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* dmontoyac@unal.edu.co

Abstract

Background

Extensive experimentation has been conducted to increment 1,3-propanediol (PDO) pro-

duction using Clostridium butyricum cultures in glycerol, but computational predictions are

limited. Previously, we reconstructed the genome-scale metabolic (GSM) model iCbu641,

the first such model of a PDO-producing Clostridium strain, which was validated at steady

state using flux balance analysis (FBA). However, the prediction ability of FBA is limited for

batch and fed-batch cultures, which are the most often employed industrial processes.

Results

We used the iCbu641 GSM model to develop a dynamic flux balance analysis (DFBA)

approach to predict the PDO production of the Colombian strain Clostridium sp IBUN 158B.

First, we compared the predictions of the dynamic optimization approach (DOA), static opti-

mization approach (SOA), and direct approach (DA). We found no differences between

approaches, but the DOA simulation duration was nearly 5000 times that of the SOA and

DA simulations. Experimental results at glycerol limitation and glycerol excess allowed for

validating dynamic predictions of growth, glycerol consumption, and PDO formation. These

results indicated a 4.4% error in PDO prediction and therefore validated the previously pro-

posed objective functions. We performed two global sensitivity analyses, finding that the

kinetic input parameters of glycerol uptake flux had the most significant effect on PDO pre-

dictions. The other input parameters evaluated during global sensitivity analysis were bio-

mass composition (precursors and macromolecules), death constants, and the kinetic

parameters of acetic acid secretion flux. These last input parameters, all obtained from

other Clostridium butyricum cultures, were used to develop a population balance model

(PBM). Finally, we simulated fed-batch cultures, predicting a final PDO production near to

66 g/L, almost three times the PDO predicted in the best batch culture.

PLOS ONE | https://doi.org/10.1371/journal.pone.0209447 December 20, 2018 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Serrano-Bermúdez LM, González Barrios
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Conclusions

We developed and validated a dynamic approach to predict PDO production using the

iCbu641 GSM model and the previously proposed objective functions. This validated

approach was used to propose a population model and then an increment in predictions of

PDO production through fed-batch cultures. Therefore, this dynamic model could predict dif-

ferent scenarios, including its integration into downstream processes to predict technical-

economic feasibilities and reducing the time and costs associated with experimentation.

Background

The production of 1,3-propanediol (PDO) has been widely studied to valorize the glycerol

overproduced in the biodiesel industry [1, 2]. High yield PDO production in glycerol metabo-

lizing organisms such as Clostridium butyricum is limited to experimental studies involving

fed-batch cultures and mutant strains obtained by random mutagenesis [3–5]. However,

organism specific metabolic models can be used to rationally design strains that achieve high

product yields. The genome-scale metabolic (GSM) model of a PDO-producing organism

Clostridium butyricum iCbu641 was recently reconstructed, containing 641 genes, 891 reac-

tions, and 701 metabolites, and it can predict metabolic phenotypes under varying glycerol

concentrations [6]. This GSM model can be used to analyze Clostridium butyricum metabo-

lism and rationally design strategies to increase PDO production.

The iCbu641 model predictions were validated at steady state using fermentation data, from

cultures grown under different substrates, including glycerol to produce PDO. These model pre-

dictions were tested by simulating steady state conditions using flux balance analysis (FBA) and

parsimonious FBA [6]. However, the steady state yield predictions do not capture the interactions

between intracellular and extracellular environments nor the concentration profiles. Concentra-

tion profiles are typically predicted using conventional kinetic models; however, the complexity of

the models increases as numerous kinetic parameters are needed to capture the impact of chang-

ing intracellular metabolite pools, which are difficult to measure experimentally or estimate com-

putationally due to lack of experimental studies which explore metabolic or genetic perturbations.

Millat et. al. have summarized dynamic models developed for cultures of solventogenic Clostrid-
ium strains and highlighted the challenges in estimation of kinetic parameters, which includes the

quality and quantity of experimental data used or enzyme intracellular concentrations [7]. This

led us to use dynamic flux balance analysis (DFBA) which captures mass balances at a dynamic

state to analyze batch and fed-batch cultures in greater detail [8–12] as was previously shown by

Mahadevan et. al. [8] using a simplified E. coli metabolic model.

Clostridium cultures have not been studied extensively using DFBA, where the only reported

study explores butanol production using a C. acetobutylicum and C. cellulolyticum co-culture

using cellulose as substrate [13]. Other products of solventogenic Clostridium strains, including

hydrogen and PDO, have better experimental titers and yields using batch and fed-batch cultures

than continuous cultures at steady state [3], but the existing models are focused on capturing pre-

dictions at steady state [14–25]. Additionally, iCbu641 model predictions at steady state for cul-

tures grown in glycerol elucidate that substrate concentration affects the PDO yields [6], which

can be more effectively captured using dynamic simulation. In this study, product yields, includ-

ing PDO, obtained using batch cultures have been used to test the dynamic model’s predictions.

DFBA can be solved using the dynamic optimization approach (DOA), static optimization

approach (SOA), and direct approach (DA). DOA uses orthogonal collocation to solve the

Clostridium butyricum population balance model
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entire simulated culture in a single optimization, making its solution highly complex for use in

relatively large GSM models, thus limiting its application [8, 26–29]. In contrast, SOA and DA

divide the simulated culture into several time intervals and solve the system in each of them.

As a result, these approaches are often used in GSM models like S. cerevisiae [9–11, 30–39], E.

coli [8, 40–47], S. cerevisiae and E. coli cocultures [48–50], CHO cells, Shewanella oneidensis,
Chlamydomonas reinhardtii, Lactococcus lactis, and even soil consortia [29, 51–55]. SOA inte-

grates ordinary differential equations (ODE) using a previously predicted intracellular opti-

mum, requiring a small step size, whereas DA solves the ODE simultaneously with

intracellular behavior [56], which is an advantage in predicting fed-batch cultures [35].The

above leads to suggest DA is an appropriate approach to predict PDO production over time

using DFBA, which we seek to qualitatively as well as quantitatively validate based on their pre-

dictions as well as computational time requirements.

Phenotypic predictions using FBA or DFBA have some challenges in their implementation

[57, 58], as with other biological models (i.e., quorum sensing and structured kinetic models).

These challenges include the adequate selection of the input parameter values or the model’s

capability to respond to perturbations [59]. Concerning to perturbations performed in GSM

models, they are focused to increase the yield of the metabolite of interest using approaches as

prediction of mutants by knockout, downregulations of genes or fed-batch cultures [32, 51, 56,

60]. However, these perturbations do not identify the significance of input parameters on

DFBA predictions as do the sensitivity analyses approaches. Different sensitivity analyses

approaches have been performed in other kinds of biological models to identify significance of

input parameters, but the application of such approaches in DFBA predictions have been

rarely considered [57, 58, 61–68]. Hence, we consider essential to perform sensitivity analyses

to identify parameters with significance on DFBA predictions.

Sensitivity analyses can be either local or global. In local sensitivity analysis, the output variable

model is evaluated by varying only one input parameter around a local point, while all other input

parameters remain constant. However, the local approach is not recommended in biological mod-

els as we need to account for the uncertainty in all the input parameters simultaneously [57].

Global sensitivity analysis quantifies the overall effect on the model of several input parameters

within large ranges, making it more appropriate for biological models [57]. Global sensitivity

approaches include multi-parametric sensitivity analysis (MPSA), partial rank correlation coeffi-

cient (PRCC), the Morris method, the Sobol method, or the Fourier amplitude sensitivity test

(FAST) [57, 69]. MPSA or PRCC approaches have low computational cost but are restricted to

monotonic models. The Sobol method or FAST have high computational cost, and are recom-

mended only in small-scale biological models [57]. In addition, results using low (PRCC) and

high (Sobol and FAST) computational costs are highly correlated, suggesting that the results are

independent of the approach selected [64]. Therefore, sensitivity analysis of DFBA predictions

could be developed using approaches with low computational cost as PRCC or MPSA. MPSA

uses the Kolmogorov–Smirnov (K-S) statistic to evaluate the significance level between each pair

of output variable and input parameter, being the input parameters randomly generated by meth-

ods like Monte Carlo approach. On the other hand, PRCC calculates a positive or negative corre-

lation between each couple of input parameter and output variable using the Pearson correlation

coefficient [57]. Therefore, MPSA and PRCC results can complement each other to ensure a

more robust sensitivity analysis of DFBA model.

Monte Carlo approach can be employed also to perform numerical Population balance

models (PBM) besides global sensitivity analysis as MPSA or PRCC. PBM are developed to

capture the heterogeneity in bioreactor caused by the cell variability in order to improve the

design and control of bioprocesses [70]. From the kinetic point of view, a PBM is a segregated

model where population is distributed by at least one cell characteristic as size, age, mass, etc,

Clostridium butyricum population balance model
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making segregated models highly complex [71]. Therefore, Mantzaris et. al. [72] highlight the

possibility of developing this kind of segregated models by numeric randomizing of input

parameters by approaches like Monte Carlo, to avoid the mathematical complexity that is char-

acteristic of segregated models. This led us to propose a numerical PBM coupled to DBFA that

predicts the heterogeneity in PDO predictions caused by cell variability.

This study describes the development of a dynamic metabolic model of Clostridium butyri-
cum capable of predicting cultures to produce and accumulate PDO when grown in glycerol,

comparing previously predictions using DOA, SOA, and DA approaches. A recently recon-

structed GSM model (iCbu641), which was validated at steady state using nonlinear objective

functions [6], is used as the basis to develop the dynamic model. The predictions from the

developed dynamic model were validated using fermentation data from batch cultures of the

Colombian strain Clostridium sp IBUN 158B, isolated by our Bioprocesses and Bioprospecting

Group. This strain is a natural PDO producer and has been employed over the past 20 years in

several studies aimed at understanding PDO production, including proteomic analysis [73–

75]. Additionally, using MPSA and PRCC approaches, the sensitivity analysis of the dynamic

model revealed the key parameters which can be exploited to increase PDO production. This

was complemented with the development of a PBM that quantified variability in PDO predic-

tions. Finally, we performed perturbations in culture conditions, also in order to increase PDO

production.

Material and methods

Bacterial strain, fermentation, and culture conditions

Experimental validation of PDO production was performed using Colombian-native strain

Clostridium sp IBUN 158B, isolated and stored by the Bioprocesses and Bioprospecting

Research Group from the Institute of Biotechnology of the Universidad Nacional de Colombia.

Activation was done using sterile reinforced Clostridial medium (RCM) at pH 7 and cultured

anaerobically during 12 hours at 37˚C after a previous heat shock [75]. Inoculum were cul-

tured in 100 mL vials during 24 hours at 37˚C in an industrial medium with the following

composition: glycerol (40 g/L), yeast extract (3 g/L), cysteine (0.5 g/L), K2HPO4 (1 g/L),

KH2PO4 (0.5 g/L), biotin (4 mg/L), PABA (3 mg/L), and minerals solution (4 mL/L).

Cultures were performed in a BIOSTAT reactor with a culture volume of 1 L of industrial

medium and 10% of inoculum. The following conditions were maintained constant: tempera-

ture (37˚C), pH (7), agitation (90 rpm), bubbling gas (N2), gas flow (0.005 vvm), and dissolved

oxygen (<1.5%). We performed two cultures at glycerol limitation and two cultures at glycerol

excess (an initial glycerol concentration of less than and greater than 15 g/L, respectively).

Quantification of biomass, substrate, and products

Biomass was determined indirectly by spectrophotometry at 600 nm using ThermoScientific

Evolution 201, and the dry weight was calculated using the calibration curve. Substrate glycerol

and the products PDO, butyric acid, acetic acid, lactic acid, and butanol were quantified using

ultra-fast liquid chromatography (UFLC) with a refractive index detector (Shimadzu RID

10A) at 60˚C and AMINEX HPX— 87H column (Biorad) at 63˚C, a solution of 3 mM of sulfu-

ric acid as the phase mobile, and 0.5 mL/min flow during 45 minutes of run time. The samples

had a volume of 750 μL and were located in a Shimadzu Prominence LC-20AD autosampler,

which ultimately injected 20 μL to UFLC. Lab Solutions software V. 1.25 (Shimadzu) was used

for calculating retention time, the slope of the straight line, and linear ratio coefficients (R2) to

determine the concentrations of the compounds evaluated.

Clostridium butyricum population balance model
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Dynamic predictions using DFBA

The numerical solution of DFBA requires differential equation parametrization for both the

DOA and DA approaches [8, 35]. We used the Lagrange interpolating polynomial and its first

derivative (Eqs 1 and 2, respectively) [76]. We evaluated the following orthogonal polynomials:

Chebyshev of the first kind, Chebyshev of the second kind, Laguerre, Legendre, and Hermite.

The polynomials were evaluated with six collocation points, xa, calculated using the Orthopoly-
nom package by R Project. A higher number of collocation points would enhance the adjust-

ment of differential equations but also increase the computational cost.

YP Xð Þ ¼
XPþ1

a¼1

½ybðxaÞ � lbðxaÞ�

ybðxaÞ ¼

(
0 a 6¼ b

yb a ¼ b

lbðxaÞ ¼
YPþ1

b ¼ 1

b 6¼ a

x � xb

xa � xb

8 a; b 2 1; . . . ; P þ 1 Eq 1

8
>>>>>>>>><

>>>>>>>>>:

dYPðXÞ
dX

¼
XPþ1

a¼1

ybðxaÞ �
d lbðxaÞ

dx

� �

Eq 2

Where: YP(X) is the Lagrange interpolating polynomial, with Y as the output variable and X

the input variable; P+1 is the number of collocation points that pass through polynomial order

P; the collocation point a is denoted by xa; yb is the interception point b; and lb(xa) is the b
term of the Lagrange interpolating polynomial.

Death constants (kd), kinetic adjustments of the upper bound of acetic acid secretion flux

(Eq 3), and glycerol uptake flux (Eq 4) were used as constraints of the dynamic model. The

summary of kinetic parameters is shown in Table 1. Death constants were calculated using

data from Solomon et al. [77], whereas acetic acid constraint was previously adjusted [6] using

experimental data from Solomon et al. [77] and Papanikolaou et al [78]. Regarding the glycerol

kinetic model, this was adjusted using only glycerol profiles of three cultures: the first was one

culture at glycerol limitation, the second was one culture at glycerol excess, both from this

study, the third culture was performed at glycerol excess by Aragon [79]. Additionally, we

used the general Eq 5 to describe both objective functions Z used, where w depends on glycerol

concentration: thus the first objective function is at glycerol limitation (w = 1) and the second

objective function is at glycerol excess (w = 0.04) [6]. The DFBA was solved using the DOA,

SOA, and DA approaches, as shown in Eqs 6, 7 and 8, respectively [8, 35]. Despite the objective

Table 1. Summary of kinetic parameters used in the DFBA model with glycerol as the only carbon source.

Parameter Description Value Units Origin of data

vaa
0

Basal flux of acetic acid secretion (glycerol uptake flux trends to zero) 0.1578 mmol/g�h [77, 78]

vaa
1

Maximum flux of acetic acid secretion (glycerol uptake flux trends to infinite) 11.50 mmol/g�h [77, 78]

Raa Accumulation rate of acetic acid secretion flux in function of glycerol uptake flux 0.0859 g�h/mmol [77, 78]

klim
d Death constant at glycerol limitation 0.0350 h-1 [77]

kexc
d Death constant at glycerol excess 0.0105 h-1 [77]

vGly
max Maximum flux of glycerol uptake 174.86 mmol/g h This study, [79]

kGly
s Affinity constant of glycerol uptake flux to glycerol concentration 482.1 mM This study, [79]

kGly
I Inhibition constant of glycerol uptake flux to glycerol concentration 755.4 mM This study, [79]

https://doi.org/10.1371/journal.pone.0209447.t001

Clostridium butyricum population balance model

PLOS ONE | https://doi.org/10.1371/journal.pone.0209447 December 20, 2018 5 / 29

https://doi.org/10.1371/journal.pone.0209447.t001
https://doi.org/10.1371/journal.pone.0209447


functions employed are non-convex, Schuetz et al. suggested that the predicted local optimum

is indeed the global optimum [80], which also we validated previously [6]. Regarding the con-

straints, Eqs 3 and 4 are the only nonlinear constraints employed in dynamic models, where

Eq 3 is a logistic model and Eq 4 is a Ghose and Tyagi model, which are both convex functions,

meaning they do not affect the global optimum calculated by the three approaches evaluated.

vmax
A:Ac: ¼

vaa
1
� vaa

0
� eðRaa�vGlyÞ

vaa
1
þ vaa

0
� ½eðRaa �vGlyÞ � 1�

Eq 3

vGly ¼
vGly

max � ½Glycerol�
kGly

s þ ½Glycerol�

 !

� 1 �
½Glycerol�

kGly
I

� �

Eq 4

Z ¼
m

ðw �
PN

j¼1
v2

j þ ð1 � wÞ � v2
ATP prodÞ

Eq 5

Max
XG

g¼0

Z tf

0

½Z � dðt � tgÞ� dt

Subject to

dzi

dt
¼ �

XNExchange

j¼1

Sij � vj � X 8 i 2 1; . . . ;MExtracellular

dX
dt
¼ m � kdð Þ � X

XN

j¼1

Sij � vj ¼ 0 8 i 2 1; . . . ;M

m ¼
XN

j¼1

cj �

vjv
min
j < vj < vmax

j 8 j 2 1; . . . ;N

ĉ v; zð Þ � 0

zi tð Þ � 0 zi t0ð Þ ¼ zi;0 8 i 2 1; . . . ;MExtracellular

X tð Þ � 0 X t0ð Þ ¼ X0

tg ¼ t0 þ g �
tf � t0

G
8 g 2 0 . . . :G

Eq 6

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Where: M is the total number of metabolites (Mextracellular are the extracellular metabolites);

N is the total number of reactions (Nexchange are the exchange reactions); Sij is the stoichiomet-

ric coefficient of metabolite i in reaction j; vj is the flux value in which this reaction occurs;

vj
max and vj

min are the upper and lower bounds of the flux vj; zi is the extracellular concentra-

tion of metabolite i (zi,0 is the initial concentration); X is the biomass concentration (X0 is the

initial concentration); μ is the specific growth rate; cj is the weight of reaction i in growth rate;

ĉ(v,z) is the vector of nonlinear constraints, which in this case are Eqs 3 and 4; the initial and

final times of simulated culture are t0 and tf. δ(t—tg) is the Dirac delta function; and G is the

Clostridium butyricum population balance model
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total number of intervals in which the culture time was discretized.

Max Z 8 tg 2 ½t0; tf �

Subject to

ziðt þ DtÞ ¼ ziðtÞ �
XNExchange

j¼1

Sij � vjðtÞ � XðtÞ � Dt

8 i 2 1; . . . ;MExtracellular

X t þ Dtð Þ ¼ X tð Þ þ m � kdð Þ � X tð Þ � Dt
XN

j¼1

Sij � vj ¼ 0 8 i 2 1; . . . ;M

m ¼
XN

j¼1

cj � vj

vmin
j < vj < vmax

j 8 j 2 1; . . . ;N

ĉ ziðtÞ; vjðtÞ
� �

� 0

zi tð Þ � 0 zi t0ð Þ ¼ zi;0 8 i 2 1; . . . ;MExtracellular

X tð Þ � 0 X t0ð Þ ¼ X0

Dt ¼
tf � t0

G
8 g 2 0 . . . :G

Eq 7

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Max Z 8 tg 2 ½t0; tf �

Subject to

dzi

dt
¼ �

XNExchange

j¼1

Sij � vj � X 8 i 2 1; . . . ;MExtracellular

dX
dt
¼ m � kdð Þ � X

XN

j¼1

Sij � vj ¼ 0 8 i 2 1; . . . ;M

m ¼
XN

j¼1

cj � vj

vmin
j < vj < vmax

j 8 j 2 1; . . . ;N

ĉ v; zð Þ � 0

zi tð Þ � 0 zi t0ð Þ ¼ zi;0 8 i 2 1; . . . ;MExtracellular

X tð Þ � 0 X t0ð Þ ¼ X0

tg ¼ t0 þ g �
tf � t0

G
8 g 2 0 . . . :G

Eq 8

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Global sensitivity analysis development

We evaluated the composition of 44 biomass precursors (seven fatty acids, 20 amino acids,

eight nucleotides, three polar lipids, and six cofactors) and eight macromolecules (proteins,

DNA, RNA, lipids, teichoic acid, peptidoglycans, carbohydrates, and pool of traces) expressed

Clostridium butyricum population balance model
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by the variation of their stoichiometric coefficients in the GSM model. We included the eight

kinetic parameters shown in Table 1, for a total of 60 input parameters. The DFBA model was

performed using K different combinations of input parameter values randomly generated

using normal distributions with a relative standard deviation (RSD) of 30%, excepting the

kinetic parameters of glycerol uptake flux, which had a RSD of 20%. In total, the global sensi-

tivity analyses used 2280 predicted profiles.

The first sensitivity analysis developed was MPSA, as proposed by Zi et. al. [68], who used

the K-S statistic. Initially, we calculated for each profile k the mean squared error (MSE) (Eq

9), which compares the experimental xexp and predicted xpred values. The experimental values

are from the first culture at glycerol excess (6 data). The K values of MSE were compared with

a threshold value, which was calculated by error propagation (i.e., (6 g/L)2, (0.057 g/L�h)2, and

(0.052 mol/mol)2 for PDO production, PDO productivity (QPDO), and glycerol conversion to

PDO (YPDO/S), respectively). The k profile was classified as “unacceptable” if its MSE value was

greater than the threshold; conversely, it was “acceptable” if the MSE value was less than the

threshold. Then, the maximum distance between cumulative frequency distributions of

“acceptable” and “unacceptable” cases was calculated as the K-S value for each pair of input

parameter and output variable. A high K-S value for a given input parameter indicates a high

sensitivity of the output variable to that parameter [68]. We calculated the critical value of the

K-S statistic (DK-S), which depends on the number K of profiles, as shown in Eq 10. If the K-S
value of an input parameter is less than the DK-S, its “acceptable” and “unacceptable” distribu-

tions are statistically equal.

SECðkÞ ¼
Xn

i¼1

ðxexpðiÞ � xpredði; kÞÞ
2
8 k 2 1; . . . ;K Eq 9

DK� S ¼
1:36
ffiffiffiffi
K
p Eq 10

We performed PRCC sensitivity analysis and calculated the Pearson correlation coefficient,

which is the relation between the covariance and variances of each pair of the input parameter

and output variable. The PRCC sensitivity analysis evaluated only the output variables QPDO

and YPDO/S. The PDO profile was excluded, since the PRCC analysis is static.

Development of a segregated approach for the dynamic model

We created random profiles with the Monte Carlo approach using an RSD of 30%, similar to

the global sensitivity analysis. We produced four groups of profiles. In the first group, we per-

turbed only the 44 precursors’ input parameters, while the other input parameters were main-

tained as constants. In the other groups, the eight macromolecules, the two death constants,

and the three kinetic parameters of acetic acid secretion were perturbed similarly. These 57

input parameters were considered in the development of the PBM [70]; the three kinetic

parameters of glycerol uptake flux were excluded.

We also perturbed the input parameters of precursors and macromolecules, varying the

RSD to 10, 20, and 30% in order to evaluate the biomass composition effect on PDO formation

and biomass molecular weight. Finally, we compared the experimental values of PDO produc-

tion with the PBM profiles in which we varied biomass composition (precursors and macro-

molecules content), age (death constants), and capability to produce acetic acid. Therefore, the

dynamic prediction model was both structured and segregated.

Clostridium butyricum population balance model
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Perturbation in culture conditions

We performed a complete factorial design to predict a reduction in fermentation time in batch

cultures, evaluating 15 initial concentrations of inoculum and 13 initial concentrations of glyc-

erol. We simulated fed-batch cultures to predict an increment in the final PDO concentrations.

The objective function Z was maintained; however, some constraints were modified (Eq 11)

due to the dependence on time of both the reactor volume V and feeding flow F.

Max Z 8 tg 2 ½t0; tf �

Subject to

dðV�ziÞ

dt
¼ F�SF;i �

XNExchange

j¼1

V�Sij�vj�X

8 i 2 1; . . . ;MExtracellular

dðV�XÞ
dt

¼ V�ðm � kdÞ�X

dV
dt
¼ F

F ¼

( a Constant feeding rate

b�vHþ �X�V Feeding rate coupled to pH control

XN

j¼1

Sij�vj ¼ 0 8 i 2 1; . . . ;M

m ¼
XN

j¼1

cj�vj

vmin
j < vj < vmax

j 8 j 2 1; . . . ;N

ĉðv; zÞ � 0

ziðtÞ � 0 ziðt0Þ ¼ zi;0 8 i 2 1; . . . ;MExtracellular

XðtÞ � 0 Xðt0Þ ¼ X0

VðtÞ � Vmax Vðt0Þ ¼ V0

tg ¼ t0 þ g�
tf � t0

G
8 g 2 0 . . . :G

Eq 11

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Where: F is the feeding flow (expressed in L/h), α and β are the constants of proportionality

at constant feeding flow and feeding flow coupled to pH control, respectively; vH+ is the proton

secretion flux; V is the reactor volume in the instant t (V0 is the initial volume and Vmax is the

maximum capacity of the reactor); and SF,i is the concentration of metabolite i in the feeding

flow F.

As is observed in Eq 11, we evaluated two feeding flow strategies. The first considered a

constant flow α during the entire culture. We performed a complete factorial design where we

evaluated the glycerol mass percentage in the feeding flow in addition to the α value. We

assumed the initial and the maximum volume were 1 L and 1.5 L, respectively, and we avoided

growth limitation by nitrogen or phosphorus starvation by adding these substrates in the feed-

ing flow. The second strategy was feeding flow coupled to pH control. The other constraints

Clostridium butyricum population balance model
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used during constant feeding flow were maintained the same. This complete factorial design

evaluated the mass content of glycerol in the feeding flow and the proportionality factor β.

Technical implementation

DFBA was computer simulated using GAMS (General Algebraic Modeling System, GAMS

Development Corp., Washington, DC) software V.24.2.2 r44857 for Linux with solver CON-

OPT v3.15N. Data were analyzed using Microsoft Excel 2010.

Results and discussion

Development and validation of a dynamic model using DFBA

The iCbu641 GSM model [6] and DFBA were employed to predict PDO production over

time. The central metabolism of iCbu641 is shown in Fig 1. The orthogonal collocation

method was solved using the Legendre polynomial; other polynomials were evaluated but did

not yield any differences (See Fig A in S1 File for complete profiles). Predictions of a glycerol

limitation culture obtained using SOA, DOA, and DA solutions appear in Fig 2A. Time pro-

files using the three approaches have a maximum difference of 0.07 g/L in the final PDO pre-

dicted. However, the DOA solution was the slowest, requiring approximately 5200-fold the

time used by SOA and DA solutions, as shown in Fig 2B. Additionally, as we described previ-

ously [6], two objective functions are needed to predict PDO production during some scenar-

ios of glycerol consumption, this is opposite to DOA requirements, which uses only one

objective function over the entire simulated culture time. Therefore DOA cannot be employed

in scenarios with change of objective function due to substrate consumption. On the other

hand, despite SOA is the simplest approach, the reduction of the time required was not signifi-

cant. Therefore, the DA solution was selected, which additionally can capture model perturba-

tions, as shown with fed-batch cultures [8, 35].

Fig 3 shows dynamic predictions and experimental data of four different Clostridium sp

IBUN 158B batch cultures, the first two at glycerol limitation and the other two at glycerol

excess. In general, the predictions of glycerol consumption and biomass, PDO, and butyric

acid production are similar to experimental values, validating the results obtained at steady

state, where objective functions were proposed [6]. Nevertheless, for both cultures at glycerol

limitation, an underestimation in glycerol consumption and PDO formation was observed

when the glycerol concentration was less than 5 g/L. This underestimation is caused by the

incorrect parameters estimation of the kinetic model of glycerol uptake flux from experimental

data, since at low glycerol concentrations (i.e., from 0 to 5 g/L) the adjustment error was higher

than the average adjustment error (See Fig A in S2 File for kinetic adjustment). This adjust-

ment error could be caused due to constraints such as feedback inhibition or activation were

not included in the kinetic model. There is also the non-growth-associated maintenance

(NGAM) flux effect becoming significant on metabolic flux distribution prediction when sub-

strate uptake flux is small [81]. This is because a high percentage of substrate consumption is

directed to maintenance, and a lower fraction is directed to cellular growth and therefore to

the formation of products such as PDO. This yield variation caused by the constraints is in

agreement with results of Klamt et al. [82], who mathematically validated that fluxes and yields

can act differently because of constraints, such as NGAM, and therefore proposed a linear-

fractional programming (LFP) approach to maximize a yield instead a flux.

Fig 3D shows significant differences between the predicted and experimental values of ace-

tic acid starting from the decelerated growth phase (i.e. at small glycerol uptake flux). This is

due to the allosteric model employed as the upper bound of acetic acid secretion flux in the

function of glycerol uptake flux (See Fig B in S2 File for kinetic adjustment). The last can be

Clostridium butyricum population balance model
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Fig 1. Anaerobic metabolism of glycerol by Clostridium butyricum of the iCbu641 GSM model. Notation: substrates (yellow dots), intracellular metabolites (orange

dots), extracellular products (green dots) [6].

https://doi.org/10.1371/journal.pone.0209447.g001
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interpreted as error propagation from glycerol uptake flux kinetics to allosteric kinetics at low

glycerol concentration levels. This allosteric constraint was previously adjusted from steady-

state cultures in order to capture the mechanism used by Clostridium butyricum to control ace-

tyl-CoA/CoA and ATP/ADP ratios, allowing to predict butyric acid secretion [6, 83]. The allo-

steric trend of acetic acid secretion flux is presented in Fig 4, which also shows the secretion

flux of butyric acid, lactic acid and PDO as a function of glycerol concentration. The pheno-

typic change observed when glycerol falls to 15 g/L is described previously when glycerol is in

limitation or in excess [77], and it corresponds to objective functions change we previously

proposed [6]. From Fig 4, it is observed that PDO production is favored at glycerol excess con-

ditions (>15 g/L), along with a higher acetic acid secretion flux than butyric acid secretion

flux. This observation is consistent with studies of enzymatic activities, which indicate a slow

decrease in activity of butyric acid forming thiolase (EC.2.3.1.9), but an increase in activity of

acetate kinase (EC.2.7.2.1), PDO dehydrogenase (EC.1.1.1.202) and glycerol dehydratase

(EC.4.2.1.30) with increasing glycerol uptake flux [84, 85].

Finally, the dynamic model predicted lactic acid formation at glycerol limitation conditions,

as shown in Fig 3F. This is caused by the allosteric constraint of acetic acid secretion flux,

which forces the prediction of proton secretion through other acids as lactic acid, since acetic

acid secretion is reduced at low levels of glycerol concentrations, as is also observed in Fig 4.

However, the maximum concentration predicted of lactic acid was 0.3 g/L, which means this

value could fall to 0 due to error propagation described previously, making negligible the lactic

acid predicted during Clostridium sp IBUN 158B cultured in glycerol. Although lactic acid for-

mation implies NADH consumption and competes with PDO formation, this favors biomass

formation [83, 86]. Conversely, lactic acid was detected experimentally at the end of only one

culture (the longest) at glycerol excess, implying a possible stress during this culture in particu-

lar. The experimental value was 0.17 g/L, suggesting that lactic acid does not compete substan-

tially during PDO formation by the Clostridium sp IBUN 158B strain, which is in agreement

with dynamic predictions. Regarding the possible stress described above, we can suggest it was

caused by a reduction of the anaerobiosis during this culture after the 20th hour. The

Fig 2. Comparison DFBA predictions using the DOA, SOA, and DA approaches. (a) Glycerol consumption (continuous lines) and PDO production (dashed lines)

profiles using DOA (green lines), SOA (black lines), and DA (red lines) approaches. (b) Elapsed time during DFBA solution using different approaches.

https://doi.org/10.1371/journal.pone.0209447.g002
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hypothesis is supported by observations of Chatzifragkou et. al. [87], who found that an ineffi-

cient mechanism of anaerobiosis during culture increments the lactate production.

Global sensitivity analysis and population balance model development

We performed global sensitivity analysis on all 60 input parameters obtained from experimen-

tal information due to the uncertainty around such parameters [57, 58]. Three input parame-

ters related to glycerol uptake flux were calculated from Clostridium sp IBUN 158B cultures in

glycerol. The other 57 input parameters evaluated are: two death constants (the first one for

glycerol excess and the second one for glycerol limitation), kinetic parameters associated with

acetic acid secretion (three input parameters), and stoichiometric coefficients of precursors in

biomass formation (44 precursors and 8 macromolecules). These 57 input parameters were

obtained from other Clostridium cultures [22, 77, 78]. We obtained 2280 PDO production pro-

files via simultaneous perturbation of the 60 input parameters described above (See Fig A in S3

File for complete profiles). MPSA was the first global sensitivity analysis; the Kolmogorov–

Smirnov (K-S) statistic results of different output variables are shown in Fig 5A. PRCC was the

second global sensitivity analysis; Fig 5B presents the Pearson coefficient correlation results.

The MPSA and PRCC results are correlated, therefore any of these can the employed in sensi-

tivity analysis of GSM models. However their results complement each other: MPSA quantifies

Fig 3. Comparison of DFBA predictions and experimental profiles of Clostridium sp IBUN 158B cultured at different glycerol conditions. (a)

Biomass formation. (b) Glycerol consumption. (c) PDO formation. (d) Acetic acid formation. (e) Butyric acid formation. (f) Lactic acid formation.

Notation: culture 1 at glycerol limitation (blue lines), culture 2 at glycerol limitation (red lines), culture 1 at glycerol excess (green lines), and culture 2

at glycerol excess (yellow lines).

https://doi.org/10.1371/journal.pone.0209447.g003

Fig 4. Comparison of some predicted fluxes by DFBA in the function of extracellular concentration of glycerol. Notation: PDO

secretion flux (blue line), acetic acid secretion flux (red line), butyric acid secretion flux (green line), and lactic acid (yellow line).

Vertical line denotes the change from suboptimum to optimum phenotype when glycerol falls to 15 g/L.

https://doi.org/10.1371/journal.pone.0209447.g004
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Fig 5. Results of global sensitivity analyses of the dynamic model. (a) MPSA global sensitivity analysis. (b) PRCC global

sensitivity analysis. The input parameters were grouped as follows: 44 precursors (I), eight macromolecules (II), three kinetic

Clostridium butyricum population balance model
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which input parameters are significant and which are not, meanwhile PRCC determines the

positive or negative effect of each input parameter.

Fig 5A shows that all input parameters have effect on output variables, since K-S values are

higher than critical value (DK-S), which is presented as a blue line. Fig 5 also shows that glycerol

uptake kinetic parameters are the most significant in PDO production and culture time predic-

tions. The maximum glycerol uptake flux (Vmax
Gly) and the inhibition constant (Ki

Gly) were

positively correlated to PDO production, while the glycerol affinity constant was negatively cor-

related (Ks
Gly) to PDO production, which is consistent to other previously reported metabolic

models [9, 88]. The effects of precursors, macromolecules, and death constants on output vari-

ables were lower and similar to results at steady state [6] and results reported by Hjersted and

Henson [38], who evaluated two different biomass compositions and obtained a difference of

1.8% between biomass profiles. Finally, the accumulation rate (Raa) and initial value (V0
aa) of

acetic acid secretion flux had a positive effect on glycerol conversion to PDO (YPDO/S), indicating

correlation between PDO and acetic acid fluxes, as shown in Fig 4, and as reported by Zeng [89].

Concisely, input parameters with the highest significance were calculated from Clostridium
sp IBUN 158B cultures in glycerol. Conversely, the remaining 57 input parameters, which

were obtained from other Clostridium cultures, had the lowest effect on output variables. In

other words, this dynamic model is robust because of the low impact of perturbing these 57

input parameters. Otherwise, they could not be considered in the dynamic model and we

would have to calculate them specifically for Clostridium sp IBUN 158B cultured in glycerol,

which would be experimentally demanding.

Subsequently, the 57 input parameters obtained from other Clostridium cultures were ana-

lyzed separately and used in combination to develop a population balance model (PBM) (See

S4 File). However, one of the main challenges developing a PBM is the selection of the number

of cells to model so as to avoid affecting the overall prediction [90]. Danø et. al. [91] reported

that 1000 cells were sufficient. This agrees with the results we obtained, where PBM predic-

tions varied less than 0.35% between 900 and the maximum number of modeled cells (3300)

(See Fig A in S4 File). Regarding the PBM results, Fig 6 shows the relative standard deviation

(RSD) of PDO production in the function of culture time obtained from profiles shown in Fig

B in S4 File. Results are consistent with global sensitivity analysis, perturbation in the precur-

sor composition (black line) caused the smallest variation in the PDO formation profile. Per-

turbation in the macromolecules’ composition (red line) and death constants (yellow line)

both have a higher effect on the PDO profile; however, predictions anticipate that their effect

on final PDO concentration is up to 0.3%, similar to the steady-state results [6]. Fig 6 also

shows that the maximum RSD is predicted at decelerated growth phase. Finally, according to

PBM predictions the acetic acid kinetic constraint (green line) had the highest effect on PDO

dispersion at the end of the culture, but only 1.7%, validating the global sensitivity analysis.

The PBM predictions were performed assuming a 30% RSD of biomass composition (pre-

cursors and macromolecules) and kinetic parameters (acetic acid production and death con-

stants). However, there is uncertainty in the selection of these RSD values using the

Clostridium sp IBUN 158B strain. Therefore, we evaluated three RSD values for biomass com-

position: 10%, 20%, and 30%. The results are shown in S4 File as follows: random profiles are

in Fig C, and RSD profiles of PDO production are presented in Fig D. As shown in part (a) of

Fig D in S4 File, the maximum PDO dispersion decreases from 14.6 to 10.7% when biomass

RSD drops from 30% to 10%, but no differences in the PDO dispersion are predicted at the

parameters of acetic acid secretion flux (III), two kinetic parameters of cellular death (IV), and three kinetic parameters of

glycerol uptake flux (V).

https://doi.org/10.1371/journal.pone.0209447.g005
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end of the culture. Due to the previously mentioned uncertainty, we selected dispersion in bio-

mass molecular weight as an indirect indicator of biomass RSD selection. This dispersion

decreased from 3.1 to 1.0% at the range evaluated, as shown in part (b) of Fig D in S4 File.

Therefore, we maintained a 30% RSD in biomass composition, because its dispersion in the

biomass molecular weight (3.1%) was similar to the experimental values reported in other

studies (2.75% and 2.51%, respectively, both using E. coli cultures) [71, 92]. The RSD of the

kinetic parameters were also maintained at 30%, supported mainly by Mönier et. al. [93], who

reported RSDs ranging from 28.4 to 33.3%.

Based on the above results, the experimental and predicted values of PDO produced in dif-

ferent cultures are compared in Fig 7; the error bars are the standard deviation from PBM pre-

dictions (See Fig E in S4 File, for complete predicted profiles). Most experimental values were

adequately predicted by the dynamic model. The PDO values with the lowest predictions cor-

respond to data from the decelerated growth phase in glycerol limitation cultures, as previously

mentioned. Despite these underestimated values, the linear correlation between experimental

and predicted values had standard error and correlation coefficients of 4.4% and 97.6%,

respectively. Consequently, using the dynamic model developed through DFBA, the previously

proposed objective functions [6] and complemented using PBM, we properly predicted the

PDO production of Clostridium sp IBUN 158B strain.

Perturbation in culture conditions

Later, we evaluated different strategies to predict an increase in PDO production through per-

turbation in culture conditions. First, we perturbed the initial concentrations of glycerol and

biomass in batch cultures; the results of conversion (YPDO/S) and productivity (QPDO) are

shown in Fig 8. Simulations predict YPDO/S reduction at low glycerol concentrations, however

Fig 6. Profiles of relative standard deviations (RSDs) of predicted PDO formation for perturbation in input

parameters. Notation: 44 precursors (black line), eight macromolecules (red line), two death constants (yellow line),

three kinetic parameters of acetic acid secretion flux (green), 57 input parameters simultaneously (blue line). RSD for

all input parameters was 30%.

https://doi.org/10.1371/journal.pone.0209447.g006
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Fig 7. Comparison of experimental and predicted PDO values by the dynamic population balance model (PBM).

Error bars correspond to predicted standard deviation obtained by PBM. Notation: culture 1 at glycerol limitation

(blue dots), culture 2 at glycerol limitation (red dots), culture 1 at glycerol excess (green dots), and culture 2 at glycerol

excess (yellow dots).

https://doi.org/10.1371/journal.pone.0209447.g007

Fig 8. Response surfaces predicted by DFBA, varying initial concentration of biomass and glycerol in batch culture. (a). Predicted glycerol conversion to

PDO yield (YPDO/S). (b) Predicted PDO productivity (QPDO).

https://doi.org/10.1371/journal.pone.0209447.g008
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at these initial glycerol levels (<5g/L) predictions cannot be trusted according to the aforemen-

tioned about kinetic adjustment error of glycerol uptake flux at these concentrations. Opti-

mum productivity values are predicted at an initial glycerol concentration of 46 g/L, which is

within the range previously reported for this strain (among 40 and 50g/L) [79, 94]. Fig 8B also

shows a monotonic trend of PDO productivity in the function of initial biomass. However,

according to previous studies of Clostridium sp. IBUN 158B, biomass inoculum has to be at

the exponential phase [79, 94], meaning the maximum initial biomass concentration could be

0.12 g/L. Therefore, for batch cultures, using 0.12g/L and 46g/L as initial concentrations of bio-

mass and glycerol, respectively, the optimum productivity predicted was 1 g/L�h, while the

respective PDO final concentration was 23.5 g/L.

The second strategy was predicting fed-batch cultures varying the mode and the glycerol con-

tent in the feeding flow. The first feeding mode evaluated was feeding with a constant flow during

the culture. Predicted results of production, productivity (QPDO), and conversion yield (YPDO/S)

are shown in Fig 9, where glycerol concentration in feeding flow was also evaluated (See Fig A in

S5 File for front, side and top views of Fig 9). An inhibitory zone is observed, caused either by an

over feeding flow or an overload of glycerol in the feeding flow, in other words it is the infeasible

zone with no PDO production and is presented with red dots. The zone with no inhibition but

with suboptimal production is represented with blue dots, while the Pareto frontier of PDO pro-

duction is shown with green dots. Excluding the infeasible zone, YPDO/S yield values remained

constant, while the maximum production of PDO was 46.9 g/L, and productivity QPDO was up to

0.64 g/L�h. For the same initial conditions, fed-batch cultures enhanced production and produc-

tivity near to 144% and 28%, respectively, compared to batch cultures. However, this is still lower

than experimental results using other Clostridium strains, wherein some production and produc-

tivity values were 70.8 g/L and 0.71 g/L�h [87] or 61.2 g/L and 1.02 g/L�h [95], respectively.

Given the above and due to the results of Reimann et. al. [96], who improved PDO pro-

duction from 47.5 to 70.3 g/L using a feeding flow coupled to the pH control (i.e. exponential

feeding flow during the culture), we evaluated a final strategy where the feeding flow was

proportional to proton (H+) production. According to Fig 10, the new feeding mode also pres-

ents an infeasible zone (red dots) and a suboptimal zone (blue dots) (See Fig B in S5 File for

front, side and top views of Fig 10). Fig 10 also shows that lower YPDO/S yields are predicted

compared with the constant feeding flow, which is caused by higher PDO productions and

inhibiting growth by product. Therefore, the better cultures (green dots) were selected using a

minimum mass conversion of 45% and a maximum concentration of glycerol at the end of the

culture of 5g/L as constraints, avoiding scenarios with unconsumed glycerol (yellow dots).

Therefore, the best scenario predicted a final PDO production of 66.1 g/L with a productivity

of 1.15 g/L�h, which is shown in Fig 11 along with the optimum batch culture predicted. Fed-

batch results are within the expected range according to the experimental values of different

Clostridium strains [4, 5, 87, 95, 97–100], allowing to suggest that after the optimization of pro-

duction and purification, this strain could be adequate to produce PDO industrially, taking

advantage of glycerol co-produced during biodiesel obtainment.

Conclusions

The iCbu641 GSM model, previously validated at steady state through prediction of different

Clostridium butyricum cultures, was employed to predict dynamic cultures. Such dynamic-

Fig 9. DFBA predictions of fed-batch cultures assuming constant feeding flow. (a) Final predicted PDO

concentration. (b) Predicted PDO productivity (QPDO). (c) Predicted glycerol conversion to PDO yield (YPDO/S).

Notation: infeasible cultures (red dots), suboptimal cultures (blue dots), and optimal cultures (green dots).

https://doi.org/10.1371/journal.pone.0209447.g009
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state predictions were obtained using the DFBA direct approach and the objective functions

proposed at steady state. We proved that the dynamic model not only predicts Clostridium sp

IBUN 158B growth and its PDO production but also validates the objective functions proposed

previously [6]. We also observed the dynamic relation between PDO production and the allo-

steric constraint of acetic acid secretion and its respective effect on production of other acids,

such as lactic acid, which was validated after performing MPSA and PRCC sensitivity analyses.

Sensitivity analyses also allow us to find that kinetic parameters of glycerol uptake flux,

obtained from Clostridium sp IBUN 158B cultures, had the highest effect on PDO predictions,

whereas the other 57 input parameters evaluated, obtained from other Clostridium cultures,

had the lowest effect, which were used later in a PBM. Regarding this PBM developed, we

quantified the heterogeneity of PDO caused by cell variability, obtaining an adjustment near

to 98% to predict PDO production. Furthermore, we proposed dynamic simulations of fed-

batch cultures with a strategy of feeding coupled to growth, where PDO production could

increase up to three times in comparison to batch cultures. Therefore, we predicted that Clos-
tridium sp IBUN 158B could reach reported PDO yields of different PDO-producing Clostrid-
ium strains [87, 96, 97, 100–102].

We propose the dynamic model as a valid tool to predict a wide variety of scenarios that

would otherwise be experimentally demanding in terms of time and resources. Future research

Fig 10. DFBA predictions of fed-batch cultures assuming feeding flow coupled to pH control. (a) Final predicted

PDO concentration. (b) Predicted PDO productivity (QPDO). (c) Predicted glycerol conversion to PDO yield (YPDO/S).

Notation: infeasible cultures (red dots), suboptimal cultures (blue dots), cultures with unconsumed glycerol (yellow

dots), and optimal cultures (green dots).

https://doi.org/10.1371/journal.pone.0209447.g010

Fig 11. Comparison of optimum profiles predicted using DFBA. (a) Glycerol consumption predicted. (b) Predicted PDO formation. Notation: optimum

prediction of batch culture (green lines) and optimum prediction of fed-batch culture (red lines).

https://doi.org/10.1371/journal.pone.0209447.g011
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could couple the iCbu641 GSM model and DFBA predictions with downstream processes,

allowing for the estimation of the technical-economic feasibility of a hypothetical industrial

process [103, 104]. The model also could be used to design efficient automatic control systems

that amortize unwanted oscillatory processes during cultures in bioreactors, as is the case of

designing adequately an automatized control system of the feeding flow of fed-batch cultures

[105–107].
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Montoya.

Funding acquisition: Dolly Montoya.

Investigation: Luis Miguel Serrano-Bermúdez.
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Visualization: Luis Miguel Serrano-Bermúdez.
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79. Aragón OL. Estudio de la viabilidad técnica de la producción de 1,3 –propanodiol (1,3-pd) a partir de

glicerol con nuevas cepas colombianas de Clostridium sp. a nivel laboratorio [Microbiology Thesis]:

Universidad Nacional de Colombia, sede Bogotá; 2007.
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