oxide was used as the substrate. The first step resulted in the development 
of the Hall cross structure while the second step was used for the fabrication of the contact pads. One layer 
of polymethyl methacrylate (PMMA) e-beam resist was coated onto the surface of a clean silicon wafer sur-
face. Then e-beam lithography was implemented to define the Hall bar structure for the device fabrication. After 

Figure 7.  (a) The inference operation is performed through the division and multiplication operation between 
two Poisson pulses based on the complete network in Fig. 6. (b) Division operation by matching the rate of 
spiking between two nodes29. (c) Practical implementation of the divider based on stochastic MTJ and CMOS 
interface circuits.

Figure 8.  (a) Timing waveform for the calculation of probability of occurrence of various events. The average 
number of spikes produced in each case over 100 sample points closely resemble the actual analytical values. 
Data represented in the format A/B denote that A is the analytical solution while B is the computed probability 
from the 100 sample points of each output. (b) The probability distribution function (PDF) of the two 
conditional events (S|W) and (R|W) approach the mean value as the inference samples increase.

Noise amplitude Mean of P(R|W) STD (σ) of P(R|W)

0 (No noise) 0.7048 0.0222

1 LSB 0.7046 0.0249

2 LSB 0.7046 0.0339

3 LSB 0.7031 0.0545

Table 1.  Estimated probability of the inference for 1,000 output samples with Gaussian noise.
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development, the Hall bar was deposited by magnetic sputtering. The stack structure developed was Ta (10 nm)/
CoFeB (1.3 nm)/MgO (1.5 nm)/Ta (5 nm) (from bottom to top). A piece of cleaned bare wafer was also deposited 
in-situ so that the thin film deposited on it could be considered with same magnetic property as that on patterned 
chip. This piece was measured on vibrating sample magnetometer (VSM) for magnetic properties such as mag-
netic saturation, coercivity, etc. After lift-off for the patterned chip, a similar fabrication process of contact pads 
was followed. The major difference was that the contacts were made of Ta (10 nm)/Au (120 nm) by e-beam evap-
oration. After lift-off, the final Hall-cross device structure can be seen in Fig. 1.

For each of the samples investigated for this probability study, magnetic properties were characterized by 
VSM on the in-situ fabricated bare wafer. The saturation magnetization of the samples was measured to be 
≈581.36 e.m.u.cm−3 and the coercivity was ≈5.07 Oe. All samples showed perpendicular magnetic anisotropy 
(PMA). Current induced magnet switching and probability measurement were performed on a probe station 
equipped with an in-plane magnetic field.

References
	 1.	 Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Sci. 336, 555–558 (2012).
	 2.	 Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nat. 476, 189 (2011).
	 3.	 Liu, L., Lee, O., Gudmundsen, T., Ralph, D. & Buhrman, R. Current-induced switching of perpendicularly magnetized magnetic 

layers using spin torque from the spin Hall effect. Phys. review letters 109, 096602 (2012).
	 4.	 Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. nanotechnology 8, 527–533 (2013).
	 5.	 Ryu, K.-S., Yang, S.-H., Thomas, L. & Parkin, S. S. Chiral spin torque arising from proximity-induced magnetization. Nat. 

communications 5 (2014).
	 6.	 Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. 

materials 12, 611–616 (2013).
	 7.	 Emori, S. et al. Spin Hall torque magnetometry of Dzyaloshinskii domain walls. Phys. Rev. B 90, 184427 (2014).
	 8.	 Hirsch, J. Spin hall effect. Phys. Rev. Lett. 83, 1834 (1999).
	 9.	 Yu, G. et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat. 

nanotechnology 9, 548–554 (2014).
	10.	 You, L. et al. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by 

engineering a tilted anisotropy. Proc. Natl. Acad. Sci. 112, 10310–10315 (2015).
	11.	 Torrejon, J. et al. Current-driven asymmetric magnetization switching in perpendicularly magnetized cofeb/mgo heterostructures. 

Phys. Rev. B 91, 214434 (2015).
	12.	 Sengupta, A., Panda, P., Wijesinghe, P., Kim, Y. & Roy, K. Magnetic tunnel junction mimics stochastic cortical spiking neurons. Sci. 

reports 6 (2016).
	13.	 Srinivasan, G., Sengupta, A. & Roy, K. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking 

Neural Network with On-Chip STDP Learning. Sci. Reports 6 (2016).
	14.	 Sengupta, A., Parsa, M., Han, B. & Roy, K. Probabilistic Deep Spiking Neural Systems Enabled by Magnetic Tunnel Junction. IEEE 

Transactions on Electron Devices 63, 2963–2970 (2016).
	15.	 Sutton, B., Camsari, K. Y., Behin-Aein, B. & Datta, S. Intrinsic optimization using stochastic nanomagnets. Sci. Reports 7 (2017).
	16.	 Shim, Y., Jaiswal, A. & Roy, K. Ising computation based combinatorial optimization using spin-Hall effect (SHE) induced stochastic 

magnetization reversal. J. Appl. Phys. 121, 193902, https://doi.org/10.1063/1.4983636 (2017).
	17.	 Murray, A. F. Pulse arithmetic in vlsi neural networks. IEEE MICRO 9, 64–74 (1989).
	18.	 Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995 

(1989).
	19.	 Scholz, W., Schrefl, T. & Fidler, J. Micromagnetic simulation of thermally activated switching in fine particles. J. Magn. Magn. Mater. 

233, 296–304 (2001).
	20.	 Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta—CoFeB—MgO. Nat. Mater. 12, 240–245 

(2013).
	21.	 Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
	22.	 Jensen, F. V. An introduction to Bayesian networks, vol. 210 (UCL press London, 1996).
	23.	 Heckerman, D., Geiger, D. & Chickering, D. M. Learning Bayesian networks: The combination of knowledge and statistical data. 

Mach. learning 20, 197–243 (1995).
	24.	 Nielsen, T. D. & Jensen, F. V. Bayesian networks and decision graphs (Springer Science & Business Media, 2009).
	25.	 Murphy, K. P. An introduction to graphical models (Unpublished, 2001).
	26.	 Lin, M., Lebedev, I. & Wawrzynek, J. High-throughput bayesian computing machine with reconfigurable hardware. In Proceedings 

of the 18th annual ACM/SIGDA international symposium on Field programmable gate arrays, 73–82 (ACM, 2010).
	27.	 Zermani, S., Dezan, C., Chenini, H., Diguet, J.-P. & Euler, R. FPGA implementation of bayesian network inference for an embedded 

diagnosis. In Prognostics and Health Management (PHM), 2015 IEEE Conference on, 1–10 (IEEE, 2015).
	28.	 Mansinghka, V. K., Jonas, E. M. & Tenenbaum, J. B. Stochastic digital circuits for probabilistic inference. Massachussets Inst. Technol. 

Tech. Rep. MITCSAIL-TR 2069 (2008).
	29.	 Thakur, C. S. et al. Bayesian estimation and inference using stochastic electronics. Front. neuroscience 10 (2016).
	30.	 Mroszczyk, P. & Dudek, P. The accuracy and scalability of continuous-time bayesian inference in analogue CMOS circuits. In 

Circuits and Systems (ISCAS), 2014 IEEE International Symposium on, 1576–1579 (IEEE, 2014).
	31.	 Weijia, Z., Ling, G. W. & Seng, Y. K. PCMOS-based Hardware Implementation of Bayesian Network. In Electron Devices and Solid-

State Circuits, 2007. EDSSC 2007. IEEE Conference on, 337–340 (IEEE, 2007).
	32.	 Friedman, J. S., Calvet, L. E., Bessière, P., Droulez, J. & Querlioz, D. Bayesian inference with Muller C-elements. IEEE Transactions 

on Circuits Syst. I: Regul. Pap. 63, 895–904 (2016).
	33.	 Borders, W. A. et al. Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Appl. 

Phys. Express 10, 013007 (2016).

Acknowledgements
The authors would like to thank Prof. Zhihong Chen of Purdue University for advice regarding the device 
fabrication and measurements. The work was supported in part by, Center for Spintronic Materials, Interfaces, 
and Novel Architectures (C-SPIN), a MARCO and DARPA sponsored StarNet center, by the Semiconductor 
Research Corporation, the National Science Foundation, Intel Corporation and by the US DoD Vannevar Bush 
Faculty Fellowship.

http://dx.doi.org/10.1063/1.4983636


www.nature.com/scientificreports/

9Scientific REPOrTS | 7: 14101  | DOI:10.1038/s41598-017-14240-z

Author Contributions
S. Chen fabricated the samples and performed the measurements. Y. Shim performed the simulations for the 
Bayesian inference framework based on the probabilistic switching characteristics obtained from the samples. All 
authors assisted in discussing the results and writing the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference

	Device fabrication and spin-orbit torque (SOT) driven stochastic switching

	Extension to three-terminal device and possible applications. 
	Micromagnetic simulation for device modeling. 

	Bayesian Network based on Stochastic MTJ

	Poisson spike generation based on stochastic switching of nanomagnet. 
	Information transfer through the network. 
	Implementation of BN and inference operation. 

	Results

	Discussion

	Methods

	Sample Fabrication. 

	Acknowledgements

	Figure 1 (a) Nanoscale Hall-bar structure consisting of Ta (10 nm)/CoFeB (1.
	Figure 2 A three terminal device structure consists of Magnetic Tunnel Junction (MTJ) on top of the Heavy Metal (HM) underlayer.
	Figure 3 Two independent simulations of stochastic Landau-Lifshitz-Gilbert (LLG) equation with thermal noise for a magnet with perpendicular magnetic anisotropy (along z direction) are shown.
	Figure 4 (a) A simple Bayesian Network with 4 variables along with Conditional Probability Table (CPT) to show independence between variables25.
	Figure 5 (a) Detailed implementation view of BN variable and interconnection between neighbors.
	Figure 6 Implementation of the BN with 4 variables based on the proposed device-circuit configuration.
	Figure 7 (a) The inference operation is performed through the division and multiplication operation between two Poisson pulses based on the complete network in Fig.
	Figure 8 (a) Timing waveform for the calculation of probability of occurrence of various events.
	Table 1 Estimated probability of the inference for 1,000 output samples with Gaussian noise.




