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Abstract

Background: The MinION sequencing instrument from Oxford Nanopore Technologies (ONT) produces long read lengths
from single-molecule sequencing – valuable features for detailed genome characterization. To realize the potential of this
platform, a number of groups are developing bioinformatics tools tuned for the unique characteristics of its data. We note
that these development efforts would benefit from a simulator software, the output of which could be used to benchmark
analysis tools. Results: Here, we introduce NanoSim, a fast and scalable read simulator that captures the
technology-specific features of ONT data and allows for adjustments upon improvement of nanopore sequencing
technology. The first step of NanoSim is read characterization, which provides a comprehensive alignment-based analysis
and generates a set of read profiles serving as the input to the next step, the simulation stage. The simulation stage uses
the model built in the previous step to produce in silico reads for a given reference genome. NanoSim is written in Python
and R. The source files and manual are available at the Genome Sciences Centre website:
http://www.bcgsc.ca/platform/bioinfo/software/nanosim. Conclusion: In this work, we model the base-calling errors of ONT
reads to inform the simulation of sequences with similar characteristics. We showcase the performance of NanoSim on
publicly available datasets generated using the R7 and R7.3 chemistries and different sequencing kits and compare the
resulting synthetic reads to those of other long-sequence simulators and experimental ONT reads. We expect NanoSim to
have an enabling role in the field and benefit the development of scalable next-generation sequencing technologies for the
long nanopore reads, including genome assembly, mutation detection, and even metagenomic analysis software.
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Background

DNA sequencing is dominated by sequencing-by-synthesis tech-
nologies, andmature next-generation sequencing (NGS) such as
those from Illumina, Inc., are among themostwidely adopted. In
recent years, third-generation single-molecule sequencing us-

ing nanopore-based technologies has emerged, with promises
of longer reads and lower cost. Launched by Oxford Nanopore
Technologies (ONT) in April 2014, the MinION sequencer stands
out among existing third-generation sequencing technologies
due to its ability to generate ultra-long reads, albeit with high
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error rates. For example, the Saccharomyces cerevisiae dataset
from Goodwin et al. (2015) has an average read length of 5473 bp,
and a maximum reaching 147 bp, kb, although with low se-
quence identity, 64% for 1D reads and 75% for 2D reads, 1D and
2D referring to interrogation of a DNA molecule template once
or twice, respectively.

Long nanopore reads hold great potential for de novo assem-
bly and transcriptome analysis as they can span more repeti-
tive regions and multiple exon junctions, or even entire tran-
scripts. However, the error-prone reads pose new challenges to
algorithm design [1]. As is the case for other sequencing plat-
forms [2], a read simulator designed specifically for ONT reads
is desirable in order to develop and benchmark new algorithms,
with the aim to harness the full potential of this new sequencing
platform. Currently, however, no state-of-the art DNA sequence
simulator emulates the properties of ONT reads.

Here, we introduce NanoSim, a nanopore sequence read
analysis and simulation pipeline. The tool analyzes ONT reads
from experimental data to model read features, such as error
profiles and length distributions, and uses these features to gen-
erate in silico reads for an input reference. We show that the sta-
tistical models NanoSim uses remain valid as the nanopore se-
quencing technology evolves.

Methods

NanoSim is implemented using R for error model fitting and
Python for read length analysis and simulation (Supplementary
Fig. S1). The first step of NanoSim is read characterization, which
provides a comprehensive alignment-based analysis and gener-
ates a set of read profiles serving as the input to the next step,
the simulation stage. The simulation tool uses themodel built in
the previous step to produce in silico reads for a given reference
genome. It also outputs a list of introduced errors, consisting of
the position on each read, error type, and reference bases.

The modeling stage of NanoSim takes a reference and a
training read set in FASTA format as input. The reads are
aligned to the reference genome using LASTwith tuned parame-
ters (‘-r 1 -q 1 -a 1 -b 1’) by default, consistent with other
published work [3,4]. Alternatively, the tool also allows the in-
put of an alignment file in Multiple Alignment Format (MAF). If
not unique, the best alignment of each read is chosen based on
alignment length to avoid the influence of misalignments to re-
peat regions (Supplementary Fig. S2).

Based on alignment results, training reads are classified into
two types: aligned and unaligned reads. For aligned reads, typ-
ically only a middle region can be aligned, leaving the flanking
head and tail regions soft-clipped from alignments. The length
distribution of these head and tail regions exhibits amultimodal
pattern. The full read length distribution can be characterized
by two empirical distributions: one for the length of the aligned
regions, the second for the ratio of alignment lengths to read
lengths. Length distributions of unaligned reads are also gener-
ated to simulate unaligned reads. The perfet flag of NanoSim
can generate perfect reads with no errors, relying on the full-
length distribution of aligned reads.

Sequencing errors on the aligned region share similar pat-
terns among different datasets, which can be described by sta-
tistical mixture models [5]:

Mismatch:Pm ∼ αmPoisson(λm) + (1 − αm) Geometric(pm)

Insertion:Pi ∼ αi Weibull(λi , κi ) + (1 − αi ) Geometric(pi )

Deletion:Pd ∼ αd Weibull(λd, κd) + (1 − αd) Geometric(pd)

Here αm/i/d ∈ (0, 1) aremixture parameters, pm/i/d are the event
probabilities in the geometric distributions, λm is the expected
value of the Poisson distribution, and λi/d and κ i/d, respectively,
are the scale and shape parameters of theWeibull distributions.

The mixture model describes stretches of substitution errors
as being distributed according to Poisson distribution, whereas
indels follow Weibull distributions. All error modes have a sec-
ond component of geometric distribution, which we postulate
describes stochastic noise. The parameters for mixture mod-
els are estimated during the modeling stage (Supplementary
method). Themodel parameters and error profiles for the tested
datasets are provided with the software download package and
can be directly used for simulation.

During simulation, the lengths of errors are drawn from the
statistical models, and the error types are determined by a
Markov chain, simulating the transitional probability between
two consecutive errors (Supplementary Fig. S3). Interval lengths
between errors (length of matched bases) are observed to be
auto-correlated, which justifies the use of a Markov chain to
model consecutive correct base calls between errors (Supple-
mentary Fig. S4).

Reads that are unaligned are more difficult to characterize.
Rather than assuming them to be random sequences, we ex-
tract sequences from the reference and use an arbitrarily high
error rate compared to the aligned reads. We pick the length of
each error in these reads from the same mixture models as the
aligned reads and randomly place them on the simulated se-
quence.

Another feature of NanoSim is that it is able to simulate ei-
ther circular or linear genomes. A read extracted from a circular
genome can start from any position andmaywrap around. If the
length of a read is longer than the length of the whole genome,
which is unlikely but possible for a plasmid or viral genome, it
will be truncated to the genome length. For a linear genome to
maintain a read length distribution similar to the training pro-
file, NanoSimwill only extract reads from chromosomes that are
longer than the read length.

The k-mer bias of ONT reads, especially the deficiency of long
homopolymers, has been well studied [6]. As a DNA molecule
with a stretch of homopolymer sequence traverses through a
nanopore, the change in electric current is not detectable or fails
to be interpreted by the base-calling algorithm, leading to a defi-
cient representation of homopolymers longer than the number
of bases that can fit in the nanopores. The k-mer bias mode of
NanoSim compresses all homopolymers longer than n into n-
mers (default n = 5), simulating the process of base-calling. The
under- or overrepresentation of other k-mers is not supported in
the current version of NanoSim. Admittedly, thismethod is over-
simplistic because sequencing or base-calling errors occur more
often in homopolymer regions, including 4-mer and 3-mer ho-
mopolymer sequence. However, we expect this sequencing bias
to be addressed by the vendor and the scientific community in
the future, given (i) past improvements of the R7.3 chemistry
compared to the previous R7 chemistry (Supplementary Fig. S5),
as well as ongoing improvements to the pore chemistry and (ii)
the emergence of new and improved base-calling algorithms in-
cluding DeepNano, which uses a recurrent neural network [7]. In
this study, we confirm that the R9 2D dataset does not have the
same homopolymer underrepresentation problem as the previ-
ous (R7 and R7.3) chemistries. However, we do observe the op-
posite, the presence of long homopolymers that do not exist in
the reference genome.

Using an Escherichia coli dataset, it has been reported that the
GC content of 2D reads is very close to the reference and that this
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Table 1: Datasets used for benchmarking

Organism Reference Download source Sequencing kit Flow cell Reference Short form in
genome chemistry paper

E. coli K12 E. coli str. K-12
substr. MG1655

http://dx.doi.org/10.5524/100102 SQK-MAP-002 R7 [4] E. coli R7 dataset

E. coli K12 E. coli str. K-12
substr. MG1655

ENA: ERX708228, ERX708229, ERX708230,
ERX708231

SQK-MAP-003
SQK-MAP-004

R7.3 [6] E. coli R7.3
dataset

E. coli K12 E. coli str. K-12
substr. MG1655

ENA: ERX947749, ERX947750 SQK-MAP-005.1 R7.3 [18] E. coli UCSC
dataset

E. coli K12 E. coli str. K-12
substr. MG1655

http://s3.climb.ac.uk/nanopore/ Rapid 1D R9 [19] E. coli R9 1D
dataset

E. coli K12 E. coli str. K-12
substr. MG1655

http://s3.climb.ac.uk/nanopore/ SQK-MAP-006 R9 [19] E. coli R9 2D
dataset

S. cerevisiae
W303

S. cerevisiae
S288C

http://schatzlab.cshl.edu/data/nanocorr/ NA R7 [20] Yeast dataset

has aminor effect on sequencing error rates [8]. In priorwork,we
have also observed that substitution errors are not uniform,with
a weak bias toward G and C [5]. Since the underlyingmechanism
causing this bias is unclear, this pattern is not reflected in the
NanoSim synthetic reads.

Results and discussion

Six datasets using diffferent generations of sequencing kit were
chosen for deriving the statistical models and benchmark-
ing, including five E. coli datasets and one S. cerevisiae dataset
(Table 1). Generally, 2D reads are higher quality than 1D reads
and are more frequently used in downstream analyses. As such,
we tested NanoSim on reads from 1D rapid kit using R9 chem-
istry, and 2D reads using R7, R7.3, and R9 chemistry. All tests
were performed on a single machine with 8-core Intel i7-4770
CPUs @ 3.40 GHz and 8 GB total RAM.

Speed and memory

The runtime of NanoSim scales up linearly with the number of
reads (Supplementary Fig. S6), and thememory requirement de-
pends on the length of the reference sequence. For example, the
E. coli University of California, Santa Cruz (UCSC) dataset con-
tains 45 049 2D reads with an average length of 7067 bp. Exclud-
ing read alignments, the characterization stage of NanoSim took
22m:32s, and the peak memory usage was 2.68 GB. Simulating
20 000 E. coli reads took 4m:39s; peakmemory usage was 120 MB.

Read alignments and model fitting

NanoSim conducts an alignment-based strategy to characterize
base-calling errors; hence the read-to-reference mapping pro-
cess is integral to simulations. As such, it would work the best
with an alignment algorithm suitable for the sequencing plat-
form. Designed to cope with long, error-prone reads, at the time
of writing, LAST was the best-studied option, shown to capture
the greatest proportion ofmapped reads with few false positives
[1]. Recently, the widely used BWA-MEM algorithm released an
update designed for ONT reads with the -x ont2d option [9]. To
reflect the state of the art, we choose LAST as our default aligner,
and users can optionally choose BWA-MEMor other aligners and
feed alignment results into NanoSim.

We observe that the error models derived from the char-
acterization stage in our test datasets are consistent across
both chemistries and organisms (Supplementary Tables S1–S3).
Assessing the goodness of fit via a Kolmogorov-Smirnov test,
we observed that base call error distributions were statistically
identical to their fitted models using a P value threshold of
0.05 (Supplementary method). We note a subtle difference in
alignments compared with the results derived from the LAST
and BWA-MEM algorithms. For the UCSC E. coli dataset, LAST
aligned 45 049 reads to the reference genome, while BWA-MEM
aligned 45 047 reads. The average error rates calculated by LAST
and BWA-MEM are 12.61% and 12.62%, respectively. Hence, the
performance of both aligners on this dataset appears equiva-
lent. Moreover, the overall error distributions obtained through
NanoSim profiling are the same, and the structures of these
models remain unchanged (Supplementary Fig. S7).

Simulation results and comparison

Currently, there are simulators that could potentially simu-
late Nanopore-like reads, such as PBSIM [10], ReadSim [11],
and FASTQSim [12]. Among these, PBSIM is designed to simu-
late reads from Pacific Biosciences (PacBio) sequencers, which
also produce long yet error-rich reads. FASTQSim is a platform-
independent simulator that can theoretically simulate any NGS
dataset. ReadSim 1.6 is the only simulator that advertises the
ability to simulate ONT reads [13].

Thus to evaluate the accuracy of NanoSim, we conducted
comparisons only with ReadSim. In each experiment on the six
datasets in Table 1, 20 000 synthetic reads were generated by
NanoSim and ReadSim. ReadSim parameters were specifically
tuned for each dataset (Supplementary method). Since Read-
Sim is not capable of simulating genomes with multiple chro-
mosomes, for the yeast dataset we linked the yeast chromo-
somes with a single “N” before simulation and discarded syn-
thetic reads containing Ns. Simulated reads were aligned back
to the reference genome and analyzed using the characteriza-
tion tool of NanoSim.

ReadSim simulates read lengths through a sample-based
method or a Gaussian model–based method. The sample-based
method was used here and fed with the empirical lengths of
all reads regardless of alignment results. After simulation, more
than 99.9% of the synthetic reads produced by ReadSim can be

http://dx.doi.org/10.5524/100102
http://s3.climb.ac.uk/nanopore/
http://s3.climb.ac.uk/nanopore/
http://schatzlab.cshl.edu/data/nanocorr/
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Figure 1: NanoSim and ReadSim simulation results compared with UCSC E. coli experimental reads. (a) The four plots on the upper panel are cumulative density plots
of error match events and error events. (b) Length density plot of unaligned regions and total read lengths of aligned reads. (c) Length density plot of aligned regions

on each read. (d) Cumulative density plot of the alignment ratio of each read.

aligned to the reference, while raw ONT datasets and NanoSim
reads agree on the alignment rates, ranging from 82.83% to
99.68% for these four datasets.

The length of consecutive perfect/error bases of simulated
reads were plotted together, along with their raw experimental
read counterparts (Fig. 1a, Supplementary Fig. S8, Fig. S9–13a).
We observed that the ReadSim reads deviate further away from
experimental data because they were simulated with uniformly
distributed errors and randomly chosen error length.

Statistically speaking, for all aligned reads, the lengths of the
whole read and aligned regions ofNanoSim reads andONT reads
are drawn from the same distributions (Fig. 1b and c, Supple-
mentary Fig. S9–13b, S9–13c). The distribution of aligned regions
also exhibits a bimodal pattern with two peaks, except for the
R9 1D dataset, whereas the only length distribution ReadSim
re-produces well is the full-length distribution of aligned reads
on the E. coli R7.3 dataset (Supplementary Fig. S10b).

Since the lengths of ReadSim reads are drawn from the
empirical data points directly, and more than 99.9% of Read-
Sim reads can be aligned, the full-length distribution of aligned
ReadSim reads should prepresent the full-length distribution of
all ONT reads. By comparing the full-length density of ONT and
ReadSim aligned reads, we observe that the length of aligned
reads and unaligned reads follows different distributions for all
datasets except E. coli R7.3 (Supplementary Fig. S10b).

The lengths of unaligned regions are determined by the
alignment ratio of each read. NanoSim performed better on E.
coli R7 than the other three datasets, generating almost identi-
cal distributions of alignment ratio as the raw ONT reads (Sup-
plementary Fig. S9d). This leads to similar statistical test results
on the distribution of unaligned head and tail regions (Supple-
mentary Fig. S9b). The unaligned regions on experimental ONT
reads also have two peaks, and for the E. coli UCSC dataset, they
centered at 40 bp and 1000 bp (Fig. 1b). NanoSim reads overlap
with these two peaks on all six datasets, whereas ReadSim reads
have much shorter unaligned regions. The head and tail regions
are not profiled, and thus not recovered by ReadSim.

De novo assembly of simulated reads

Testing and benchmarking new algorithms with synthetic reads
is valuable tool for algorithm development as simulated reads
carry the ground truth. To illustrate this, we conducted de novo
assemblies using miniasm, an algorithm built for long reads

with high error rates [14]. Dotter version 4.31 was used to com-
pare the assemblies with the reference genome and evaluate the
accuracy [15].

Miniasm successfully assembled the UCSC dataset, and
NanoSim simulated reads into one contig (Fig. 2a). Both assem-
blies are over 4.5 Mb in length, approaching the size of the ref-
erence genome (4.6 MB), and no large-scale misassemblies are
observed (Fig. 2b and c). In contrast, ReadSim simulated reads
yielded five contigs, with the largest contig reaching 2.5 Mbp.
The total reconstructionmatched the genome size, and the vari-
ous contigs also show synteny to the reference E. coliK12MG1655
genome (Fig. 2d).

Conclusions

To our evaluation, NanoSim mimics ONT reads well, true to
the major statistical features of the emerging ONT sequencing
platform in terms of read length and error modes. The inde-
pendent profiling module of NanoSim grants users the freedom
to characterize their own ONT datasets, which are expected to
evolve with nanopore sequencing technology. Yet we observe
the shapes of the error models so far to hold among different
datasets regardless of sequencing kit.

NanoSim will benefit the development of bioinformatics
technologies for the long nanopore reads, including genome
assembly, mutation detection, and metagenomic analysis soft-
ware. Currently, no high-coverage human genome–size data se-
quenced by nanopore technologies are yet available. With the
help of NanoSim, bioinformatics software developers can eas-
ily test the scalability of their tools using simulated reads. For
example, NanoSim has been used for profiling and benchmark-
ing long, error-prone reads overlapping algorithms [16]. More-
over, a mixture of in silico genomes simulating a microbiome
will be helpful for benchmarking algorithms with application
in metagenomics, including functional gene prediction, species
detection, comparative metagenomics, and clinical diagnosis.
As such, we expect NanoSim to have an enabling role in the field.

Availability and requirements

Project name: NanoSim
Project home page: http://www.bcgsc.ca/platform/bioinfo/
software/nanosim and https://github.com/bcgsc/nanosim

http://www.bcgsc.ca/platform/bioinfo/software/nanosim
http://www.bcgsc.ca/platform/bioinfo/software/nanosim
https://github.com/bcgsc/nanosim
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Figure 2: (a) contig sizes and N50 length of miniasm assemblies using NanoSim reads, ReadSim reads, and real reads from the UCSC dataset. The dashed gray line is
the reference genome size and the red dots are contigs with N50 length. Dotter plots comparing the miniasm assembly of (b) experimental MinION sequence data, (c)
NanoSim, and (d) ReadSim simulated reads on the x-axis to the E. coli K-12 MG1655 reference genome on the y-axis. The position and order of the five contigs in (d)
are unclear. Accordingly, Dotter re-ordered them and aligned them along the reference genome. In this case, the x-axis represents five contigs, instead of coordinates.

Operating system: Unix; Mac OS X
Programming lamguages: Python and R
Other requirements: LAST (tested with version 581), R (tested
with version 3.2.3), Python (2.6 or above), Numpy (tested with
version 1.10.1 or above)
License: GNU general public license.

Availability of supporting data

The datasets supporting the results of this article and snapshots
of the code are available in the GigaDB repository [17].

Additional files

Additional file 1 — Supplementary method, tables, and figures

Supplementary method: Statistical test. Figure S1: Flowchart
of the NanoSim profiling and simulation stages. Figure S2:
LAST alignment performance. Figure S3: Transitional prob-
abilities among different error types for E. coli R7 dataset.
Figure S4: Auto-correlation of match events for E. coli R7 dataset.
Figure S5: k-mer bias of E. coli R7 and R7.3 datasets. Table S1:
Mixture model parameters for mismatch. Table S2: Mixture
model parameters for insertion.Table S3:Mixturemodel param-

eters for deletion. Figure S6: Runtime of NanoSim simulation
stage on E. coli reference genome. Figure S7: Error models de-
rived from different aligners for E. coli UCSC dataset. Figure S8:
NanoSim simulation reads compared with E. coli UCSC experi-
mental data and ReadSim simulated reads. Figure S9: NanoSim
simulation results compared with E. coli R7 experimental reads
and ReadSim simulated reads. Figure S10: NanoSim simulation
results compared with E. coli R7.3 experimental reads and Read-
Sim simulated reads. Figure S11: NanoSim simulation results
compared with E. coli R9 1D experimental reads and ReadSim
simulated reads. Figure S12: NanoSim simulation results com-
pared with E. coli R9 2D experimental reads and ReadSim simu-
lated reads. Figure S13: NanoSim simulation results compared
with yeast experimental reads and ReadSim simulated reads.
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7. Boža V, Brejová B, Vinař T. DeepNano: deep recurrent neural
networks for base calling in MinION nanopore reads. arXiv
2016; forthcoming.
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