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A B S T R A C T   

Background: Escalation With Overdose Control (EWOC) designs are increasingly used to ensure dose-toxicity 
curve of investigational oncology drugs is efficiently characterized during dose escalation steps. We propose a 
novel EWOC-based method that integrates the longitudinal pharmacokinetic (PK) data of individual patients in a 
Bayesian forecasting exposure-safety framework. 
Methods: The method, called exposure-driven EWOC (ED-EWOC), relies on a population PK model coupled with a 
Bayesian logistic regression model to make dose recommendation for the next cohort of patients. 
Results: We applied ED-EWOC to a real oncology clinical trial in parallel to a traditional EWOC approach. We 
found that for comparable priors, ED-EWOC dose recommendations were equivalent to the one suggested by 
EWOC when PK is dose proportional with low inter-individual variability. 
Conclusion: This case example demonstrates that ED-EWOC is logistically feasible during a trial conduct when PK 
bioanalysis can be expedited in the dose escalation phase. Overall, we anticipate that exposure-guided Bayesian 
designs could benefit patients and drug developers to identify the optimal dose steps of novel compounds 
entering the clinic with suspected liability in PK or that exhibit large inter-individual variability.   

1. Introduction 

Phase I dose escalation in oncology aims at finding the maximum 
tolerated dose (MTD) and Recommended Phase 2 dose (RP2D) for 
further development, based on pharmacokinetics, safety data, and early 
signs of efficacy. This is a critical step in oncology early clinical devel
opment that consists of evaluating a therapeutic intervention in small 
cohorts of patients covering a spectrum of doses and ensuring that safety 
data is accrued while controlling dose-limiting toxicity risk in future 
patients being tested. Typically, two main classes of clinical trial designs 
are implemented: rule-based designs originally described by Dixon and 
Mood’s work [1], and model-based designs introduced by O’Quigley 
et al. [2]. Rule-based designs have been the gold standard over the last 
few decades and comprises a variety of empirical approaches to effec
tively escalate patients to the next dose cohort according to pre-specified 

criteria utilizing data generated at the previous dose level. While sim
ulations have shown that rule-based designs identify the right maximum 
tolerated dose less frequently than model-based designs [3–5], adoption 
of model-based designs in early clinical trials remain relatively low 
although prevalence is gradually increasing [6]. Model-based designs 
referred to as Continual Reassessment Method (CRM) [2] possess 
attractive operating characteristics, including good efficiency relative to 
the sample size of patients and dose steps required, ultimately resulting 
in more efficient dose escalation [7]. CRM is relying on a model relating 
dose to probability of toxicity (typically either a 1-parameter power 
model or a 2-parameter logistic model) from which forecasting of the 
probability of dose limiting toxicity (DLT) at subsequent dose levels can 
be inferred. Escalation With Overdose Control (EWOC) designs [8–11] 
are a more advanced CRM design in which integration of the totality of 
toxicity data from all patients enrolled up to a certain point is 
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complemented by an additional probabilistic adjustment to prevent 
excessive overdose. Overall, model-based designs based on robust sta
tistical framework present significant advantages over algorithmic 
design [12–14] and their use is accepted by health authority agencies 
(FDA guideline on Adaptive Designs for Clinical Trials [15]). However, 
from a pharmacological standpoint and in light of the variability 
observed in biological systems, the underlying paradigm upon which a 
direct association of dose and toxicity is clinically questionable. Indeed, 
while the occurrence of a toxicity or safety event could be a function of 
the concentration of drug in the body, the dose may not be an appro
priate surrogate of the drug pharmacokinetics (PK) when the latter 
exhibit a large variability or when drug pharmacology or disease pro
gression follows non-linear processes. We postulate that an accurate 
specification of the MTD capturing the relationship between drug 
exposure and dose limiting events would allow for a better discrimina
tion of patients with high likelihood of experiencing events. This is 
echoed by recent EMA guidelines [16] that recommend integration of all 
available and relevant non-clinical and clinical data (such as PK and 
pharmacodynamic (PD) endpoints) in dose-escalation studies. 

Precedents of accounting for drug exposure levels in dose escalation 
oncology trials have been proposed. A variation of the standard 3 + 3 
rule-based design called pharmacologically guided dose escalation was 
implemented [17]. Other model-based approaches incorporating PK or 
PD information into early phase dose-finding trials have been suggested 
by Piantadosi and Liu [18], Patterson et al. [19], Whitehead et al. [20, 
21], and O’Quigley et al. [22]. However, it has been shown by Ursino 
et al. [23] in a simulation study that none of these approaches has a 
significant edge over previous methods. Ursino et al. [23] and more 
recently Takeda et al. [24] have proposed more elaborate methods with 
attempts of a better integration of the PK. However in both manuscripts 
simple estimation of the drug exposure were used while the between 
patients variability was not appropriately characterized. For instance, 
the drug is assumed to follow a one-compartment dose-linear kinetics 
and only the variability of the clearance is accounted for. The potential 
variability in bioavailability or of absorption in case of flip-flop kinetics 
[25,26] are ignored. Takeda et al. [24] considered simplified non-linear 
kinetics not reflecting what is observed in case of saturated absorption 
for instance or for target mediated drug disposition antibody. Further
more, the authors used inflated measurement errors in lieu of between 
patients variability. Moreover, none of the approach consider inclusion 
of adjustment for potential overdose and all proposed methodologies 
lack application to a real clinical trial setting. In parallel to our work, 
two new approaches were proposed recently. Günhan et al. [27,28] offer 
an elegant solution to support dose-escalation relying on a drug 
exposure-time to event model. This approach requires prior knowledge 
(or assumptions) on the PK profiles of the IMP, and uses time to DLT as 
an endpoint to drive the dose escalation. We believe that this method is a 
promising venue to support the design and dose-related decisions in 
Phase 1a studies. The other approach, by Gerard et al. [29,30], further 
incorporate PK/PD knowledge into the determination of the MTD 
regimen (i.e. a set of doses inducing acceptable tolerability/toxicity). 
The proposed solution recapitulates a possible causal pathway going 
from dose to concentration to cytokine release syndrome (CRS). This 
model-based exercise is addressing a clear need in immunotherapy 
where DLTs are often immune-related. However, it may not apply to 
other setting. Besides, it can be implemented only when enough data has 
been collected to support the development of the 
dose-exposure-cytokine levels and related CRS models. 

In the present paper, we report the implementation of a new 
Bayesian adaptive design utilizing exposure metrics in the dose alloca
tion of a dose escalation clinical study evaluating an anonymized drug. 
Instead of the dose, our approach incorporates secondary PK parameters 
(e.g., maximum concentration levels (Cmax) or area under the 
concentration-time curve (AUC)) as dependent variable of the Bayesian 
logistic regression model. We refer to this approach as Exposure-Driven 
Escalation With Overdose Control (ED-EWOC) since the dose allocation 

process incorporates the updated dose-exposure relationship, the vari
ability observed in PK, and an overdose control implementation. The 
ED-EWOC approach is presented as an integrated process enabling 
estimation of the posterior predictive probability of DLT occurrence 
while accounting for both the variability in drug exposure and the un
certainty in the exposure-DLT relationship. We then describe imple
mentation of ED-EWOC statistical framework during the dose-escalation 
conduct of a phase 1 clinical trial operated with a conventional EWOC 
design, and draw direct comparison of its relative performance in dose 
recommendation for the next cohorts of patients. 

2. Material and method 

2.1. ED-EWOC principle 

Conceptually, ED-EWOC is a Bayesian adaptive design enabling a 
dose recommendation for a subsequent cohort of patients based on the 
assessment of the interplay between dose, exposure, and toxicity and 
with an overdose control. The dose escalation rule is based on the pre
dictive probability of dose limiting toxicity (DLT) which is the product of 
two models: a population PK model relating dose to exposure and a 
model relating exposure to toxicity. Let call yi the observed dose limiting 
toxicity (DLT) occurrence of patient i in response to treatment at the end 
of cycle 1, where cycle 1 is defined as the DLT observation period. The 
predictive probability of DLT at dose d, noted π(d), on which the ED- 
EWOC decision rule is based, is defined as follows: 

π(d)=
∫

x

P (DLT = 1|Exposure= x).P(Exposure= x|d)dx (1) 

The proposed ED-EWOC design is an iterative stepwise process, 
which adapts at each iteration of the dose escalation, as new observa
tions become available (Fig. 1). For each candidate dose, the distribution 
of an exposure metric of interest (e.g. AUC over a given treatment 
duration) accounting for the inter-individual variability in PK is 
computed based on a population compartmental PK model fitted to 
emerging PK data. This model is denoted P(Exposure= x|d) in Equation 
(1). For each likely exposure level, a probability of DLT is computed 
using a Bayesian model. In this work, we used a Bayesian logistic 
regression model (BLRM), denoted P (DLT= 1|Exposure= x) in equation 
(1) but the method is applicable to any model structure. A more detailed 
description of the method is provided below. 

2.2. Population PK model 

In ED-EWOC, the dose-exposure relationship is defined by a popu
lation PK model which is assumed available at the start of the clinical 
trial. This model is updated at each escalation step as new pharmaco
kinetic data become available. The population model can be written 
according to equations (2)–(4) below. 

It is assumed that the drug kinetics can be well described by a 
compartmental pharmacokinetic model. The population model can be 
written as follows. 

Let note cij the concentration of drug X in patient i at j-th sample time 
tij: 

cij = c
(
di, tij, β1i

)
*
(
1+ εij

)
(2) 

εij is the residual error associated with a concentration at the j-th time 
for patient i. The residual error variability εij was described by a pro
portional model, with mean 0 and variance matrix σ2. 

β1i is the vector of PK model parameters for patient i. Inter-individual 
variability in parameters β1i is incorporated on all model parameters 
when supported by the data assuming a lognormal distribution: 

β1i = β1exp(ηi) (3)  
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ηi ∼ MVNK
(
0,Ω2) (4)  

where β1 is the population typical value for the vector of PK parameter 
(of dimension K), and ηi is the random inter-individual variability of PK 
parameter for patient i that is assumed to follow a normal distribution 
with mean zero and variance ω2

i governed by the multivariate covari
ance matrix Ω2. Note that, for any given dose, the drug kinetic is 
completely characterized by the set of population PK parameters 
denoted β1. 

After completion of each cohort of patients, the population PK model 
is re-evaluated based on the observed data in a stepwise manner without 
performing covariate analysis since the desired output is a predicted 
measure of exposure that would serve as regressor for the BLRM pre
diction. When necessary, the model structure (e.g., number of com
partments, inclusion of a nonlinear component of the drug clearance or 
absorption mechanism) can be updated from one cohort to another if 
supported by the data. 

Once a population PK model is available, emerging data from the 
dose escalation phase can be processed to quantify individual exposure 
of each patient based on a relevant metric choice without the need of re- 
estimation or additional model building. In this work, AUC over the first 
cycle of the treatment period was used as the relevant exposure metric 
and was derived based on integration of blood concentration levels 
predicted by the model according to equation (5): 

xi =

∫cycle1

0

c(t|di, β1i) dt (5)  

where xi represents the exposure of the patient i (here, AUC) after having 
received the dose events di across the DLT time period. 

2.3. Bayesian exposure toxicity model 

Let xi be the predicted exposure metric xi = g(di|β1i) obtained from 
the population PK model and explaining the DLT event occurrence. Let 
call Yi the observed DLT occurrence of patient i in response to treatment 
at the end of cycle 1. A Bernoulli distribution with parameter π is used to 
model Yi depending on the administered dose and on parameter vector 
βi. 

Yi ∼ Be(π(di|βi)) (6)  

where βi = (β1i, β2, β3) is the vector of parameters of both PK and 
pharmacodynamics (PD) relationships. It is assumed that the occurrence 
of a DLT is explained by exposure, then equation (6), can be written: 

Yi ∼ Be(p(xi|β2, β3)) (7)  

where p(xi|β2, β3) represents the probability of DLT after exposure xi. 
While PK parameter β1i is specific to each subject since it incorporates 
inter-individual variability, PD related parameters β2, β3 are common 
for the whole population. The inference is performed in a Bayesian 
framework, here assuming a logistic regression structural model 
(BLRM). The BLRM of exposure DLT rate can be written as a logit 
function: 

logit(p(xi|β2, β3))= β2 + β3log
(xi

x*

)
(8)  

(β2, log (β3) ) ∼ N2(b,Σ)

where β2 and β3 are the intercept and slope of the logit function 
respectively, x* represents a reference exposure allowing for the inter
pretation of parameters and prior setting, b and Σ are the parameters of 
the prior bivariate Normal distribution. 

As prior distributions can significantly influence Bayesian model 
based designs, the ones used in this work to compare ED-EWOC and 
EWOC method were defined based on current knowledge. 

The joint posterior distribution of exposure-DLT rate relationship 
was obtained via Monte Carlo Markov chain (MCMC). Parameters of the 
logistic exposure-probability of DLT relationship are updated at each 
dose escalation step. 

2.4. Dose recommendation rules 

Dose recommendation for the next patient i+1, was based on the 
probability of DLT: 

π(d, β) =Eg[f (xi+1|β2, β3)]

=

∫

f (xi+1|β2, β3 ).p(β2, β3 |y1,…, yi).g(d|β1).p(β1) dxi+1

=

∫

f (xi+1|β2, β3 ).p(y1,…, yi|β2, β3 ).p(β2, β3 ).g(d|β1).p(β1)dxi+1

(9)  

where f represents the density of Yi+1 (DLT rate) given β2 and β3 
(exposure-DLT rate relationship), p(β1) is the distribution of β1 accord
ing to the population model, p(β2, β3 ) is the joint prior distribution for 
β2, β3 and p(y1,…, yi

⃒
⃒β2, β3 ) is the likelihood of the DLT endpoint after 

the i first patients. The function g is the density of xi+1 (exposure metric) 
given β1 (dose-exposure relationship), and Eg is the expectation of the 
density f. 

After each cohort of patients has been completed, the posterior dis
tribution π(d, β) is assessed to quantify, for each candidate dose, the 
following risks: (i) under-dosing: π(d, β) ∈ [0 ; 0.20], (ii) targeted 

Fig. 1. Adaptive decision process of the ED-EWOC design.  
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toxicity: π(d, β) ∈ ]0.20 ;0.35], and (iii) overdosing: π(d, β) ∈ ]0.35 ; 1]. 
The recommended dose for the next patient is the one maximizing 

the probability of targeted toxicity while controlling the overdosing risk 
at a pre-specified level inferior to 25%: 

di+1 = argmaxd[P(π(d, β) ∈ [0.2 ; 0.35])] . 1{P(π(d, β)>0.35)<0.25} (10) 

This rule and the cut-offs for the bands of targeted toxicity and 
overdosing can be accommodated to each new therapeutic modality but 
they are frequently set to the values proposed by Neuenschwander et al. 
[10]. 

2.5. Stopping rules 

In this work, the process of dose escalation continues until stopping 
rules are fulfilled. Stopping rules consist of reaching a maximum sample 
size (for instance, 60 patients) or concomitantly fulfilling all the below 
criteria: (i) at least 6 subjects observed a dose close to the new recom
mended dose (i.e., a dose within a 20% range of the estimated MTD), (ii) 
at least 3 dose cohorts have been enrolled (to allow PK/PD model being 
early evaluated), and (iii) the maximal posterior probability of a dose 
being in the target toxicity interval exceeds 40%. 

The stopping rule can also be accommodated and we refer to Neu
enschwander et al. [10] for examples which can also handle the risk of 
underdosing. 

If the predicted DLT rate at a given dose matched the stopping rule 
criteria, the MTD is declared. If not, the safety rule of overdosing is 
assessed to decide the maximum increment for the next cohort recom
mended dose. This process was repeated until MTD was declared ac
cording to the operating mode described in Fig. 1. 

2.6. Clinical trial design settings and choice of priors 

Both EWOC and ED-EWOC designs were evaluated with similar 
settings in an early phase oncology clinical study run at F. Hoffmann-La 
Roche, for a molecule that cannot be disclosed for confidentiality rea
sons. The study was carried out in accordance with The Code of Ethics of 
the World Medical Association (Declaration of Helsinki), and was 
approved by the ethics committee of the local investigator sites. 
Informed consents were obtained from all participants. A modified CRM- 
EWOC design Neuenschwander et al. [10] was formally implemented to 
guide the dose escalation phase of a multi-center, open label phase I dose 
finding study in patients with late stage cancer. ED-EWOC design was 
run in parallel, prospectively, as a feasibility exercise. In the clinical 
trial, the Maximum Tolerated Dose (MTD) was defined as the dose 
maximizing the posterior probability that the DLT rate belongs to [0.20, 
0.35], while keeping the probability of overdose below 0.25. 

In this trial, the investigational medicinal product (IMP) was 
administered orally once every 3 weeks (Q3W) with a flat dose possibly 
ranging from 2.5 mg to 16.25 mg. The starting dose of 2.5 mg Q3W 
derived from predictions from a pre-existing translational PK/PD model 
was projected to be safe. The planned maximum dose of 16.25 mg Q3W 
was extrapolated from a PK/PD model predicting Grade 4 thrombocy
topenia events. Reference dose d* in the EWOC logistic regressions was 
set to 2.5 mg. The reference exposure in the ED-EWOC, x* was set to the 
median exposure following a dose of 2.5 mg, predicted using the pre- 
existing population PK model. 

A minimally informative multivariate normal prior [10] was used in 
the dose-escalation. A quantile based non-informative prior approach 
was used to assess the parameters of the BLRM in both EWOC and 
ED-EWOC. It was conservatively assumed that it would be very unlikely 
(with a 95% confidence) that a 50% or higher DLT rate is associated with 
the starting dose and that a 10% or lower DLT rate could be associated 
with the planned maximum dose. These assumptions allowed deriving 
prior parameters used in the EWOC and ED-EWOC designs (Fig. 2). For 
ED-EWOC, the mean predicted exposure (AUC over cycle 1) estimates 

obtained from the population PK model was considered as the driver of 
BLRM while for EWOC, the dose administered was used. Using the 
quantile based non-informative prior approach for the ED-EWOC, lo
gistic parameters for the prior β2 and β3 were respectively estimated to 
− 1.808 and 0.032 with a variance-covariance matrix of (1.172, 0.142, 
0.142, 0.365). The predictive prior distributions of probability of DLT 
implemented in both ED-EWOC and EWOC approaches were inspected 
and showed comparable uncertainty based on visual inspection. 

2.7. Data collection and operational aspects 

Data were sequentially collected in cohorts of three individuals who 
were treated at the same dose level. To support the dose recommenda
tion of the next cohort, the data collected in each patient included the 
actual dosing schedule over time, the observed drug concentrations (in 
blood), and the occurrence (yes or no) of a toxicity event. Blood samples 
were collected for analysis of plasma concentrations at the following 
time-points: 1, 2, 4, 6, 8, 24, 72, 96, 168, 264, 336, 432 h, following the 
first dose at cycle 1 and 2 and pre-dose on the following cycles. DLT were 
collected at the end of cycle 1 to estimate the BLRM parameters of EWOC 
and ED-EWOC. The DLT period was defined as a 3-week window 
(duration of one cycle). 

2.8. Computations and software 

Prior population PK model and following updates of the model were 
implemented using the nonlinear-mixed effect model software NON
MEM, version 7.2.0 (ICON development solutions, Ellicott City, MD 
[31]. The joint posterior distribution of exposure-DLT rate relationship 
was obtained via MCMC method imbedded in the Bayesian R package 
crmPack [32]. 

Fig. 2. Dose-probability of DLT relationship based on the prior model For each 
dose, the assessed integrated probability of DLT rate has been summarized a 
using box plot. Grey boxes indicate the interquartile range and whiskers pro
vide the minimum and maximum values. Each candidate dose (on the x-axis) 
has then a given probability of being underdosing, in the target range of DLT or 
overdosing based on the position of this distribution in regard to the toxicity 
thresholds. Horizontal green and red lines correspond respectively to the 
probability thresholds for Target (0.20) and Overdosing intervals (0.35). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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3. Results 

3.1. Population PK model and exposure assessment 

3.1.1. Population PK model developed on anterior data 
Before study start, a population PK model from a previous clinical 

study evaluating the same compound was available. A total of 361 blood 
concentrations measured from 15 patients receiving the same IMP 
constituted the dataset upon which a population PK model was devel
oped based on the assumed model structure derived from legacy data. 
The PK model consisted of a 2-compartment disposition model with 
linear mechanism. The First Order Conditional Estimation (FOCE) 
method with interaction was used to derive the population PK model 
parameters. 

3.1.2. Population PK model fitted on current cumulative data 
Upon receipt of new data from the current dose escalation study, 

drug concentrations measured during the first cycle of treatment and 
any other subsequent PK samples were used to update the population PK 
model. During the course of the trial, the PK model structure was 
updated to describe emerging PK data. After cohort 2 received 4.75 mg, 
a non-linear clearance mechanism based on Michaelis-Menten equation 
was incorporated to account for non-proportional exposure increase 
with dose. Observed individual PK profiles by dose level tested across 
the 6 cohorts of patients with population PK model prediction overlaid 
are presented in Fig. 3. 

Overall, the PK model was able to predict with good accuracy all 
individual PK profiles at each dose tested. Individual AUC estimates 

after cycle 1 were computed by integration of the concentration time- 
profile predicted for each patient by the NONMEM software. 

The PK parameter estimates evaluated on the PK data collected 
during the trial at each dose escalation step were used to provide ED- 
EWOC dose recommendations and the latest population PK model 
parameter estimates obtained from pooled data accrued up to cohort 5 
and comprising a total of 17 patients and 289 PK observations are 
provided in Table 1. 

3.2. ED-EWOC dose recommendation process (example of cohort 3 to 
cohort 4) 

To illustrate practically how dose recommendation is obtained 
following ED-EWOC, an example of emerging data obtained after 
completion of the fourth cohort’s DLT period is presented in Fig. 4. 
Eleven patients were treated at three different dose levels: 1 mg Q3W 
(cohort 0), 2.5 mg Q3W (cohort 1), and 4.75 mg Q3W (cohort 2) with a 
dose de-escalation to 2.5 mg Q3W for the cohort 3. Ten patients out of 11 
were evaluable for DLT, i.e. they received at least the first treatment 
cycle or discontinued due to DLT. Two patients out of three experienced 
a DLT in cohort 2, explaining the dose de-escalation phase at cohort 3. 

Individual longitudinal PK data emerging from the cohort 0 to cohort 
3 were used to update the population PK model and estimate the indi
vidual PK parameters β(3)

1,i and population PK parameters β(3)
1 (exponent 

index corresponding to current cohort 3). These estimates were 
respectively used (i) to compute AUCs for each patient and (ii) to assess, 
for each dose, the distribution of likely AUCs in the overall population 

Fig. 3. Observed individual PK profiles by dose level tested across the 6 cohorts of patients with population PK model prediction overlaid The shaded area represents 
the 90% prediction interval of the PK model predictions and the dashed line the median predicted exposure level for each dose. The individual PK profiles are 
represented by solid lines joining the dots, when PK observations were obtained. 
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(Fig. 4 left panel top row illustrates the dose-AUC relationship and left 
panel bottom row illustrates the AUC distribution for dose 2.75 mg). 
Then, the Bayesian logistic AUC-DLT rate model was updated based on 
emerging DLT data from cohort 0 to 3 and the individual predicted 
AUCs. In this step, the PD parameters β(3)

2 and β(3)
3 estimated after cohort 

3 were used to derive the posterior distribution of DLT rate for each 
value of likely AUC (Fig. 4 middle panel). For a given dose d, the dis
tribution of DLT rate π(d) is computed by reweighting the DLT rate 
distribution according to the probability of AUC (corresponding to 
equation (9) above). In order to reconstruct the overall dose-DLT rate 
relationship and obtain the predictive probability of DLT, the calcula
tion of P(d, β(3)

1 , β(3)
2 , β(3)

3 ) was performed by Monte Carlo integration. 
The updated dose-DLT rate relationship and related uncertainty is pre
sented in Fig. 4 right panel. 

The dose for cohort 4, d4, was recommended on the basis of (i) the 
probability that the dose d4 would be in the target toxicity range (PT), 
and (ii) the probability of over-dosing (POD). The recommended dose for 
the cohort 4 is: 

d4 = argmaxd
[
P
(
π
(
d, β(3))∈ [0.2 ; 0.35]

)]
. 1{P(π(d, β(3))>0.35)<0.25}

The dose d4 = 2.75 mg Q3W is recommended for cohort 4 based on 
ED-EWOC at the end of cohort 3 as it maximized PT, while maintaining 
POD below 25%. At this dose level, PT is estimated to 33.0% and POD to 
22.6%. At dose 2.75 mg, the median AUC level is 8500 pg h/mL ac
cording to the population PK model. However, this AUC level is not 
defining the recommended dose on its own because the dose recom
mendation results from the integration of (i) the probability of exposure 
conditionally to dose and (ii) the probability of DLT conditionally to 

Table 1 
Parameter estimates of the population PK model after completion of cohort 5.  

Model 
parametersa 

Interpretation Typical 
values 
(median) 

Inter-individual 
variability 
(variance) 

Vmax (pg/ 
mL/h) 

Maximum elimination rate of 
the Michaelis-Menten 
nonlinear clearance pathway 

0.418 Fixed to 0 

Km (pg/mL) Michaelis-Menten constant of 
the nonlinear clearance 
mechanism 

76.1 215% 

CL (L/h) Linear clearance Fixed to 0 Fixed to 0 
V1 (L) Distributional volume in 

central compartment 
11.7 16% 

V2 (L) Distributional volume in 
peripheral compartment 

3.86 3.7% 

Q (L/h) Inter-compartmental 
clearance 

0.383 35% 

Ka (h− 1) First-order absorption rate 
constant 

0.67 142% 

Е Residual error 44%b Fixed to 0 

Note: No relative standard error of model parameters was estimated and 
bioavailability was not estimated since no intravenous data were available. 
Inter-individual variability of parameters (η) and residual error (ε) were 
assumed normally distributed with mean 0 and variance Ω2 and σ2 respectively. 
Variances are expressed as coefficient of variation (%). 

a Estimates based on 17 patients and 289 PK observations after oral admin
istration of IMP up to cohort 5. 

b Residual error was estimated on a coefficient of variation scale (%). 

Fig. 4. Bayesian Logistic Regression ED-EWOC dose recommendation process after completion of the fourth dose cohort. Left panel: (top) predictions of individual 
AUC estimates after the first cycle from the population PK model at each dose evaluated. Dots correspond to patients’ data with black dots and red triangles 
respectively representing patients without and with DLT respectively, plain line is for the median AUC estimate, and dashed lines represent the 95% prediction 
interval. (bottom) Distribution of predicted population AUC for a given dose (here, for d = 2.75 mg). Middle panel: (top) Estimated posterior probability of DLT, 
defined as a function of exposure (AUC over first cycle). Dots correspond to patients’ data, plain line is for the median DLT rate estimate and dashed lines represent 
the 95% prediction interval. (bottom) Histograms of the estimated distribution of DLT rates for different exposures. Right panel: Boxplot of the posterior integrated 
probability of DLT for each candidate dose according to the ED-EWOC approach. The DLT rate was assessed by Monte Carlo integration using the distribution of 
AUCs, as indicated. The pre-specified intervals of interest which PUD, PT, and POD relied upon and defining decision rules for the recommendation have been overlaid. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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exposure. The probabilities PT, and POD for each dose previously tested 
and for the next recommended dose d4 are provided in Fig. 5. The 
probability of underdosing, PUD, 

PUD(d4)=

∫

P(z)g
(

z
⃒
⃒
⃒d4, β(3)

1

)
dz  

is also provided in Fig. 5 for completeness. Fig. 5 allows to visually 
identify the doses leading to excessive risk of potential toxicities (red bar 
exceeding the consented level of risk of 25%), and the recommended 
dose, corresponding to the highest green bar in the tolerated doses. 

The predicted DLT rate at dose 2.75 mg did not match the stopping 
rule criteria for 2 reasons: (i) only five (less than 6) subjects were 
observed at a dose close to 2.75 mg (between 2.2 mg and 3.3 mg), and 
(ii) the maximal posterior probability for a dose being in the target 
toxicity interval does not exceed 40%. Indeed, 3 mg is the dose that is 
predicted to maximize the posterior probability of target toxicity which 
is equal to 33.5%. 

Because the stopping rule criterion is not fulfilled, the MTD could not 
be declared and a new cohort was recommended to be treated according 
to ED-EWOC at the dose 2.75 mg. This process was continuing itera
tively until MTD was declared (see Fig. 1). 

3.3. Overall study outcomes from EWOC and ED-EWOC 

The execution of the trial was completed successfully with the EWOC 
design while ED-EWOC dose recommendation was performed in parallel 
(Fig. 6). The trial design specified that dose escalation step was initiated 
when a minimum of three patients at the current dose level were 
evaluable for DLT. In total, 18 patients were treated in six different 
cohorts. Only 17 patients were DLT-evaluable and four dose levels were 
explored: 1 mg (cohort 0), 2.5 mg (cohorts 1 and 3), 4.75 mg (cohort 2), 
and 3.25 mg (cohort 4 and 5). A total of four patients experienced a DLT: 

two out of three at dose level 4.75 mg (cohort 3) and two out of 7 at the 
dose level 3.25 mg (cohort 4). 

When comparing the outcomes of DLT event for each of the 17 DLT- 
evaluable patients with the EWOC and ED-EWOC design (Fig. 7), a 
clearer relationship is observed with exposure (AUC) compared to dose, 
suggesting that ED-EWOC is a more reliable model for predicting DLT. A 
clearer relationship between AUC-DLT than dose-DLT is observed (Fig. 7 
left panels). This was supported by a larger measure of association be
tween DLT rate and the respective predictor with ED-EWOC than EWOC 
BLR models (McFadden’s pseudo-R2 = 0.44 vs. 0.28, Fig. 7 right panels). 
Moreover, the ED-EWOC BLR model showed a more clinically mean
ingful relationship of DLT event when compared to EWOC BLR model 
with a quicker plateauing of DLT event, suggesting that AUC is a better 
predictor of DLT risk than dose. 

4. Discussion 

In this work, we have proposed a novel Bayesian EWOC-derived 
method integrating the PK of an IMP during the conduct of dose esca
lation study in oncology. Instead of solely relying on the nominal dose 
administered in dose escalation cohorts to inform the safety of the next 
dose as typically performed in a classical EWOC design, the observed 
concentration data available at the time of decision-making are pro
cessed within the framework of nonlinear mixed-effects modelling to 
better establish the dose-exposure-toxicity relationship through 
Bayesian forecasting. Conceptually, this approach is expected to provide 
superior performance to the EWOC design in terms of determining an 
MTD by enabling quantification of the variability observed in PK within 
patients at any dose but also by accounting for potential non- 
proportional increase in exposure relative to the dose administered. 

In our case example, dose recommendations obtained with EWOC 
and ED-EWOC were similar. While the EWOC design was pre-specified 
in the study protocol to guide decision for dose escalation, the ED- 
EWOC design was run in parallel for comparison purposes. The result 
of this work shows that fitting a population PK on emerging PK data in a 
Bayesian forecasting decision framework is practically feasible. It also 
shows that PK data availability and other considerations relating to the 
timeframe for model building and interpretation are not incompatible 
with decision-making within a trial conduct, although the timelines 
between DLT observation period and dose escalation decision are typi
cally very short. From an operational standpoint, the ED-EWOC imple
mentation required a predefined process and study team coordination. 
However, thanks to a semi-automated process, the recommendations of 
a dose from EWOC and ED-EWOC were delivered simultaneously. In our 
example, and despite taking into consideration the longitudinal PK data 
observed in this trial, the similarity of results between EWOC and ED- 
EWOC was expected for two main reasons. First, the dose-exposure 
relationship of the drug under investigation is not departing drasti
cally from linearity since the nonlinear component is starting at the top 
dose tested. In this case, the recommendation of both designs would not 
be expected to diverge since the exposure-DLT rate relationship of ED- 
EWOC would use a proportional metric of the dose-DLT rate relation
ship used by EWOC. Secondly, the low-to-moderate inter-individual 
variability observed in the blood concentration levels of the drug 
investigated (20–30% CV in clearance, and volume estimates in dose 
escalations) does not allow a zone of overlap in concentration levels 
from one dose to another for patients with extreme PK properties. For 
example, with large variability in PK, a patient with a low clearance 
tested at dose 2.5 mg could exhibit similar exposure levels as a patient 
with a high clearance who received a 2-fold higher dose, and this would 
have impacted the Bayesian forecasting and recommended dose for the 
next cohort. 

In our work, we assume that AUC is a reliable predictor of toxicity as 
opposed to dose. The choice of AUC during the first treatment cycle as 
the predictor for DLT was motivated by the time of DLT occurrence. 
Indeed, the time of DLT was not correlated with the time of observed 

Fig. 5. Predictive posterior probability obtained from the ED-EWOC model for 
each dose to fall in the pre-specified toxicity categories: (i) under-dosing (blue), 
(ii) target toxicity (green), (iii) overdosing (red), after the cohort 3 completion. 
As seen in Fig. 4 (dose-DLT rate relationship), the uncertainty in the DLT rate 
translates into a probability for each dose to fall in the pre-specified toxicity 
categories. To report these probabilities, a barplot is provided for each dose 
keeping colors consistent with Fig. 4. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 6. Dose escalation paths explored with EWOC (solid lines, black outcomes) and ED-EWOC (dotted lines and blue outcomes) AUC = area under the concentration-time curve; DLT = dose limiting toxicity; Pats =
patients; PK = pharmacokinetics. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Cmax within the dosing interval, suggesting that toxicity was not trig
gered by an acute exposure but more probably was correlated with the 
accumulated exposure over the first cycle period. However, the ED- 
EWOC can accommodate any choice of PK metrics, and could be 
adapted to any driving function of clinical relevance for the DLT pre
dictions. For instance, one could consider predicted concentration levels 
in a tissue based on a physiologically based PK predictions instead of 
systemic exposure levels. 

In our case study, the recommendations of designs started to be 
slightly different (15% difference in recommended dose in cohort 4) 
when sign of nonlinear PK was identified. Emerging PK data of cohort 3 
suggested a sub-proportional increase in exposure with dose that 
necessitated an update of the population PK model structure that was 
initially assumed dose-proportional since the nonlinearity trend in the 
PK data was small and did not significantly affect the dose recommen
dation. In the case of biologic drugs with high specificity for a target 
tested in an indication with known overexpression of the target (e.g, 
trastuzumab, an anti-HER2 monoclonal antibody in breast cancer), the 
ED-EWOC design is expected to provide more accurate dose recom
mendation at lower dose cohorts compared to an EWOC design due to 
the antigen sink effect. Likewise, a drug with saturable absorption or 
elimination pathways known to result in nonlinear PK observations 
would benefit from an ED-EWOC design. 

One limitation of using ED-EWOC is mainly of practical consider
ations since it is customary to have PK data lagging behind decision 
making due to the complex logistics required to ensuring availability of 
PK data in the clinical database. Typically, PK samples generated per 
study protocol are first shipped from the investigational site to a central 
lab prior to being routed to a lab vendor for bioanalysis. After sample 
reconciliation and storage, PK data are sent back to the external data 
facilitator for data reconciliation and cleaning. Once the raw PK data are 
available in the clinical database, the clinical pharmacologist or phar
macometrician is accountable for generating a model-ready dataset to 
process in PK modeling software. Only after all these steps can model- 
derived AUC estimates be obtained. One complication pertaining to 
the implementation of the ED-EWOC design resides therefore in 

ensuring that PK data, PK modeling, estimation of an exposure-derived 
risk and dose recommendation is available at the time of dose escalation 
committee and monitoring safety review board meetings. 

Another time consuming component that could prevent imple
mentation of ED-EWOC design on an industrial scale is the population 
PK model building process that necessitates a stepwise procedure to test 
hierarchical candidate models without the possibility yet for automa
tion, even for simple PK models. In our work, a prior population PK/ 
translational model was available for IMP. Exploring the impact of 
structural PK model misspecification and distributional assumptions of 
PK parameters used to inform DLT probabilities was not performed in 
this work and could be considered for future work to further understand 
the operating characteristics of ED-EWOC designs. 

We are confident that such approach will be endorsed by regulatory 
authorities since the concept underpinning ED-EWOC fits within the 
new EMA guideline [16] in which estimation of exposure and 
exposure-response relationships by sponsors is encouraged. The popu
lation PK model embedded in the ED-EWOC procedure allows the 
assessment of drug exposures by accounting for relevant variability and 
handling any nonlinearity of exposure even when very few patients are 
observed at each dose level. Therefore, as exposure may be a better 
predictor of DLT than dose, a good characterization of the PK may 
reduce the uncertainty surrounding the DLT rate. This is particularly 
true in the context of small sample size when the observed exposures do 
not encompass the large range of overlapping exposures of different 
doses predicted by the PK model. In addition, assessing the impact of 
some common covariates such as body weight association on PK during 
the escalation trial when possible may lead to better MTD. For instance, 
if the explored regimen is a flat dosing regimen while the true MTD is 
body weight dependent, the ED-EWOC design may be more appropriate 
as the body weight effect on exposure can be quantified using the PK 
model. In a MTD paradigm, an ED-EWOC design would therefore instill 
confidence in the identification of a safe and better-tolerated dose. As a 
pharmacology driven design, ED-EWOC approach may be adapted to 
allow the opportunity to explore and evaluate alternative dosing regi
mens. This is of major interest in some program where step-up 

Fig. 7. Comparison of EWOC (top row) and ED-EWOC (bottom row) predictive outcomes for each patient tested across the 6 dose cohorts (left panels) and their 
respective Bayesian logistic regression model (right panels) Red triangles represent patients having experienced a DLT and black dots, patients who did not. On the 
left side graphs, patients are ordered by cohort as they entered the study (numbers above dots corresponding to rank of patient inclusion in the study). The reported 
R2 are the McFadden’s pseudo-R2. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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increasing administrations during the first cycle is considered to mini
mize the risk of adverse events. Handling dosing regimen in the dose 
escalation design allows identifying a relevant Maximum Tolerated 
Dosing Regimen, which is not possible with current designs that reduce 
“dosing regimen” to “dose level”. 

Our approach shared some similarities with the PKLOGIT model 
presented in Ursino et al. [23]. Instead of a simple Gaussian model for 
the AUC, we use a full population PK model and instead of a simple 
logistic regression for the DLT-AUC relationship, a BLRM inspired design 
with overdose control [10] is implemented. A similar approach was also 
recently proposed by Gerard et al. [29,30] but it does not incorporate 
the iterative use of a population PK model estimation to guide the dose 
escalation process. 

Should a ED-EWOC design be considered to guide a dose escalation, 
simulations would have to be performed before the study start, in order 
to assess the operating characteristics of the design under some likely 
scenarios, as usually done for model based designs. This would support 
the protocol writing and justify the selected design options to the health 
authorities and ethic committees. In our case, the EWOC (with associ
ated operating characteristics) was pre-specified in the study protocol to 
guide decision for dose escalation; the ED-EWOC procedure was run in 
parallel for comparison purpose. ED-EWOC was built so that it would 
match the EWOC specification (a priori probability, escalation rules and 
stopping rules), but no simulation was performed as it was not required 
for the purpose of our study. One challenge for such an investigation 
would be the simulation of the population PK model building process at 
each escalation step based on emerging PK data that, in real life, requires 
the intervention of a modeler. ED-EWOC simulations would require 
assumption on population PK model fitting at each dose escalation step 
of each simulated trial from each scenario of interest. We encourage the 
reader to evaluate the simulation assumptions and scenarios based on 
the molecule specificities. 

Overall, this work illustrates the attractiveness of ED-EWOC design 
since it combines the PK knowledge and mixed-effects modeling with 
Bayesian forecasting for assessment of the MTD, and minimize the risk of 
a patient to experience a DLT or an overdose following treatment irre
spective of the PK properties of a drug while gaining efficiency in dose 
increment if the risk of DLT is projected to be marginal. The concept of 
ED-EWOC could also be extended to an exposure-PD/efficacy assess
ment, with a model-based approach to guide establishment of an 
optimal dose for dose recommendation of phase 2 initiation as done by 
Alam et al. [33] or Colin et al. [34] in a dose-response framework. From 
a practical point of view, drug development in oncology is gradually 
pivoting from an all-comer MTD dogma to a patient-centric personalized 
health care paradigm focused on early sign of efficacy. By accounting for 
PK in the decision-making process of dose escalation in early oncology 
trials, drug developers are able to integrate more complex dose strategy 
within dose escalation designs. For example, one could consider a con
version in the route of administration (from intravenous to subcutane
ous for biologics, or from intravenous to oral for small molecules), or 
handle mitigation strategy related to the tolerability of drugs or 
immunogenicity such as step-up dosing or dose fractionation within the 
DLT observation period. Another opportunity where ED-EWOC can 
provide significant benefit is in the context of dose escalation of a new 
drug administered in combination with a standard therapy where 
exposure predictions and exposure-response relative to safety and effi
cacy of the drug is already partially known in single agent and could 
serve as informative prior information within the ED-EWOC design. We 
believe ED-EWOC is a step in the direction towards a precision dosing 
vision of drug development that would benefit patients through the 
synergistic use of advanced statistical concepts, basic drug pharma
cology principles, and PK/PD modeling. 
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