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Abstract: The goal of crowd counting is to estimate the number of people in the image. Presently, use
regression to count people number became a mainstream method. It is worth noting that, with the
development of convolutional neural networks (CNN), methods that are based on CNN have become
a research hotspot. It is a more interesting topic that how to locate the site of the person in the image
than simply predicting the number of people in the image. The perspective transformation present is
still a challenge, because perspective distortion will cause differences in the size of the crowd in the
image. To devote perspective distortion and locate the site of the person more accuracy, we design
a novel framework named Adaptive Learning Network (CAL). We use the VGG as the backbone.
After each pooling layer is output, we collect the 1/2, 1/4, 1/8, and 1/16 features of the original
image and combine them with the weights learned by an adaptive learning branch. The object of
our adaptive learning branch is each image in the datasets. By combining the output features of
different sizes of each image, the challenge of drastic changes in the size of the image crowd due to
perspective transformation is reduced. We conducted experiments on four population counting data
sets (i.e., ShanghaiTech Part A, ShanghaiTech Part B, UCF_CC_50 and UCF-QNRF), and the results
show that our model has a good performance.
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1. Introduction

The goal of the crowd counting task is to count the number of people in an image. The crowd
counting task plays an important role in the production, life, disaster management, security monitoring,
and public space design [1–3]. With the improvement of people’s safety awareness, crowd counting
has been paid increasing attention. Recently the crowd counting task has utilized convolutional neural
network (CNN) to address the scale variation issue and has achieved good improvements in crowd
density estimation [4,5].

However, the perspective distortion of the image is still an important challenge for crowd counting,
more specifically, the model is not particularly accurate in predicting avatars with large differences
in size in the same image. Hence, how to better handle objects of different sizes is a key to improve
the crowd counting model. Recently, the demand for crowd counting is no longer simply counting
the total number of people in the image, but also want to locate a specific personal location, so that
accurate counting can be performed more accurately. Most of the current work uses Visual Geometry
Group (VGG) [6] as a backbone. Subsequently, separately extract different sizes of features after
each max pooling operation, and decoded these features. We will obtain the features that size is 1/2,
1/4, 1/8, and 1/16 of the original image size after each max pooling.
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The current method is to simply superimpose features of different sizes without considering the
combination of different sizes brought by different image inputs and different scene inputs. The degree
of perspective transformation in each image is not the same, that is, if our branch information is
merged according to the same pattern, then the learned knowledge cannot cover all samples. On this
basis, we envisage using a dynamic mechanism to combine branch information according to different
image features to achieve the goal of dynamic evolution. Inspired by the adaptive scenario discovery
framework (ASD) [7] model, we also propose a dynamic learning branch combination method. Different
from ASD, our model is not only concerned with simple counting tasks, but we also add the positioning
of specific objects to the model. At the same time, ASD distinguishes between sparse and dense scenes,
and our model is to explore the degree of perspective change in the image. In this paper, we propose an
adaptive learning framework (CAL) with perspective distortion correction for crowd counting and
localization. We employ several of VGG-16 convolution layers for crowd feature extraction before the
multiple receptive fields instead of utilizing them directly. Additionally, for exploring the degree of
perspective change in the image, four parallel pathways with the counting and localization network
named main, scale, middle, and lowest are proposed. The four pathways are designed for the people
with different scale, respectively. Besides, we also designed a branch to learn the degree of perspective
change. Afterwards, combine the perspective into the output branch of the model.

Our contributions are listed, as follows.

• We propose a novel adaptive framework with perspective distortion correction for crowd counting
and localization. Different from the former proposed multiple columns frameworks, we use
a branch to dynamically characterize the degree of perspective change of the images. We further
verify the effect of our CAL network and compare with the No-CAL methods in order to explain
the improvement of our architecture.

• We design a novel size characterization branch to realize both the crowd counting and the
localization task.

• We use VGG [6] for the feature extraction structure and the network constructed by four branches
(including the main path), which select output features of different sizes. The perspective change
in the image is considered to be a linear combination of our four branches and discrete weights,
while the adaptation branch aims to portray a continuous perspective change trend and make
corresponding corrections.

• We apply our framework to four congested multi-scene crowd counting datasets (i.e., ShanghaiTech
Part A, ShanghaiTech Part B, UCF_CC_50, and UCF-QNRF) and prove that our method outperforms
the state-of-the-art methods.

In the remaining part of the paper, we discuss related works of crowd counting and localization
in Section 2, describe the backbone, the CAL network architecture and training process in Section 3,
verify the proposed framework in both qualitative and quantitative extent in Section 4 and finally
conclude our work in Section 5.

2. Related Work

We present a survey about the recent works of crowd counting and localization in three parts:
(1) traditional crowd counting methods; (2) CNNs for counting; and, (3) CNNs for localization. The earliest
researches mostly based on detection frameworks, which were used to detect people and to count the
number of pedestrians. However, the occlusion, the extremely dense crowds, and high background clutter
limited its development, even though some improvement,such as parts-based or shape-based detectors,
were proposed. To devote these issues, some researcher proposes the regression-based methods (mapping
the features extracted from local images and their counts) took the place of detection-based methods. Since
the CNN was proposed, it has been successfully used in various computer vision tasks, which inspired the
use of CNN based methods in crowd counting tasks. Though the approaches of crowd counting scenes
gained satisfying performance, in several scenes some more detailed information, such as the distribution
and the location of the objects, were needed. As a result, researchers improved the CNN frameworks and
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developed a series of CNN based localization models. Nowadays, the localization tasks with CNN based
framework are still the hotspots for researchers.

2.1. Traditional Crowd Counting Methods

The early detection-based methods [8–11] rely on the detection style framework that used the
slide window to detect people in images. These methods estimating the number in the low-density
crowd scenes by detecting the whole body of the pedestrians. However, in high-density situations,
heads are ususally the only visible part due to the occlusions. As a further development, the detectors
of some body parts (such as head or head-shoulder [12]) detection methods were proposed. On the
other hand, regression-based approaches [13–18] regressed the density map of crowds and the
integration of which is the crowd counting result. These earlier methods [15–18] mapped global
image features or combined local patch features to do counting, which produces approximately counts.
When comparing these two methods, regression-based approaches perform well in high-density
situations. Additionally, the detection-based methods can usually handle the counting and localization
problems simultaneously.

2.2. CNNs for Crowd Counting

Recently, CNN based approaches [19–22] have shown their advantages in learning the crowd image
feature mapping and the people/head detection for both crowd counting [23–28] and localization [26–30].
The Multi-column Convolutional Neural Network (MCNN) method is evaluated in [19] which contains
three columns of different filters to extract feature of heads in different scales. Sam et al. [21] proposed
the Switching-CNN and trained each of three columns with a subset of the patches, while a density
selector is designed for extracting the structural and functional differences. Li et al. [31] introduce the
CSRNet as an approach to concentrate on encoding the deeper features in congested scenes. Besides,
Idrees [32] introduced a deep CNN with composition loss method to satisfy counting, density map
estimation, and localization. To handle the small/tiny objects that often appear in crowd counting
scenes, Basalamah et al. [27] used the scale-aware object proposal generated by perspective information
which handled scale variations and makes the model (SD-CNN) able to detect human heads in both low
density and high-density crowd images. Onoro et al. [33] using the Hydra-CNN fuses the multi-scale
information provided by heads to handle the crowd counting problems with significant variations in
the scene. Additionally, Reference [26] introduced the depth information by leveraging RGB-D data
to improve the performance of small object detection. In some occasions, like the wild scenes or the
congress scenes, the annotation can be costly. As a result, recent researches [34–36] aimed at dealing
with the lack of labeled data by self-supervised learning [34,36] or the unsupervised learning [35].
In [34], Wang et al. used the GCC dataset to fine-tune a pre-trained crowd counter and proposed a
crowd counting method via domain adaptation, which freed the researchers from data annotations.
For the unsupervised ways, Reference [35] presented an unsupervised learning method using Grid
Winner-Take-all (GWTA) Counting CNN to learn features from unlabeled crowd images.

2.3. CNNs for Localization

As the regression-based crowd counting methods are widely used in the counting scenes, the most
direct idea is to handle the localization task by sharpening crowd density maps. However, the low
accuracy of density map that was argued in most of the prior studies [28] is still an unignorable
drawback. An early anomaly detection and localization method [30] introduced normalcy models
jointly show the appearance and dynamics of complex congested scenes in which MDTs are learned
at multiple scales to handle the problems of empirical evaluation of anomaly detectors on crowded
scenes. The further anomaly detection research [37] proposed an unsupervised approach for crowd
scene anomaly detection and localization while using the social network model, which outperformed
the former ones. To handle the localization and detection task in the noisy foreground, Chen et al. [38]
extracted noisy foreground using the person detector and foreground segmentation. Chen et al. [38]
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also introduced the new framework of EGR and introduced a new metric for both errors in
localization and counting. Nowadays, most researches [26–28,33] using both the density map and
neural network detector for the localization task. Idrees et al. [32] introduced the composition loss
to do the counting, density map estimation and localization in congested scenes simultaneously.
Reference [27] devises a scale-aware head detector and using the response map to optimize the detector
to make the test results more consistent with population distribution. Instead of the scale-awareness,
Reference [26] approached the depth information by designed a depth-aware anchor to initialize
the anchor and estimated the bounding box sizes of all heads that were utilized as the ground
truth to train the RDNet. Additionally, to satisfy the demanding of large-scale RGB-D dataset,
Reference [26] also introduced an RGB-D dataset contains 2193 images and 144,512 headcounts named
ShanghaiTechRGBD. And Liu et al. [28] proposed the recurrent attentive zooming network to zoom
the detected ambiguous image region into high resolution and using the RAZ Net for re-inspection.

The Fully Convolutional Network (FCN) is proposed for the pixel-level classification of images.
Matan et al. [39] extended the classic LeNet [40] to recognize strings of digits. Additionally, in the
segmentation of C. elegans tissues scene, Ning et al. [41] used the fully convolutional inference to design
a convent. In recent years, multi-layered nets have also exploited the fully convolutional computation
(such as sliding window detection [42] and image restoration [43]). Moreover, He et al. [44] generated
a localized and fixed-length feature with proposals and spatial pyramid pooling. However, the drawback
of this hybrid model is that it cannot be learned end-to-end. Taking these case studies into account,
Long et al. [45] proposed a fully convolutional network trained end to end and pixel to pixels. The research
is known as the first work trained the FCNs end to end for pixel wised segmentation and used the
supervised pre-training. Additionally, [46] designed a U-net model, which used a fully-convolutional
neural network as the core of the model. The model required the full per-pixel instance segmentation
labels for training. Extending from [45], Issam et al. [47] designed a novel loss function for the FCN
model, called localization-based counting loss (LC), and named this new FCN detection-based model
with LC function the LC-FCN. Nowadays, Sam et al. [48] proposed the LSC-CNN model while using the
multi-column architecture to fulfill the reliably head detection, automatic head size estimation and high
precision crowd counting features simultaneously. As a multi-column FCN-liked architecture, the model
performs ideally across sparse to dense crowds and only requires the point annotation.

As we said at the beginning of this section, the crowd counting technology has been well developed
in recent years. At the initial stage of crowd counting, researchers used sliding windows and regression
methods to obtain the number of people in the image. However, with the deepening of research problems
and the increase in the number of people in the image, the traditional crowd counting technology has
been unable to meet those issues. As such, researchers began to explore CNN-based methods. Presently,
the CNN-based method can achieve good results, but the traditional CNN-based method can only get
the prediction number, and cannot calibrate the localization of the crowd in the image, so the localization
method is proposed. At present, most of the localization task base on FCN structure and, at the same
time, the image features of different sizes are stitched and decoded. However, this method is not ideal
for scenes with a severe perspective change. Therefore, based on FCN, we propose an adaptive learning
framework with perspective distortion correction for crowd counting and localization. We achieve an
end-to-end regression method using CNNs, which takes the entire image as input and obtain greater
accuracy when compared to previous approaches.

3. Framework

We propose a novel model that contains three parts: the backbone, the pathways, and the adaptive
branch. We design a novel framework named Adaptive Learning Network (CAL) and the architecture
is shown in Figure 1. In the following parts, we introduce the structure and implementation in detail.
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Figure 1. The architecture and weight of CAL.

3.1. Backbone

Presently, the mainstream method for extracting features from the crowd counting task is to
use the VGG [6] network as a backbone. The backbone network utilizing can be separated into two
ways: starting from scratch to designing a new network (e.g., [19]) or migrating a pre-trained subnet
from an existing network (e.g., [31,47,49]). Between these two categories, the second way have more
advantages in both time-saving and efficiency. Our network design also follows this principle. We first
designed a feature extraction structure with VGG16 as the backbone. However, we duplicated and
fine-tuned some blocks to adapt the feature extraction task with multiple resolutions. More specifically,
our backbone removes the fully connected layer of VGG16, as shown in Table 1. Besides, our VGG
model first uses the ImageNet dataset [50] for pre-training.

Table 1. The struct of backbone.

Input (224 × 224 RGB Image)

Channels Number Kernel_Size Stride Size

Conv1_1 64 3 1 224× 224
Conv1_2 64 3 1 224× 224

Max Pooling - 2 2 112× 112
Conv2_1 128 3 1 112× 112
Conv2_2 128 3 1 112× 112

Max Pooling - 2 2 56× 56
Conv3_1 256 3 1 56× 56
Conv3_2 256 3 1 56× 56
Conv3_3 256 3 1 56× 56

Max Pooling - 2 2 28× 28
Conv4_1 512 3 1 28× 28
Conv4_2 512 3 1 28× 28
Conv4_3 512 3 1 28× 28

Max Pooling - 2 2 14× 14
Conv5_1 512 3 1 14× 14
Conv5_2 512 3 1 14× 14
Conv5_3 512 3 1 14× 14



Sensors 2020, 20, 3781 6 of 17

3.2. The Pathways

Following the general principles of localization network design, our network design also uses
the FCN structure. Similar to many networks, we also set up four different branches to decode
1/2, 1/4, 1/8, and 1/16 of the original image size, four parallel pathways with the counting,
and localization network named main, scale, middle, and lowest are proposed. Table 2 shows the
pathways configuration.

Table 2. The config of the pathways.

Orgin Image Size: 224 × 224

Input Size 14 × 14 112 × 112 56 × 56 28 × 28

The config of the Pathways

Main Scale Middle Lowest

conv(3, 512)
relu

conv(3, 512)
relu

conv(3, 512)
relu

conv(3, 256)
relu

conv(3, 128)
relu

conv(3, 64)
relu

conv(3, 32)
relu

conv(3, 4)
relu

conv(3, 128)
relu

conv(3, 128)
relu

conv(3, 64)
relu

conv(3, 64)
relu

conv(3, 64)
relu

conv(3, 64)
relu

conv(3, 32)
relu

conv(3, 4)
relu

conv(3, 256)
relu

conv(3, 256)
relu

conv(3, 256)
relu

conv(3, 128)
relu

conv(3, 128)
relu

conv(3, 128)
relu

conv(3, 64)
relu

conv(3, 32)
relu

conv(3, 4)
relu

conv(3, 512)
relu

conv(3, 512)
relu

conv(3, 512)
relu

conv(3, 256)
relu

conv(3, 256)
relu

conv(3, 128)
relu

conv(3, 64)
relu

conv(3, 32)
relu

conv(3, 4)
relu

3.3. The Adaptive Branch

However, unlike other networks connected directly in series, we propose using different weights
to combine the output of each branch. We constructed a self-learning classification branch, named the
adaptive branch. The input of this branch is the feature parameter extracted by VGG16. The branch
structure is as follows: conv (3, 512, 1)–conv (3, 512, 1)–conv (3, 512, 1)–pool(2)–FC (25088, 4096)–RELU–
FC(4096, 4096)–RELU–FC (4096, 4). Where ‘conv’ represents a convolutional layer, and ‘pool’ represents
a max-pooling layer, ‘FC’ represents the fully connected layer, ‘RELU’ represents Rectified Linear Unit.
The numbers in the parentheses are respectively kernel size, the number of channels and dilation rate.
Finally, we can obtain four channels (CH) and then normalize each channel separately after summing.
The weight coefficient is obtained, as shown in Equation (1).

We provide different weights through the adaptive branch, in order to determine the proportion
of the original image that scales different sizes in the result. Using different weight values determines
which size image details we will pay more attention to. If we pay attention to more than 1/16 of the
image, then it is bound to be ignored for those particularly small heads. Conversely, if we pay attention
to 1/2 of the image, then we are bound to pay more attention to those larger heads. Through dynamic
learning, we can allocate the proportion of images with different degrees of attention according to the
specific scene. That helps eliminate the effects of perspective changes.

wi =
|∑ CHi|

4
∑

i=1
|∑ CHi|+ 10−9

(i = 1, 2, 3, 4) (1)
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3.4. Implementation Details

Our perspective distortion correction model is implemented using PyTorch [51]. To train the
model, we first initialize the batch size as typically four, while the momentum parameter is set as 0.9.
We then set the learning rate of 1e−3 for all the datasets as initial, and use SGD [52] for training. For the
training of UCF_CC_50, we especially use the five-fold cross-validation to make full use of the datasets
to test the effectiveness of the algorithm.

3.4.1. Loss Function

Following the design of loss function in [4,5], we proposed the loss function as Equation (2).
In which N, Xi, and θ represent for the batch size, the ith input image, and a set of trainable parameters,
respectively. Besides, γi is the ground truth of Xi. Additionally, Y(Xi; θ) stands for the estimated
density map generated by our proposed model with parameters θ. L(θ) denotes the loss function
between the estimated results and the ground truth.

L(θ) =
1

2N

N

∑
n=1

(

∥∥∥∥γ(Xi; θ)− γGT
i

∥∥∥∥2

2
) (2)

3.4.2. Density Map Generation

CNN needs to process continuous data for crowd counting tasks. As a result, we have to convert
the discrete point annotated data (including the annotation of ground truth and the result of prediction)
into the density map. The conversion is pixel level and the idea is to convert the point annotation
information into images that probably contain density information. The details of the operation are
shown in Algorithm 1.

Algorithm 1: Ground-truth generation
Input: I : Image matrix, label : label list
Output: DM : density map matrix

1 create matrix DM, which width and height are the same as the input image: I;
2 for i = 1; i ≤ length(label) do
3 Find the three nearest neighbors‘ distance: l1, l2, l3;
4 Calculate Gaussian smoothing parameters: σi = (l1 + l2 + l3)/3 ∗ β;
5 Calculate the density of DM(i).

6 return DM;

4. Experiments

In this section, we introduce three popular crowd counting datasets that are frequently used
in crowd counting and localization tasks. Besides, several ways to evaluate the performance of the
architectures are introduced. Afterwards, we compare the previous experimental results and evaluate
our method on these datasets.

4.1. Evaluation Metrics

Several ways are used to evaluate both the person detection and counting performance. For the
counting evaluation, the commonly used mean absolute error (MAE) and mean square error (MSE) is
used by us to measure the deviation of the prediction and the ground truth. The MAE and the MSE
are defined as:

MAE =
1
T

T

∑
t=1
|µt − Gt| (3)
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MSE =
1
T

T

∑
t=1

(µt − Gt)
2 (4)

where T is the sum amount of testing frames. While µt and Gt are the frame t prediction count and the
ground-truth count of pedestrians, respectively.

4.2. Datasets

Currently, various of public datasets for crowd counting task is available, such as MALL [16],
UCSD [53], ShanghaiTech [19], UCF_CC_50 [17], UCF-QNRF [32], etc. The comparison of the images
in the listed datasets is shown in Figure 2. In our experiment, we evaluate the proposed model on
three crowd counting datasets, including ShanghaiTech [19], UCF_CC_50 [17], and UCF-QNRF [32].
In the latter parts, we present the chosen datasets and explain why these datasets are chosen.

ShanghaiTech. Shanghai Tech [19] is one of the largest large-scale datasets in recent years which
consists of total 1198 crowd images with 330,165 annotations. The dataset is divided into two sets,
named Part A (SHT A) and Part B (SHT B), respectively. Part A is composed of images randomly
selected from the Internet, in which the density fluctuates between 33 and 3139 people per image and
with an average count of 501.4. In contrast, images in Part B are taken from a busy street of Shanghai
and the crowd distribution of which is less diverse and sparser (123.6 in average).

UCF_CC_50. UCF_CC_50 [17] is the first challenging dataset on multiple counts created from Web
images. The dataset contains various densities and different perspective distortions for multiple scenes.
Being a small set of 50 images with crowd counts ranging in 50 to 4543, the dataset poses a serious
problem for deep neural networks.

UCF-QNRF. UCF-QNRF [32] is collected from Web Search, Flickr, and Hajj footage, which was first
introduced by Idrees et al. in [32]. The dataset is consist of a 1201 images train set and a 334 images
test set with 1.25 million annotations in total and the density of images varying from 49 people per
image to 12,865.

Figure 2. Sample images from various datasets. In order from left to right, each column is in
turn UCSD [53], Mall [16], Shanghai Tech PartA [19], Shanghai Tech Part B [19], UCF_CC_50 [17],
UCF-QNRF [32]. It is obvious that in UCSD and Mall dataset, the images providing no variation in
perspective across images.

Extracting from these three datasets, the ideal dataset to examine the performance can be concluded
as the following list:

• Challenging images Some challenging images are necessary to evaluate the performance of the
model in extreme conditions. As the development of the crowd counting methods, most of them
perform stably in the sparse scenes. As a result, our model focus on improving the performance
in congestion crowds and achieve localization tasks. For the crowd counting and localization task,
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images of some exceeding congestion crowds are the ideal material to evaluate the robustness
and the accuracy of our model.

• Proper density distribution The distribution of the images can directly affect the performance
of the model in the scenes with different levels of congestion. The proper amount of sparse,
middle and congested images can improve training accuracy and make verification more effective.

• Multiple scenes The dataset contains multiple scenes, such as the street view, the market view,
the live show view, etc., can improve the robustness of our model. The multiple scenes is not only
the images take from a different location but also the different condition of weather (such as rainy
and foggy), light intensity etc., which can affect the performance of our model, especially in the
localization task.

In conclusion, the chosen datasets can well meet these issues while the Mall [16] and the UCSD [53]
are insufficient in some respects. This explains why we exclude these two datasets.

4.3. Results and Discussion

ShanghaiTech. Following the introduction of ShanghaiTech dataset above, we evaluated the
proposed framework with several state-of-the-art methods, including the localization method utilizing
the adaptive fusion scheme named RAZNet [28], the LSC-CNN [48] with different receptive fields
and ASD [49] introducing the adaptive scenario discovery framework. Table 3 summarizes the MAE
and MSE of the former approaches and ours in two parts of ShanghaiTech. On Part A of ShanghaiTech,
we achieve an impressing improvement of 2.1 of absolute MAE value over ASD [49] and 1.6 of MAE
over the state-of-the-art RAZNet [28]. When compared with the state-of-the-art (LSC-CNN [48]) on
Part B, our CAL network also achieved the best MAE of 8.1 and MSE of 11.9. As the output of our
crowd counting and localization model, Figures 3 and 4 show the localization performance of some
images from part A and Part B, respectively.

Table 3. The comparison among the state-of-the-arts and our approach in ShanghaiTech (Part A &
Part B). The best result is in bold.

Methods Part A Part B

MAE MSE MAE MSE

Counting

MCNN [19] 110.2 173.2 26.4 41.3
CMTL [54] 101.3 152.4 20 31.1
TDF-CNN [55] 97.5 145.1 20.7 32.8
Switching CNN [21] 90.4 135 21.6 33.4
SaCNN [56] 86.8 139.2 16.2 25.8
MSCNN [57] 83.8 127.4 17.7 30.2
ACSCP [58] 75.7 102.7 17.2 27.4
CP-CNN [59] 73.6 106.4 20.1 30.1
D-ConvNet-v1 [25] 73.5 112.3 18.7 26
DRSAN [60] 69.3 96.4 11.1 18.2
CSRNet [31] 68.2 115 10.6 16
SANet [61] 67 104.5 8.4 13.6
PACNN [62] 66.3 106.4 8.9 13.5
ASD [49] 65.6 98 8.5 13.7

Localization

RAZNet [28] 65.1 106.7 8.4 14.1
RDNet [26] - - 8.8 15.3
LC-FCN8 [47] - - 13.14 -
LSC-CNN [48] 66.4 117 8.1 12.7
CAL 63.5 99.2 8.1 11.9

UCF_CC_50. As a challenging crowd counting dataset introduced above, we also evaluated the
CAL in UCF_CC_50. The results are shown in Table 4 and the instance results are reported in Figure 5.
The same as the results on ShanghaiTech, the proposed framework shows better results, and the
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performance improves on the former state-of-the-art results by 14.2 for the MAE metric, which shows
the less volatility of the model in high crowd density images.

Table 4. The comparison among the state-of-the-arts and our approach in UCF_CC_50. The best result
is in bold.

Methods MAE MSE

Counting

Idrees 2013 [17] 468.0 590.3
Zhang 2015 [63] 467.0 498.5
MCNN [19] 377.6 509.1
MSCNN [57] 363.7 468.4
TDF-CNN [55] 354.7 491.4
CMTL [54] 322.8 397.9
Switching CNN [21] 318.1 439.2
SaCNN [56] 314.9 424.8
CP-CNN [59] 298.8 320.9
PACNN [62] 267.9 357.8
CSRNet [31] 266.1 397.5
SPN [64] 259.2 335.9
SANet [61] 258.4 334.9
HA-CCN [65] 256.2 348.4

Localization LSC-CNN [48] 225.6 302.7
CAL 211.4 306.7

Figure 3. Qualitative results on the ShanghaiTech Part A.

Figure 4. Qualitative results on the ShanghaiTech Part B.
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Figure 5. Qualitative results on the UCF_CC_50.

UCF-QNRF. Follow the process and the idea of the other two datasets, we use MAE as the
evaluation metric and keep the consistent detail for training. Table 5 compares our CAL model
with state-of-the-art methods. It is obvious that our model outperforms all of the preceding models.
Especially comparing with other localization methods, our network improves at least 10.2 in MAE.
Additionally, we provide the performance in predicting the bounding box for localization in Figure 6,
which illustrates the localization performance of some images in UCF-QNRF.

Figure 6. Qualitative results on the UCF-QNRF.

Table 5. The comparison among the state-of-the-arts and our approach in UCF-QNRF. The best result
is in bold.

Method MAE MSE

Counting

Idrees 2013 [17] 315 508
MCNN [19] 277 426
CMTL [54] 252 514
Switching CNN [21] 228 445
HA-CCN [65] 118.1 180.4
TEDnet [66] 113 188
RANet [67] 111 190

Localization

RAZNet [28] 116 195
CL [32] 132 191
LSC-CNN [48] 120.5 218.2
CAL 110.3 178.2
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4.4. Ablation Studies

In this part, we focus on two issues regarding the effectiveness of the structure of the multi-branch
network and the performance of the adaptive branch. For this issue, we adjust our model and
remove the adaptive branch to make it similar to some normal multi-column models (as shown in
Figure 7). Moreover, we name the adjusted model the ‘NO-CAL’. We removed the adaption branch is
that we want to explore the improvement effect of the adaption branch on the model. We removed
the adaption branch and create the NO-CAL structure in order to better compare the experimental
results. To respond to the first issue, we compared our models (CAL & NO-CAL) with the previous
multi-branch networks. Additionally, for the second issue, we make a comparison between our CAL
model and the NO-CAL model. The results are shown in Tables 6 and 7.

Table 6. The comparison between other structure and our approach.

ShanghaiTech Part A ShanghaiTech Part B UCF_CC_50 UCF-QNRF

MAE MSE MAE MSE MAE MSE MAE MSE
MCNN [19] 110.2 173.2 26.4 41.3 377.6 509.1 277 426
CMTL [54] 101.3 152.4 20 31.1 322.8 397.9 252 514
Switching CNN [21] 90.4 135 21.6 33.4 318.1 439.2 228 445

NO-CAL 70.8 119.5 14.2 18.9 258.9 369.0 163.7 200.9
CAL 63.5 99.2 8.1 11.9 211.4 306.7 110.3 178.2

Table 7. The comparison between the NO-CAL structure and our approach.

ShanghaiTech Part A ShanghaiTech Part B UCF_CC_50 UCF-QNRF FPS

MAE MSE MAE MSE MAE MSE MAE MSE ShanghaiTech Part B
CAL 63.5 99.2 8.1 11.9 211.4 306.7 110.3 178.2 12
NO-CAL 70.8 119.5 14.2 18.9 258.9 369.0 163.7 200.9 13

4.4.1. The Effectiveness of the Multi-Branch Structure

Table 6 shows the comparison of the former multi-branch structure with our design on ShanghaiTech,
UCF_CC_50 and UCF-QNRF. It can be seen that our design outperforms the previous methods (MCNN [19],
Switch-CNN [21], CMTL [54]). Additionally, the result shows that even the adaptive-branch-cutoff model
(NO-CAL), the performance still at least improves on the former results (Part A: 70.8 vs. 90.4; Part B: 14.2
vs. 21.6; UCF_CC_50: 258.9 vs. 318.1; UCF-QNRF: 163.7 vs.228 on MAE). Moreover, the performance
is much better than the NO-CAL structure (Part A: 7.3; Part B: 6.1; UCF_CC_50: 47.5; UCF-QNRF: 53.4
improvement on MAE). This is an illustration of the effectiveness of our multi-branch structure.

4.4.2. The Effectiveness of the Adaptive Branch

The previous method cannot handle the perspective distortion challenge properly, as discussed
in Section 1. To deep-in validate if our proposed method is affected by the adaptive branch, we first
conduct experiments with the CAL model and the same model cancels the adaptive branch (names
NO-CAL). We validated both of the models on the three datasets, and the results are revealed in Table 7.
It is shown that the CAL model visibly outperforms the NO-CAL, which is due to the good handling of
the perspective distortion challenge. The experiment proves the effectiveness of the adaptive branch.

To compare the efficiency of our adaptive branch, we evaluate its time performance. Because the
size of the image of the ShanghaiTech Part B is the fix, we use ShanghaiTech Part B as a benchmark to
test the time efficiency of the model. The CAL achieves 12 FPS detection speed on an Nvidia TITAN XP
GPU and the NO-CAL achieves 13 FPS detection speed on an Nvidia TITAN XP GPU during inference.
It may take a little time to use the adaptive branch, but the time spent is in an acceptable range as
compared with the improved accuracy.

As our ablation study shows, our design of the network structure is effective and well-performed
among three chosen datasets.
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Figure 7. The architecture and weight of NO-CAL.

5. Conclusions

In this paper, we have presented a novel architecture for counting crowds with perspective distortion
correction via adaptive learning. The focus of our method is to use a dynamic learning network to learn the
dynamic combination relationship under different samples, and use this dynamic combination relationship
to form different ratios for each image sample. Experimental comparisons with the state-of-the-art
approaches (at most 15 methods) on ShanghaiTech, UCF_CC_50, and UCF-QNRF showed the
effectiveness and efficiency of our proposed adaptive scenario discovery framework for the crowd
counting task.
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