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Functional connectivity, quantified by phase synchrony, between brain regions is known

to be aberrant in patients with autism spectrum disorder (ASD). Here, we evaluated

the long-range temporal correlations of time-varying phase synchrony (TV-PS) of

electrocortical oscillations in patients with ASD as well as typically developing people

using detrended fluctuation analysis (DFA) after validating the scale-invariance of the

TV-PS time series. By comparing the DFA exponents between the two groups,

we found that those of the TV-PS time series of high-gamma oscillations were

significantly attenuated in patients with ASD. Furthermore, the regions involved in

aberrant TV-PS time series were mainly within the social ability and cognition-related

cortical networks. These results support the notion that abnormal social functions

observed in patients with ASD may be caused by the highly volatile phase synchrony

states of electrocortical oscillations.

Keywords: phase synchrony, long-range temporal correlations, detrended fluctuation analysis, autism spectrum

disorder, default mode network, mirror neuron system

INTRODUCTION

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with
sociocommunicative impairments, restricted and repetitive behaviors and interests as core
diagnostic features (1). Using modern neuroimaging techniques, scientists found that the
symptomatology of this disease was not caused by specific cortical regions, but was associated with
the hyper- or hypo-connectivity between cortical regions (2, 3). In most published ASD studies,
researchers investigated the undirected or directed functional connectivity (FC) between brain
regions using measures such as correlation, phase synchrony, and Granger causality, and assumed
that these measures were stationary over time (4). However, recent studies have confirmed that
FC metrics exhibit variation over time, even during the task-free resting state (5). Moreover,
temporal variation in FC metrics can be modulated by various factors, such as brain disorders (6).
Surprisingly, the majority of previous studies concentrated on the altered magnitude of functional
connectivity between brain regions; few studies have investigated the temporal structure of the
time-varying connectivity in the autistic brain.

Long-range temporal correlation (LRTC) is a well-established property of temporal structure
in many levels of nervous signals. This property suggests that cortical oscillations have scale-free
structures over multiple time scales and work near the critical state (7). This phenomenon
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offers certain functional benefits for the brain system, such
as balanced propagation of external/internal perturbations and
maximization of information storage and transfer (8). Detrended
fluctuation analysis (DFA) is commonly conducted to quantify
LRTCs by amplitude modulation of cortical oscillations (9).
For human brain activities, the calculated exponent of DFA
is usually larger than 0.5 but <1.0, implying that the neural
processes under investigation have LRTCs (10). Empirical studies
in both humans and animals have revealed that the scale-free
dynamics of brain activity (i.e., its LRTCs or DFA exponent)
could be modulated by neurodegenerative diseases, such as
ASD, major depressive disorder, and Alzheimer’s disease (11–
13). It is assumed that LRTCs are crucial to the efficiency of
sustained cognitive operations, including language and social
communication, which are impaired in patients with ASD. This
theory has been proven by previous studies, which showed that
the LRTCs during amplitude modulation of cortical activities
were attenuated in patients with ASD (13–15). However, to the
best of our knowledge, no study has tested whether the LRTCs
of time-varying phase synchrony (TV-PS) of intrinsic brain
oscillations could be modulated by ASD.

Here, we investigated whether the LRTCs of TV-PS between
electrocortical signals were altered in patients with ASD using
DFA on the resting electroencephalogram (EEG) datasets from
the healthy brain network (HBN) (16). We hypothesized that the
DFA exponents of the TV-PS time series were altered in these
patients, especially the phase synchrony between brain regions
known to be associated with autism.

MATERIALS AND METHODS

Participants
In the HBN database, 25 ASD patients and 27 typical developing
(TD) individuals were selected as participants; note that some
of the EEG datasets were used in our previous studies (15, 17).
All participants were male, aged between 5 and 18 years (ASD:
mean age = 11.5 years, SD = 4 years; TD: mean age = 9.2
years, SD = 2.1 years), right-handed, with an IQ higher than
66. Significant differences between two groups on age and IQ
scores were not found (ps > 0.05). The diagnosis of ASD was
based on the Schedule for Affective Disorders and Schizophrenia-
Children’s version (18) and the Autism Diagnostic Observation
Schedule (ADOS) (1). Note that, the ADOS scores of participants
were not available in the current HBN database, thus their ADOS
scores were not reported here.

EEG Recording
During the 5min resting-state EEG collection, the participants
alternately kept their eyes open and closed. Previous study have
shown that EEG signal length of ∼5min was enough to produce
stable measurements of the DFA exponent (19). A 128-channel
Hydro-Cel Geodesic system (EGI Inc., Eugene, Oregon, USA),
with an electrode over the vertex of the head as an online
reference channel, was used. The ground electrode for the EEG
recordings was placed on the forehead. The electrode impedances
were kept below 40 kΩ throughout the data recording. The EEG

data were recorded using a sampling rate of 500Hz and a
band-pass filtering 0.1–100Hz. This study was conducted in
accordance with the Declaration of Helsinki; ethical approval
was obtained from the Chesapeake Institutional Review Board.
Written consent was obtained from the participants and their
legal guardians (16).

EEG Data Preprocessing
The EEG data were preprocessed using EEGLAB v13.0.0 (20).
The preprocessing consisted of the following steps. Firstly, the
electrodes over the neck/face and data portions with large
drift were excluded. Secondly, the electrodes with low signal-
to-noise ratio (SNR) and large drift longer than 1min were
identified through visual inspection, and were interpolated using
a spherical spline method in EEGLAB (function pop_interp.m).
The large drifts <1min were deleted after interpolating the
above “bad electrodes.” Thirdly, EEG signals were resampled
to 250Hz, band-pass filtered between 0.5 and 80Hz using
Hamming windowed finite impulse response (FIR) filters
(function pop_eegfiltnew.m). The order of the FIR was chosen
to be 1,500, i.e., three cycles of the lower edge of the
band considered. A notch filter was used to eliminate 60Hz
line noise. Fourthly, the Infomax independent component
analysis (ICA) algorithm (function pop_runica.m) was applied
to correct physiological artifacts (i.e., eye movements & blinks,
electromyography, electrocardiography) and non-physiological
artifacts. Lastly, the EEG data were re-referenced to a common
average reference.

Source Localization
The exact low-resolution brain electromagnetic tomography
(eLORETA), which can calculate the current density (A/m2) of
6,239 cortical gray matter voxels with 5mm spatial resolution
using the MNI152 template, was used to determine the
intracerebral electrical source activities from the scalp electrical
potentials for each participant (21). Then, the current density
time-series of 84 Brodmann areas (Table 1), which were defined
as cortical regions of interest (ROIs), were extracted for the
following six frequency bands: delta (2–4Hz), theta (4–8Hz),
alpha (8–13Hz), beta (14–30Hz), low-gamma (30–55Hz), and
high-gamma (65–80Hz), through Hamming windowed FIR
filters. The order of the FIR filter was three cycles of the lower
edge of each EEG band, that is, the orders for delta, theta, alpha,
beta, low-gamma, and high-gamma were 375, 188, 94, 54, 25,
and 12, respectively. The above source localization was conducted
using the LORETA software (http://www.uzh.ch/keyinst/loreta.
htm).

In the previous data filtering, the alpha band limits were
determined to be 8–13Hz for all participants in both groups.
This was based on the fact that the peak alpha frequencies
of the occipital electrodes were between 9 and 11Hz for
all participants.

For the gamma band, we studied the low-gamma band
(30–55Hz) and high-gamma band (65–80Hz). It’s well-known
that the power of gamma band, especially the high-gamma
band, was much lower than other frequency bands and can
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TABLE 1 | The 84 ROIs defined in the current study, which were exactly same as

Jia and Yu (15).

ROI Brodmann area Abbrev. Brain regions

Jan-43 1L/1R S11 Primary somatosensory cortex 1

Feb-44 2L/2R S12 Primary somatosensory cortex 2

Mar-45 3L/3R S13 Primary somatosensory cortex 3

Apr-46 4L/4R M1 Primary motor cortex

May-47 5L/5R SPS Superior parietal sulcus

Jun-48 6L/6R SMA Supplementary motor area

Jul-49 7L/7R PC precuneus

Aug-50 8L/8R Pre-SMA Pre-supplementary motor area

Sep-51 9L/9R DLPFC Dorsolateral pre-frontal cortex

Oct-52 10L/10R FPC Fronto-parietal cortex

Nov-53 11L/11R OFC Orbital frontal cortex

Dec-54 13L/13R Insula Insula

13/55 17L/17R V1 Primary visual cortex

14/56 18L/18R V2 Secondary visual cortex

15/57 19L/19R Cuneus Cuneus

16/58 20L/20R ITG Inferior temporal gyrus

17/59 21L/21R MTG Medial temporal gyrus

18/60 22L/22R STG Superior temporal gyrus

19/61 23L/23R PCC1 Posterior cingulate cortex 1

20/62 24L/24R dACC Dorsal anterior cingulate cortex

21/63 25L/25R sgACC Subgeneual anterior cingulate cortex

22/64 27L/27R PHG1 Parahippocampal gyrus 1

23/65 28L/28R HIP1 Hippocampal area 1

24/66 29L/29R RSC1 Retrosplenial cortex 1

25/67 30L/30R RSC2 Retrosplenial cortex 2

26/68 31L/31R PCC2 Posterior cingulate cortex 2

27/69 32L/32R PrACC Pregeneual anterior cingulate cortex

28/70 33L/33R rACC Rostral anterior cingulate cortex

29/71 34L/34R PHG2 Parahippocampal gyrus 2

30/72 35L/35R HIP2 Hippocampal area 2

31/73 36L/36R PHG3 Parahippocampal gyrus 3

32/74 37L/37R OTC Occipital-temporal cortex

33/75 38L/38R TP Temporal pole

34/76 39L/39R AG Angular gyrus

35/77 40L/40R IPS Intra-parietal sulcus

36/78 41L/41R A1 Primary auditory cortex

37/79 42L/42R A2 Secondary auditory cortex

38/80 43L/43R PCG Postcentral gyrus

39/81 44L/44R OIFG Opercular part of inferior frontal gyrus

40/82 45L/45R IFG Inferior frontal gyrus

41/83 46L/46R MPFC Medial prefrontal cortex

42/84 47L/47R VLPFC Ventrolateral prefrontal cortex

R, right hemisphere; L, left hemisphere.

be easily contaminated by some kinds of artifacts (such as
the electromyography), which may lead to inaccurate phase
estimation. However, many previous studies have shown that
with proper EEG preprocessing and data analysis, it’s possible
to accurately estimate the power and phase of high-gamma band
(22, 23).

DFA on the Region-to-Region,
Time-Varying, Phase Synchrony Time
Series
In most of the previous literatures, the term, “phase synchrony,”,
refers to a fixed phase difference between two signals for
a certain duration (24). Full synchronization (i.e., the phase
difference between neural oscillators is completely consistent
over recording time) or full desynchronisation (i.e., the phase
difference between neural oscillators varies randomly over
recording time) may indicate a pathological state in humans,
whereas the non-fixed yet non-random phase relationships
between neurophysiological signals could easily emerge within
the normal cortical networks (25). Thus, in the current study,
the term, “phase synchrony,” is used to describe any pattern
of phase relationship between two neuronal oscillations, which
could either be fixed or non-fixed values.

Here, the LRTCs of time-varying fluctuations of region-to-
region phase synchrony were estimated using the DFA. The
procedures for each frequency band and each participant are
as follows:

1. The phase time series of neuronal oscillations of each cortical
ROI was extracted using the Hilbert transform. Assuming
XH(t) is the Hilbert transform of the original band-pass
filtered source activity X(t), the time-varying phase φ(t) can be

calculated as: φ (t) = tan−1 XH (t)
X(t)

. The calculated phase time

series are limited to a range [–π , π]; discontinuity (e.g., the
phase difference between two consecutive time points is larger
than or equal to π) can be found in the phase time series. To
convert the phase time series into a continuous time series, the
phases were unwrapped by adding multiples of ± 2π when
discontinuity occurred.

2. Determine the phase differences between the neuronal
oscillations in the two cortical ROIs. Note that, since 84 ROIs
were defined in the present study, a total of 3,486, that is, C2

84,
phase difference time series were calculated for each frequency
band and participant.

3. Compute the rate of change of the phase-difference time
series. Because the unwrapped phase time series will continue
to evolve as time increases, their phase difference time series
are unbounded. However, a DFA is typically applicable to
bounded processes. Consistent with previous studies, phase
synchrony was quantified as the rate of change of the phase
difference time series, that is, its first-time derivative (25).

4. The signal profile of the rate of change of the phase difference
time series (i.e., its cumulative sum) was computed for each
pair of neuronal oscillations.

5. Each signal profile was divided into dozens of windows with
length τ and 50% overlap. The set of window length τ was
between 1 and 15 s (for alpha, beta, low-gamma, and high-
gamma bands) or between 2 and 15 s (for delta and theta
bands) equidistantly on a logarithmic scale. The linear trend
was detrended by subtracting a trendline determined by a
least-squares fit. The standard deviation of each detrended
window was then calculated. Finally, the fluctuation function
for window length τ was computed, that is, the mean value
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of standard deviations across all detrended segmented signal
profiles with length τ .

The scatter plot between logarithmic-transformed window
lengths and logarithmic-transformed fluctuation functions was
defined as a DFA fluctuation plot. The slope of the least-squares
line for this scatter plot, which is referred to as the DFA exponent
in the literature, provides an estimation of the LRTCs or scale-
free property of a given region-to-region TV-PS time series. The
linear scaling in log space was confirmed by the high value of
the coefficient of determination (i.e., R2 > 0.9 for most of
the TV-PS time series) and stringent validation tests, as shown
below. The above DFA exponent calculation was conducted using
the Neurophysiological Biomarker Toolbox (https://github.com/
NBT-Analytics/NBTpublic).

Validating the Presence of
Scale-Invariance
The DFA exponent estimation was based on the assumption
of linearity in the DFA fluctuation plots. This assumption was
verified by a maximum likelihood (ML)-based model selection
technique (ML-DFA). In this technique, we fitted the DFA
fluctuation plots with 13 alternativemodels (i.e., linear, quadratic,
cubic, quartic, quantic, square root, cube root, fourth root,
exponential, logarithmic, and spline with 2–4 linear sections).
The Akaike information criterion (AIC) that traded off the
goodness-of-fit against the number of parameters was then
estimated for each model. If the linear model had the lowest
AIC value compared to the other models, the linearity in the
DFA fluctuation plots and the scale-invariance of the original
TV-PS time series were validated (26). The MATLAB function
ML_DFA.m which was used to validate the presence of scale-
invariance can be downloaded from http://users.sussex.ac.uk/
$\sim$lb203/Software/assets/MLDFA-30092013.zip.

To evaluate the presence of scale-invariance in the TV-PS
time series, the percentage of participants accepting the existing
linear scaling was computed for each ROI pair, frequency band,
and group.

Statistical Tests
To examine whether the LRTCs of the TV-PS time series
were significantly altered in patients with ASD, the network-
based statistic (NBS) was performed for the DFA exponent
at each frequency band. Using an approach similar to the
cluster-based permutation test used in the activation tests,
the NBS is a non-parametric, statistical method to avoid the
multiple comparison problem encountered when conducting
mass univariate statistical testing in functional networks (27).
This method consists of the following steps (27): First, F-
statistics for all the 3,486 (C2

84) edges on the graph based on the
differences in DFA exponent values between groups, with the age
of participants included as a covariate, were computed. In NBS,
the statistical model is specified in terms of the general linear
model (GLM). Here, the covariate was included as nuisance
regressor in the design matrix of GLM. Second, a primary
threshold (p < 0.005, uncorrected) was used to identify all
edges displaying potential differences in the DFA exponent value.

From these identified edges, the so-called, “connected graph
components,” which were defined as a set of supra-threshold
edges for which a path could be found between any two cortical
ROIs, were identified. Third, the size of each connected graph
component was defined as the total number of edges it comprises
(i.e., “component extent”). In NBS, the component size could
also be measured by the sum of test statistic values across all
connections comprising the component. This is referred to as the
component intensity. In the current study, these two approaches
revealed exactly the same results. Fourth, the null distribution
of the size of the connected graph component was empirically
derived using a permutation approach with 5,000 permutations.
For each permutation, all participants were randomly allocated
into two groups; the above three steps were then conducted. The
component with a maximum cluster size was noted for each
permutation, which yielded an empirical null distribution for
the largest component size. Lastly, the one-sided, family wise
error rate (FWER)-corrected p-value for an originally identified
component was estimated as the proportion of permutations for
which the largest component was of equal size or greater. The
final results controlled the FWER (weak sense) at the cluster
level (p < 0.05).

The statistical tests were conducted using the MATLAB
toolbox NBS v1.2 (https://www.nitrc.org/projects/nbs/).

RESULTS

The Presence of Scale-Invariance
The results of the ML-DFA conducted on the region-to-region
TV-PS time series are shown in Figure 1. We found that for
most ROI pairs, the percentage of participants for which the
presence of scale-invariance was accepted was higher than 90%.
Moreover, for most ROI pairs in the beta, low-gamma, and
high-gamma bands, this percentage reached 100% in the TD
group. Additionally, this percentage was much higher in higher
frequency bands (i.e., alpha, beta, low-gamma, and high-gamma
bands) than in the lower frequency bands (i.e., delta and theta
bands), and was much higher in the TD group than in the
ASD group.

The Group Effect on DFA Exponents
For the high-gamma band, the statistical tests on the DFA
exponents showed that those in 28 ROI pairs in the TD group
were significantly larger than those in the ASD group (Figures 2–
4). No significant results were found for the other frequency
bands. The NBS also did not detect any significant results when
the alternative hypothesis was ASD > TD.

As can be detected in Figures 4, 6, The ROIs involved in
aberrant TV-PS time series were mainly located in the right
hemisphere, including 2R (primary somatosensory cortex1), 5R
(superior parietal sulcus), 7R (precuneus), 11R (orbital frontal
cortex), 20R (inferior temporal gyrus), 21R (medial temporal
gyrus), 22R (superior temporal gyrus), 25R (subgeneual anterior
cingulate cortex), 28R (hippocampal area), 29R (retrosplenial
cortex1), 38R (temporal pole), 42R (secondary auditory cortex),
43R (postcentral gyrus), 44R (opercular part of inferior frontal
gyrus), 45R (inferior frontal gyrus), 46R (medial prefrontal
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FIGURE 1 | The results of ML-DFA conducted on the TV-PS time series between brain oscillations. The percentage of participants for which the presence of

scale-invariance was accepted for each ROI pair, each group and each frequency band is shown. The results for delta, theta, alpha, beta, low-gamma and

high-gamma band are color coded and presented in panel (A-F) respectively.

cortex), and 47R (ventrolateral prefrontal cortex). Only two
cortical ROIs involved in aberrant TV-PS time series were found
in the left hemisphere; they were 25 L (subgenetic anterior
cingulate cortex) and 29 L (retrosplenial cortex1).

Here, ROIs with more than four aberrant phase synchrony
time series were identified as “crucial hubs” (Figures 5, 6);
they were 7R (precuneus), 29R (retrosplenial cortex1), 2R
(primary somatosensory cortex1), 38R (temporal pole), and 47R
(ventrolateral prefrontal cortex). These ROIs accounted for 26
aberrant phase synchrony time series. Only two aberrant phase
synchrony time series (i.e., 5R−25R and 43R−29L) did not
involve these crucial hubs.

Because the magnitude (i.e., power spectra) of the neuronal
oscillations of each frequency band could influence the successful
estimation of the phase time series and of the DFA exponents, we
tested whether significant group differences in the power spectra
of each frequency band could be detected. The results showed

that significant group differences could not be detected in all six
bands and ROIs.

DISCUSSION

Here, we investigated whether the LRTCs of the region-to-region
TV-PS time series were significantly altered in patients with ASD.
First, the results of the ML-DFA confirmed the presence of scale
invariance in the TV-PS time series. Second, the LRTCs of TV-
PS within the high-gamma band were found to be reduced in
these patients.

The Scale-Free Dynamics and LRTCs in
Brain Oscillations
Exploring the datasets in behavioral science and neuroscience,
previous researchers found that scale invariance/LRTCs are
omnipresent in nature, which supports the theory that cortical
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FIGURE 2 | The DFA exponents of TV-PS time series in high-gamma oscillations for ASD group. The magnitude of DFA exponent is color coded. Note that, only the

pairs with 10% largest DFA exponent are shown.

activities may sit in a dynamic state close to the criticality
(28). The advantages of criticality demonstrated through
computational simulations and experimental studies include
the following aspects: (1) the maximum dynamic range of
information processing/communication and its efficiency within
systems, and (2) a readiness to respond to environmental changes
(10, 25). The presence of scale-invariance, which was validated
by ML-DFA, was observed in most of the TV-PS time series
across all the region-to-region pairs, the six frequency bands
investigated, and the participants in both groups. Moreover, in
Figure 1, we found that the percentage of participants in the TD
group for which the presence of scale-invariance was accepted

was larger than that of the ASD group for all six frequency bands
and nearly all the ROI pairs. Thus, the results detected may
suggest that although scale-invariant dynamics were inherent in
cortical-cortical TV-PS time series of autistic brains, this property
may be vulnerable in these patients.

Scale-free dynamics and LRTCs in neuronal oscillations are
associated with the efficiency of certain operations (e.g., learning,
memory processes, and information transfer) within the brain
system (25). Several studies have demonstrated the presence
of LRTCs and scale invariance for the TV-PS between pairs
of neural oscillations and found that this property of phase
synchrony could be influenced by some experimental operations,
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FIGURE 3 | The DFA exponents of TV-PS time series in high-gamma oscillations for TD group. The magnitude of DFA exponent is color coded. Note that, only the

pairs with 10% largest DFA exponent are shown.

such as finger movement (25, 29). Previous studies have indicated
that the magnitude of LRTCs is positively correlated with
the ability of the human brain to maintain transiently stable
oscillations in support of active neuronal representations during
sustained cognitive operations (e.g., language, social cognition,
and communication), which are impaired in patients with
ASD (30). Moreover, it has been widely revealed that aberrant
functional connectivity is inherent in an autistic brain (31).
Thus, we investigated whether the LRTCs of phase synchrony
were disrupted in autistic brains using source-level electrocortical
oscillations, which could provide rich temporal, spectral, and
spatial information about brain activities.

The Attenuated LRTCs of Time-Varying
Phase Synchrony in Autistic Brain
The statistical tests on the DFA exponent showed that those in
28 ROI pairs in the ASD group were significantly smaller than
those in the TD group for the high-gamma band. Cortical regions
involved in the aberrant phase synchrony time series were mainly
located in the right hemisphere.

Here, the ROIs that explained 26 out of 28 aberrant
connections and with more than four aberrant phase synchrony
time series were defined as “crucial hubs.” These brain
areas were the precuneus, retrosplenial cortex (RSC), primary
somatosensory cortex (S1), temporal pole (TP), and ventrolateral
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FIGURE 4 | The pairs with significant group effect (TD > ASD) when testing the group differences of the DFA exponents of TV-PS time series in high-gamma

oscillations.

prefrontal cortex (VLPFC). The precuneus, located in the
posteromedial portion of the parietal lobe, is involved in visuo-
spatial imagery, episodic memory retrieval, and self-processing
operations (32). The RSC is closely associated with a wide
range of brain functions, such as episodic memory, navigation,
imagination, and planning for the future (33). The TP plays
a crucial role in both social and emotional processes, such as
face recognition and theory of mind (34–36). Specifically, the
right TP is believed to be the storehouse or site of recollection
of personal, episodic memories, and is involved in high-level
sensory representations with emotional responses and social
memory (34). These three regions are the main hubs of the
default mode network (DMN) and are suggested to be involved
in the pathophysiology of autism (2, 13). For S1, previous studies
have shown that this region often exhibits atypical responses
to touch in patients with ASD (37). Moreover, since S1 is a
crucial region in the mirror neuron system (MNS), it may also

closely modulate social cognition and interaction in patients
with ASD. The VLPFC, especially the right VLPFC, plays an
important role in emotional regulation in the social context (38).
It is also an important cortical region of the MNS that underlies
the dysfunction of social cognition in autism (39). Almost all
the aberrant DFA exponents (i.e., 26 of 28) could be explained
by the connections between these five hubs and other brain
regions. It should be noted that these results may also be caused
by the fact that these five brain regions manifested as certain
specific patterns (e.g., periodic activity) in the autistic brain,
which requires further investigation.

The presence of scale-free dynamics has been found in
the moment-to-moment fluctuations of phase synchrony; the
healthy resting brain state is accompanied by weak and variable
neural synchrony which shows slow fluctuations over time
(29). The LRTCs of the TV-PS time series may reflect a state
of readiness that facilitates rapid task-dependent shifts toward
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and away from full synchronization or full desynchronisation
(25). Thus, the attenuated LRTCs of phase synchrony between
certain regions in patients with ASD may indicate that the
autistic brain, especially those regions involved in autism,
deviated from an optimum state of readiness to external or
internal events.

In a study conducted by our team (15), the DFA exponents
of the instantaneous amplitude of the beta and low-gamma

FIGURE 5 | The crucial hubs (i.e., the ROIs with more than four aberrant

TV-PS time series) and the number of significantly altered TV-PS time series for

these crucial hubs.

oscillations of DMN, MNS, and salience network (SN) were
significantly attenuated in patients with ASD, as compared
with the TD participants. First, the regions with altered DFA
exponents (i.e., LRTCs) were highly overlapped between DFA
conducted on the instantaneous amplitude time series and
DFA conducted on the phase synchrony time series. Second,
compared with DFA conducted on the instantaneous amplitude
time series, the EEG band with significant results turned
into a high-gamma band when TV-PS was investigated. (40)
found that temporal changes in phase synchrony exhibit less
temporally structured and more complex correlations, indicating
fast and flexible coding (40). This could be the reason why
the frequencies showing aberrant LRTCs occur at much faster
rates (i.e., high-gamma) when the phase synchrony time series
were investigated.

Here, nearly all the aberrant phase synchrony time series
were caused by cortical regions over the right hemisphere.
Atypical laterality using neuroimaging techniques has been
widely studied in the ASD group (41). For the EEG gamma
band, previous studies showed that the resting gamma power
was reduced in patients with ASD and was specific to the
right lateral hemisphere (42). Note that none of the previous
studies have investigated the LRTCs of phase synchrony time
series in patients with psychiatric disorders. Thus, this is the
first study to show that abnormal laterality of LRTCs could be
seen in the phase synchrony between cortical regions in patients
with ASD.

It should be mentioned that the largest window size used
in the current study was 15 s. If the largest window size
was increased (e.g., 20 s), the percentage of fluctuation plots
being accepted as linear and the value of DFA exponents
may be decreased. However, in an exploratory analysis, we
found that if the largest window size was set to 20 s,
the results of the group comparison were similar to those
reported here.

FIGURE 6 | The locations of ROIs with significant group effect (TD > ASD) revealed by NBS. The size of each ROI corresponds to its number of significantly altered

TV-PS time series. Only the labels of crucial hubs were shown.
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Comparison With Other Studies Focused
on the Time-Varying Features in Autistic
Brain
In these years, more and more studies investigated various
aspects of time-varying neural features in ASD. For example,
Sase and Kitajo investigated the metastability in the brain
oscillations through the phase-phase coupling (PPC) and phase-
amplitude coupling (PAC) of resting-state EEG signals in
typically developing individuals with different levels of autistic-
like traits (43). They found that the metastable dynamics of
synchronization and amplitude modulation is correlated with
levels of autistic traits. Moreover, fewer transitions between states
occurred in individuals with relatively longer attention span. In
the other study, using resting-state fMRI signals, Watanabe and
Rees characterized the cortical dynamics in autism through an
energy-landscape analysis (44). They found that patients with
ASD show fewer neural transitions between two major brain
states, and this abnormal transition can predict the severity
of autism. Here, we investigated the scale-invariant characters
of resting-state EEG signals in autism, and found that the
LRTCs of region-to-region, time-varying, phase synchrony time
series within the high-gamma band were reduced in the autistic
brain. Due to the complexity of time-varying neural features
in human brain, more studies are needed in order to obtain a
comprehensive understanding of neural dynamics in autism.

The Limitations of the Current Study
Several limitations of the current study should be mentioned.
Firstly, the ADOS scores of participants were not available in
the current HBN database, thus their ADOS scores were not
reported and analyzed here. Without these scores, we could not
assess the associations between the severity of symptoms and
DFA exponents, which limited the reliability and interpretation
of the findings as well as the guidance for clinical treatment
and intervention. Secondly, during the validation of the presence
of scale-invariance of TV-PS time series, we only showed some
descriptive measures (e.g., the percentage of participants for
which the presence of scale-invariance) in Figure 1. We did not
conduct any statistical tests between groups, which may limit the
interpretation of the findings between groups.

CONCLUSION

In the present study, we found that the LRTCs of
region-to-region, time-varying, phase synchrony time series
within the high-gamma band were reduced in the autistic
brain. Furthermore, the cortical regions involved in aberrant
LRTCs are mainly located in well-recognized brain networks
associated with autism. These results indicate that reduced
LRTCs of time-varying phase synchrony within high-gamma
oscillations may play an important role in the dysfunction
of social, communication, and emotional abilities commonly
observed in patients with ASD.
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