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Abstract

Developing predictive models of multi-protein genetic systems to
understand and optimize their behavior remains a combinatorial
challenge, particularly when measurement throughput is limited.
We developed a computational approach to build predictive
models and identify optimal sequences and expression levels, while
circumventing combinatorial explosion. Maximally informative
genetic system variants were first designed by the RBS Library
Calculator, an algorithm to design sequences for efficiently search-
ing a multi-protein expression space across a > 10,000-fold range
with tailored search parameters and well-predicted translation
rates. We validated the algorithm’s predictions by characterizing
646 genetic system variants, encoded in plasmids and genomes,
expressed in six gram-positive and gram-negative bacterial hosts.
We then combined the search algorithm with system-level kinetic
modeling, requiring the construction and characterization of 73
variants to build a sequence-expression-activity map (SEAMAP) for
a biosynthesis pathway. Using model predictions, we designed and
characterized 47 additional pathway variants to navigate its activ-
ity space, find optimal expression regions with desired activity
response curves, and relieve rate-limiting steps in metabolism.
Creating sequence-expression-activity maps accelerates the
optimization of many protein systems and allows previous
measurements to quantitatively inform future designs.
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Introduction

A microbe’s ability to sense its environment, process signals,

perform decision making, and manufacture chemical products is

ultimately controlled by its DNA sequence (Yim et al, 2011; Du

et al, 2012, 2013; Moon et al, 2012; Sandoval et al, 2012; Santos

et al, 2012; Tseng & Prather, 2012; Lee et al, 2013; Xu et al, 2013;

Zhao et al, 2013). The genetic part sequences controlling protein

expression levels directly affect an organism’s behavior by modulat-

ing binding occupancies, rates of catalysis, and the competition for

shared resources. Finding a quantitative relationship between DNA

sequence and host behavior has been a central goal toward under-

standing evolution and adaptation, treating human disease, and the

engineering of organisms for biotechnology applications (Strohman,

2002; Wessely et al, 2011; O’Brien et al, 2013; de Vos et al, 2013;

Quandt et al, 2014).

Recent advances in DNA synthesis, assembly, and mutagenesis

have greatly accelerated the construction and modification of large

synthetic genetic systems. Combinatorial assembly methods enable

the simultaneous introduction and modification of genetic parts to

create many genetic system variants (Engler et al, 2009; Gibson et al,

2009; Guye et al, 2013; de Raad et al, 2013; Sleight & Sauro, 2013;

Coussement et al, 2014; Dharmadi et al, 2014; Torella et al, 2014).

The development of multiplex genome engineering provides the

ability to simultaneously introduce DNA mutations into several geno-

mic loci (Wang et al, 2009, 2012; Esvelt & Wang, 2013). Further,

Cas9-dependent and TALE-dependent nicking, cleavage, and muta-

genesis have expanded site-directed genome engineering to diverse

organisms (Miller et al, 2010; Bassett et al, 2013; Chang et al, 2013;

Lo et al, 2013; Mali et al, 2013; Ran et al, 2013). Although techniques

are readily available to construct or modify large genetic systems of

interest, we currently cannot predict the DNA sequences that will

achieve an optimal behavior, particularly when the actions of multiple

proteins are responsible for a system’s function.

This design challenge could be solved by creating a quantitative

link between a genetic system’s sequence, protein expression levels,

and behavior in order to predict the effects of DNA mutations, map

the phenotypic space accessible by natural evolution, and optimize

non-natural DNA sequences toward a desired genetic system perfor-

mance. These relationships, called sequence-expression-activity

maps (SEAMAPs), can be formulated by combining sequence-

dependent models predicting changes in protein expression levels

(Rhodius & Mutalik, 2010; Salis, 2011; Brewster et al, 2012; Johnson

et al, 2012; Borujeni et al, 2013; Kilpinen et al, 2013) with system-

level models describing genetic system function (Fendt et al, 2010;
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Sneppen et al, 2010; Hyeon & Thirumalai, 2011; Wessely et al,

2011; Smallbone et al, 2013). Several types of models can be

combined, utilizing thermodynamics, kinetics, mass transfer, and

dynamical systems theory, to describe the multi-scale physical

interactions affecting system function (Hyeon & Thirumalai, 2011).

Validation of SEAMAP predictions across the range of possible

behaviors critically tests our knowledge of the system’s interac-

tions, the modeling assumptions, and provides a systematic

approach to optimizing genetic system function toward the most

desired behavior (Smolke & Silver, 2011; Yadav et al, 2012).

However, the development and parameterization of such sequence-

expression-activity models has been stymied by several forms of

combinatorial explosion (Bailey, 1999; Alper & Stephanopoulos,

2004; Zelcbuch et al, 2013). First, the number of regulatory genetic

part sequences that differentially control protein expression is

astronomical; a single 30-nucleotide genetic part has 1018 possible

sequences, while five of these genetic parts have more possible

sequences than atoms in the universe. Second, while protein

expression can be modulated over a > 100,000-fold range, there

are relatively few genetic part sequences that express an extremely

high or low amount of protein; finding these sequences using anec-

dotal rules or random mutagenesis is unreliable. Third, when

multiple proteins synergistically work together to achieve the best

possible behavior, the probability of finding genetic part sequences

with optimal protein expression levels decreases combinatorially.

Fourth, the differences in gene expression machineries may cause

a genetic system to function well in one organism, but not another.

New approaches to developing SEAMAPs will be needed to circum-

vent combinatorial explosion, particularly as larger genetic systems

with many proteins are targeted for engineering. Notably, while

system-level models describing protein interactions have several

unknown parameters, model reduction and rule-based simulations

can significantly reduce the number of equations, transitions, co-

dependent variables, and insensitive constants (Conzelmann et al,

2008; Tran et al, 2008; Apgar et al, 2010; Sneddon et al, 2010).

In this work, we demonstrate that biophysical modeling and

computational design can be combined to efficiently create predictive

sequence-expression-activity models for multi-protein genetic

systems, while circumventing combinatorial explosion (Fig 1A).

First, we employ predictive biophysical models to map the relation-

ship between sequence and expression and to develop an automated

search algorithm that rationally designs the smallest number of

genetic system variants whose protein expression levels cover the

largest portion of the multi-protein expression space. This design

process is tailored for each genetic system with the goal of maximiz-

ing the observable changes in system behavior across the entire phys-

iologically possible range. Second, we characterize a small number of

genetic system variants and use overall activity measurements to

parameterize a system-level mechanistic model that predicts how

changes in protein expression control system function. The resulting

SEAMAP for the genetic system is repeatedly used to correctly design

and optimize its function with different targeted behaviors.

We first extensively validate our search algorithm’s ability to

design maximally informative genetic system variants using 646

genetic system variants, encoded on both plasmids and genomes,

and characterized in diverse gram-negative and gram-positive bacte-

ria. We then demonstrate that characterizing a small number of

these maximally informative genetic system variants is sufficient to

map the system’s multi-dimensional expression space. We carry out

our sequence-expression-activity mapping approach on an proto-

typical 3-enzyme carotenoid biosynthesis pathway, characterizing

only 73 pathway variants to build a SEAMAP that predicts all possi-

ble physiological behaviors of the pathway. We then test the

model’s predictions by correctly designing 19 additional pathway

variants to access intermediate activities (interpolation); 28 addi-

tional pathway variants to access higher activities, including optimal

pathway variants (extrapolation); and transcriptionally regulated

pathway variants with desired activity response curves. We also use

SEAMAP predictions to understand the relationship between DNA

mutations and the pathway’s evolutionary landscape. Finally, we

compare three types of system-level models (mechanistic, geo-

metric, and statistical) to analyze their ability to design genetic systems

with targeted activities and to provide re-usable design information.

Results

Efficient searching of the sequence-expression space

The first step to mapping a genetic system’s sequence, expression,

and activity relationship is to design sequences to efficiently search

its expression space. We developed an automated search algorithm,

called the RBS Library Calculator, to design the smallest synthetic

ribosome-binding site (RBS) library that systematically increases a

protein’s expression level across a selected range on a > 10,000-fold

proportional scale. To do this, we use a predictive biophysical

model to map mRNA sequence to translation initiation rate, employ-

ing a previously developed, and recently expanded, statistical thermo-

dynamic model of the bacterial ribosome’s interactions. We

combine this sequence-dependent model with a genetic algorithm to

perform optimization. Through iterations of in silico mutation,

recombination, prediction, and selection, synthetic RBS library

sequences using the 16-letter degenerate alphabet are designed to

maximize the search coverage of a selected translation rate space,

while minimizing the number of RBS variants in the library

(Fig 1B). When incorporated into well-designed operons (see Box 1

for design rules), the proteins’ expression levels will be proportional

to their translation initiation rates.

The algorithm has several modes to navigate multi-protein

expression spaces. These modes enable one to control the search

range, search resolution, and sequence design constraints according

to the application and design objectives. In Search mode, a synthetic

RBS library is optimized to cover the widest possible expression

space using a desired resolution. In Genome Editing mode, the

synthetic RBS library is designed toward introducing the fewest,

consecutive mutations into the genome. Finally, in Zoom mode, the

translation rate range is narrowed, and the search resolution is

increased, to design an RBS library to target optimal expression

levels.

To validate the RBS Library Calculator’s Search mode, three opti-

mized RBS libraries were designed using high, medium, or low

search resolutions with 36, 16, or 8 variants per library, respec-

tively, to control reporter protein expression on a multi-copy

plasmid in Escherichia coli DH10B. Degenerate RBS sequences

primarily utilized 2-nucleotide degeneracies (S, K, R, B, and M) with

only one instance of a 3-nucleotide degeneracy (M). None contained
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a 4-nucleotide degeneracy (N). Search mode inserted degenerate

nucleotides 5–19 upstream of the start codon to modulate both the

16S rRNA-binding affinity and the unfolding energetics of inhibitory

mRNA structures. We quantified the optimized RBS libraries’ search

ranges, coverages, and translation rate predictions by measuring

reporter protein expression levels from individual RBS variants

within each library. Fluorescence measurements were taken during

24-h cultures maintained in the early exponential growth phase by

serial dilutions to achieve steady-state conditions. All DNA

sequences, translation rate predictions, and fluorescence measure-

ments are provided in the Supplementary Table S1.

Fluorescence measurements show that the optimized RBS libraries

searched the 1-dimensional (1 protein) expression level spaces with

high coverages, high dynamic ranges, and accurate translation rate

predictions. The 36-variant RBS library systematically increased

mRFP1 expression from low to high levels with a 49,000-fold

dynamic range and 94% search coverage (Fig 1C), while the

16-variant RBS library uniformly increased sfGFP expression across

a 84,000-fold range with only a small coverage gap at 100 au (79%

search coverage) (Fig 1D). The lowest resolution RBS library

contained only eight variants, but uniformly increased sfGFP expres-

sion between the selected translation rate range, yielding protein

expression levels from 63 to 49,000 au (778-fold dynamic range)

with a high 99% search coverage (Fig 1E).

The biophysical model of bacterial translation accurately

predicted the translation initiation rates from these 60 RBS variants

with an average error DDGtotal of 1.74 kcal/mol, which is equivalent

to predicting the measured translation initiation rate to within
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Figure 1. Building and using sequence-expression-activity maps (SEAMAPs).

A The RBS Library Calculator designs a synthetic RBS library to efficiently search a multi-dimensional protein expression space. A kinetic mechanistic model maps the
relationship between protein expression levels and genetic system activity, using a minimal number of measurements for parameterization. The SEAMAP’s
predictions are repeatedly used for different design objectives. The RBS Library Calculator designs a new RBS library to zoom onto a region of targeted protein
expression levels for optimized genetic system performance.

B The RBS Library Calculator combines a biophysical model of translation with a genetic algorithm to identify the smallest degenerate RBS sequence (dRBS) with
maximal search coverage for an input protein-coding sequence (CDS). The biophysical model calculates the ribosome’s binding free energy DGtot for an input
mRNA sequence S, which is then related to its translation initiation rate and protein expression level P.

C–E Fluorescence measurements show that optimized RBS libraries in Escherichia coli DH10B searched a 1-dimensional expression level space with 94, 79, and 99%
search coverages at high, medium, and low search resolutions, respectively. Translation initiation rate predictions (red diamonds) are compared to measurements
(Pearson R2 is 0.88, 0.79, and 0.89, respectively. All P-values < 0.001). Data averages and standard deviations from 6 measurements.
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2.2-fold with an apparent b of 0.45 mol/kcal. The biophysical model’s

predictions were particularly accurate for the high- and low-resolution

libraries (average DDGtotal = 1.05 kcal/mol, R2 = 0.88; and average

DDGtotal = 0.46 kcal/mol, R2 = 0.89, respectively) in contrast to

the medium-resolution library that contains several outliers

at low expression levels (average DDGtotal = 3.71 kcal/mol,

R2 = 0.72).

Navigation of expression spaces in diverse bacterial species

The ribosome’s interactions with mRNA can change between

organisms, leading to varying translation rates. By accounting for

known differences, we investigated whether the biophysical model

can accurately predict translation rates in diverse bacterial hosts.

Using the model to predict expression differences between organ-

isms would enable the development of host-independent SEAMAPs

and the engineering of genetic systems in one organism for their

eventual use in another. We selected four bacterial hosts currently

used for biotechnology applications (Supplementary Table S2):

E. coli BL21 for overexpression of recombinant proteins;

Pseudomonas fluorescens for production of biopolymers and

soil decontamination; Salmonella typhimurium LT2 for secretion

of large proteins, including spider silk; and Corynebacterium

glutamicum for production of enzymes and amino acids (Monti

et al, 2005; Widmaier et al, 2009; Becker et al, 2011). To predict

translation initiation rates, we included promoter-dependent

upstream sequences in the 50 UTR and selected the appropriate 30

16S rRNA sequence for each host, 50- ACCUCCUUU-30 for the

gram-positive C. glutamicum, and 50-ACCUCCUUA-30 for the

remaining gram-negative species (Fig 2A).

We designed a 16-variant-optimized RBS library to vary mRFP1

expression across a 14,000-fold range, introduced expression

cassettes into broad host vectors with host-specific promoters, and

measured fluorescence during long-time cultures in host-specific

media (Materials and Methods). Overall, fluorescence measure-

ments varied between 1,051- and 10,900-fold, depending on the

host, and show that relative translation initiation rates were

correctly predicted to within 2.1-fold (average error DDGtotal of

1.61 kcal/mol, Pearson R2 is 0.89) (Fig 2B). Translation rate

predictions were more accurate in gram-negative E. coli BL21

(DDGtotal of 1.18 kcal/mol, Pearson R2 is 0.93), compared to

gram-positive C. glutamicum (DDGtotal of 1.81 kcal/mol, Pearson

R2 is 0.88), though the difference is a single outlier (Supplemen-

tary Table S1). Interestingly, the apparent Boltzmann constant

used to convert calculated binding free energies into predicted

translation rates did not significantly vary between bacterial hosts

(apparent b was 0.42 � 0.02 mol/kcal). Consequently, these

observations suggest that the free energies of in vivo RNA–RNA

interactions remain the same regardless of the host organism,

including the effects of molecular crowding on binding events

(Tan et al, 2013).

Efficient search in gram-positive and gram-negative
bacterial genomes

Genome engineering techniques enable the targeted mutagenesis of

genomic DNA, either by employing oligo-mediated allelic recombi-

nation, homologous recombination, or site-directed non-homolo-

gous end joining (Sharan et al, 2009; Wang et al, 2009; Urnov et al,

2010; Cho et al, 2013; Cong et al, 2013; Esvelt & Wang, 2013; Mali

et al, 2013). We developed the Genome Editing mode to identify the

minimal number of adjacent genomic RBS mutations that systemati-

cally increase a protein’s expression level across a wide range. Opti-

mization is initialized using the wild-type genomic RBS and protein-

coding sequences, and the solution is used to perform genome

mutagenesis. We then evaluated our ability to search expression

spaces by using optimized RBS libraries to modify the genomes of

gram-positive and gram-negative bacteria.

First, we employed homologous recombination to introduce an

optimized library of heterologous cassettes into the Bacillus subtilis

168 genome, using Genome Editing mode to optimize two RBS

libraries that control expression of the reporter mRFP1 with transla-

tion initiation rates from 100 to 96,000 au on the model’s propor-

tional scale. Translation rate predictions use 50-ACCUCCUUU-30 as
the 30 end of the B. subtilis 16S rRNA. Fluorescence measurements

of 14 single clones from the libraries show that single-copy mRFP1

expression varied from 10 and 17,600 au with a search coverage of

76%, well-predicted translation initiation rates that were propor-

tional to the measured expression levels (R2 = 0.81), and with a low

error in the calculated ribosomal interactions (average DDGtotal =

1.77 kcal/mol) (Fig 3A).

Box 1: Design rules for synthetic bacterial operons

Protein expression levels are affected by several factors, including
transcription rates, mRNA stabilities, and translation rates. Propor-
tional control over expression is achieved by optimizing RBS libraries
to vary translation initiation rates, while carrying out rational
sequence design to minimize changes in other factors. Codon usages
are optimized to increase their translation elongation rates, while
reducing the number of internal start codons with high translation
initiation rates (Quan et al, 2011). Changes in mRNA stability are
reduced by shortening unprotected mRNA regions and by removing
potential RNAse-binding sites, including long single-stranded or
duplexed RNA regions (Saito & Richardson, 1981; Dasgupta et al, 1998;
Baker & Mackie, 2003; Folichon et al, 2003). Intergenic regions are
designed to limit the extent of translational coupling within multi-
cistronic bacterial operons (Oppenheim & Yanofsky, 1980). Using these
rules, the effects of confounding control variables are minimized,
thereby enabling designed RBSs to proportionally alter a protein’s
expression level, regardless of its location within a bacterial operon.
Importantly, building and using SEAMAPs employs a reference genetic
system variant; its predictions depend only on proportional changes to
protein expression.
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Second, we employed MAGE mutagenesis on the E. coli

MG1655-derived EcNR2 genome (Wang et al, 2009), targeting its

lacI-lacZYA locus and controlling lacZ protein expression levels

(Fig 3B). We first conducted three rounds of MAGE mutagenesis to

introduce an in-frame stop codon into the lacI repressor-coding

sequence (Supplementary Table S3). Using the algorithm’s Genome

Editing mode, we then designed a 12-variant degenerate oligo-

nucleotide to target the lacZ RBS sequence and uniformly increase

its translation initiation rate from 20 to 55,000 au. We conducted

twenty rounds of MAGE mutagenesis to introduce the 12 sets of

RBS mutations into the genome and selected 16 colonies for

sequencing of the lacZ genomic region. Ten of these colonies

harbored genomes with unique mutated RBS sequences controlling

lacZ translation. lacZ activities from the derivative EcNR2 genomes

were individually measured using Miller assays after long-time

cultures maintained in the early exponential growth phase (Fig 3B).

The measured lacZ expression levels varied across a 2,400-fold

range, searched the expression space with 84% coverage, and were

well predicted by the biophysical model’s predicted translation

initiation rates up to 3,000 au on the model’s proportional scale

(R2 = 0.93).

Interestingly, increasing the lacZ translation initiation rate

beyond 3,000 au, which is four-fold over its wild-type rate, did not

further increase lacZ activity, suggesting that there is a critical point

where translation initiation may no longer be the rate-limiting step

in protein expression, potentially due to ribosomal pausing during

translation elongation, or protein misfolding. Significant changes in

specific growth did not occur (Supplementary Table S1). To further

increase expression, one could replace the existing, natural genes in

the genome with newly designed protein-coding sequences opti-

mized for maximum expression control, which motivates the design

of synthetic genomes (Lajoie et al, 2013).

Efficient search in multi-dimensional expression spaces

Complex genetic systems express multiple proteins to carry out their

function. Building multi-protein SEAMAPs are particularly difficult,

as it requires searching a larger, multi-dimensional expression

space. We next evaluated Search mode’s ability to efficiently explore

a 3-dimensional expression space, compared to several types of

randomly generated RBS libraries. Optimized RBS libraries were

designed by the RBS Library Calculator to encode 8 RBS variants

with predicted translation initiation rates across a 5,000-fold range

(Supplementary Table S4). They contained 2-nucleotide degenera-

cies at distributed positions from 4 to 26 nucleotides upstream of

the start codon, including positions far from the Shine-Dalgarno

sequence. Separately, we constructed random RBS libraries by

selecting six nucleotides of the Shine-Dalgarno sequence and

randomly incorporating all possible choices to create 4,096 variants

with widely different predicted translation initiation rates (Supple-

mentary Table S5). We employ combinatorial DNA assembly to

construct bacterial operon variants encoding cfp, mRFP1, and

gfpmut3b reporter proteins (Gibson et al, 2009), generating either

512 operon variants when using optimized RBS libraries, and up to

68.7 billion operon variants when using random RBS libraries. The

extent of DNA library assembly is limited, and only a sub-sample of

the randomized bacterial operon variants will ever be constructed

or selected for characterization.
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Figure 2. Searching expression spaces in diverse bacterial hosts.

A Differences in bacterial 16S rRNA sequences lead to different mRNA translation rates. To overcome combinatorial explosion, the biophysical model predicts how
changes in mRNA and rRNA sequences control translation rate.

B A 14- to 16-variant-optimized RBS library controlling mRFP1 expression was characterized in Escherichia coli BL21, Pseudomonas fluorescens, Salmonella typhimurium
LT2, and Corynebacterium glutamicum. The biophysical model accurately predicted translation initiation rates across a > 1,000-fold range in E. coli BL21 (DDGtotal is
1.18 kcal/mol, R2 is 0.93), P. fluorescens (DDGtotal is 1.63 kcal/mol, R2 is 0.90), S. typhimurium LT2 (DDGtotal is 1.83 kcal/mol, R2 is 0.89), and C. glutamicum (DDGtotal is
1.81 kcal/mol, R2 is 0.88). All P-values < 10�6. Data averages and standard deviations from three measurements.
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We compared search coverages when using either optimized or

randomly mutagenized RBS libraries. For each case, 500 strains with

operon variants were randomly selected and individually cultured,

and their CFP, mRFP1, and GFPmut3b fluorescences were quantified

by flow cytometry. The optimized RBS libraries searched the

3-dimensional protein expression level space across a 20,000-fold

range with a 42% search coverage (Supplementary Fig S1). In

contrast, the randomly mutagenized RBS library only partly covered

the expression level space, showing a high degree of clustering that

is responsible for decreasing its search coverage to 14% (Supple-

mentary Fig S2), which agrees well with the computationally

predicted search coverage of 14.7% using Monte Carlo sampling of

the predicted translation initiation rates (Supplementary Methods).

Using the same method, similar search coverages of 16.7 and

19.1% are computationally predicted for a 4,096-variant library

NNNGGANNN (Mutalik et al, 2013) and a 23,328-variant library

DDRRRRRDDDD (Wang et al, 2009), respectively. Overall, a minority

of randomly generated operon variants expressed higher or lower

levels that would be necessary for many applications. Using the

algorithm’s Search mode, higher-dimensional expression spaces may

be efficiently sampled with high coverages at targeted resolutions

(Supplementary Fig S3 and Supplementary Tables S15, S16 and S17).

Mapping the sequence-expression-activity space of a
multi-enzyme pathway

To demonstrate our approach, we created a SEAMAP for a multi-

enzyme biosynthesis pathway and then repeatedly used it to opti-

mize the pathway’s sequences and expression levels for different

design objectives. The RBS Library Calculator in Search mode was

employed to systematically vary crtEBI enzyme expression levels

originating from a carotenoid biosynthesis pathway in Rhodobacter

sphaeroides and codon-optimized for E. coli. Three 16-variant-

optimized RBS libraries were designed to vary crtE, crtB, and crtI from

445 to 72,000 au, 3 to 20,000 au, and 97 to 203,000 au, respectively

(Supplementary Table S6). Three-part combinatorial DNA assembly

onto a ColE1 vector resulted in up to 4,096 clonal pathway variants,

transcribed by the arabinose-induced PBAD promoter. Seventy-three

clones containing unique pathway variants were randomly selected,

sequenced, transformed into E. coli MG1655-derived EcHW2f strain

(Supplementary Table S3), and cultured for a 7-h post-induction

period. Their neurosporene contents were determined by hot acetone

extraction and spectrophotometry. Within a single library, the path-

ways’ neurosporene productivities uniformly varied between 3.3 and

196 lg/gDCW/h (Fig 4A and Supplementary Table S7).

Using optimized RBS libraries yielded a large continuum of

pathway activities with the smallest number of measurements.

Biophysical model predictions from sequenced RBSs indicate that

the translation rates broadly explored the selected 3-dimensional

space (Fig 4B), which eliminates redundant measurements and thus

maximizes the measurements’ information content. As crtEBI trans-

lation rates were increased, pathway productivities did not reach a

plateau, suggesting that translation initiation remained the rate-

limiting step throughout the mapped space.

To formulate an expression-activity relationship for the pathway,

we developed a mechanistic, kinetic model to describe the system-

level behavior (Materials and Methods). We listed the 24 elementary

chemical reactions that are responsible for enzymatic conversion of

isoprenoid precursors (DMAPP and IPP) to neuro-sporene. All

reactions are reversible, including enzymes’ binding to substrates

and the release of products (Fig 4D and Supplementary Fig S4).

We developed a kinetic model of the reaction network, deriving

a system of differential equations with 48 unknown parameters.

Mole balances on each enzyme and flux constraints reduced the
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system of equations to having 33 unknown parameters (Supplemen-

tary Methods). We then use an ensemble modeling approach (Tran

et al, 2008; Contador et al, 2009) that combines model reduction

and dimensional analysis to compare the pathway variants’ calcu-

lated fluxes to a reference pathway, and to convert simulated reac-

tion fluxes to measurable productivities. Changing a pathway

variant’s translation rates proportionally controls the simulated

enzyme concentrations, which alters the pathway’s predicted

neurosporene productivity. Finally, we employed model identifica-

tion to determine a unique set of kinetic model parameters that

reproduced the measured neurosporene productivities for the 72

non-reference pathway variants, across ten independent and

randomly initialized optimization runs (Supplementary Table S8).

The resulting kinetic model maps crtEBI translation rates to neuro-

sporene productivities across a 10,000-fold, 3-dimensional transla-

tion rate space (Fig 4B).

Design and optimization of multi-enzyme pathways
using SEAMAPs

We tested the SEAMAP’s predictions by using it to design crtEBI

pathway variants according to different design objectives, beginning

with pathways that exhibit intermediate activities (interpolation).

Nineteen additional pathway variants were characterized, and the

pathway’s predicted productivities were compared to measured

productivities. The biophysical model predicts the crtEBI translation

rates from sequenced RBSs, and the kinetic model uses these trans-

lation rates to calculate each pathway variant’s productivity

(Fig 4E). The kinetic model correctly determined how changing the

enzymes’ translation rates controlled the pathway’s productivity

(24% error across a 100-fold productivity range) (Supplementary

Table S9). Overall, kinetic model predictions were more accurate at

higher crtEBI translation rates (Supplementary Fig S5). In general, a

high crtE translation rate was necessary for high biosynthesis rates,

while low crtB and high crtI translation rates were sufficient to

balance the pathway.

Second, we tested the SEAMAP’s ability to design improved

pathways by identifying an expression region with higher activities

beyond the existing observations (extrapolation) and employing

the RBS Library Calculator in Zoom mode to target this region. We

designed 8-variant RBS libraries with translation rate ranges

of 32,000–305,000 au for crtE, 1,800–232,000 au for crtB, and

26,000–1,347,000 au for crtI (Fig 4C and Supplementary Table S10).

After combinatorial DNA assembly, 28 clones containing unique

pathway variants were randomly selected, sequenced, and cultured

for a 7-h post-induction period. The resulting neurosporene produc-

tivities improved up to 286 lg/gDCW/h (Fig 4A) (Supplementary

Table S11). Importantly, the SEAMAP predicts sequence-dependent

changes to pathway productivity, but not the effects of media

formulation or growth conditions. For example, the best pathway

variant’s productivity was further increased to 441 lg/gDCW/h

when optimized media and aeration conditions were employed

(Alper et al, 2006) (Supplementary Fig S6).

Third, we tested the SEAMAP’s ability to predict a pathway’s

activity response curve when utilizing a tunable promoter to vary

the crtEBI operon’s transcription rate (Fig 5A). Changes in the

transcription rate will proportionally vary all enzyme expression

levels in the crtEBI operon, causing diagonal shifts in expression

space that will lead to productivity changes. We modified the most

productive crtEBI pathway variant, replacing its PBAD promoter with

the PlacO1 promoter, and measured a productivity of 119 lg/gDCW/

h in supplemented M9 media without IPTG addition. This measure-

ment is used as a reference point, identifying where the modified

pathway variant is located in the sequence-expression-activity space

(Fig 5B, black square). The same promoter replacement was

performed for three additional pathway variants with distinctly

different crtEBI translation rates (Supplementary Table S12). Under

these growth conditions, the change in promoter resulted in an

overall increase in enzyme expression levels.

Model calculations are then combined to show how changes in

the promoter’s transcription rate and the pathway variants’ transla-

tion rates will affect their productivities (Fig 5B). We use a model to

first relate IPTG concentration to PlacO1 transcription rate (Supple-

mentary Fig S7), followed by multiplication with the translation

rates to determine enzyme expression levels. These enzyme expres-

sion levels are substituted into the SEAMAP to predict the pathways’

productivities. According to the model, the pathway variants’

productivities will increase with promoter induction, up to a maxi-

mum amount (Fig 5C, left). The maximum productivity is deter-

mined by the pathway variants’ translation rate ratios and the

promoter’s transcription rate. Notably, the model predicts that

excess enzyme expression will lower a pathway’s productivity, due

to sequestration of intermediate metabolites as enzyme–substrate

complex.

We then characterized the four pathway variants’ productivities

with increasing IPTG induction (Supplementary Table S12). Though

the pathway variants were expressed by the same promoter, their

activity responses varied greatly and were highly consistent with

model calculations (Fig 5C, right). Pathway variants with optimal

translation rates had higher productivities and achieved maximum

activity at a lower transcription rate. However, additional increases

in transcription lowered their productivities, due to excess enzyme

expression levels. The SEAMAP shows how changing the operon’s

transcription and translation rates can exhibit this nonlinear behav-

ior. Consequently, one can use the SEAMAP to guide the selection

of a regulated promoter to dynamically control a pathway’s activity.

Regulated promoters can often serve as sensors for cellular stress,

and they may be used to implement feedback control over a path-

way’s enzyme expression levels to maintain maximal activities.

The use of dynamic regulation has been shown to significantly

improve a pathway’s productivity (Zhang et al, 2012; Dahl et al,

2013).

The expanding search for optimal pathways

Analysis of the crtEBI pathway’s SEAMAP reveals why metabolic

optimization efforts have been generally laborious. First, each

enzyme has the potential to be a rate-limiting step in the pathway

(Bailey, 1999). Distributed control over the pathway’s flux

requires that all enzyme expression levels must be tuned to

achieve high productivities. In particular, large changes in enzyme

expression levels are needed to exert control; small changes in

enzyme levels are buffered by compensating changes in metabo-

lite concentrations (Fendt et al, 2010). This principle illustrates

the need for genetic parts that maximally change protein expres-

sion levels across a wide range. Second, although the goal of
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pathway optimization is to continually increase pathway produc-

tivities, it remains unclear when an engineered pathway has

reached its maximum productivity, and thus, pathway engineering

efforts continue until a better variant cannot be found. A quanti-

tative criteria for pathway optimality would provide a metric for

when to expand metabolic engineering efforts to additional

proteins and pathways. Next, we use SEAMAP predictions to

calculate a pathway variant’s optimality, and to determine when

a pathway variant has become optimally balanced. We then

demonstrate that reaching this optimality condition is the
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Figure 4. Sequence-expression-activity mapping of a multi-enzyme pathway.

A Characterization of two libraries of neurosporene biosynthesis pathway variants, using the RBS Library Calculator for searching a large combinatorial space (Search
mode, left) or a narrow targeted region (Zoom mode, right). Averages and standard deviations from at least three measurements of neurosporene productivities.

B Measurement data and translation rate predictions (circles) from Search mode are used to parameterize a kinetic model of the pathway’s reaction rates, showing the
relationship between crtEBI translation rates and neurosporene productivity.

C To design pathways with higher activities, a translation rate region (gray box) is targeted using the RBS Library Calculator in Zoom mode. Translation rate predictions
from selected pathway variants are shown (circles).

D A schematic of the bacterial operon-encoding crtEBI, and the corresponding reactions, genes, and metabolites in the biosynthesis pathway. Cofactors are not shown.
E To evaluate the design of pathways with intermediate activities, 19 additional crtEBI pathway variants were characterized, and the predicted neurosporene

productivities (black bars) were compared to the measured productivities (green bars). Data averages and standard deviations from two measurements.
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appropriate time to redirect metabolic engineering efforts and

increase precursor biosynthesis rates.

We define pathway optimality using flux control coefficients

(FCCs) (Fell, 1992; Kholodenko & Westerhoff, 1993) and use the

SEAMAP predictions to calculate the FCCs for the crtEBI pathway.

FCCs quantify how differential fold changes in enzyme expression

control a pathway’s overall productivity and vary depending on the

enzymes’ expression levels (Fig 6A; Supplementary Fig S8). High

FCC regions indicate where increasing an enzyme’s expression will

increase pathway’s productivity, while low FCC regions show where

increasing expression does not lead to a significant improvement in

productivity. Negative FCC regions show where excess enzyme

expression causes metabolite sequestration or growth toxicity.

A pathway is balanced when its enzymes’ FCCs are equal; differ-

ential fold increases in enzyme expression all have the same effect

on pathway activity. Further, a pathway is optimally balanced when

its enzymes’ FCCs are zero at the global maxima in activity space;

increasing enzyme expression has a minimal, or negative, impact

on pathway productivity. Once a pathway is optimally balanced, it

has shifted activity control over to the upstream metabolic module

responsible for precursor biosynthesis.

We next investigated whether a pathway variant’s FCCs provide

the stopping criterion that indicates the need for further metabolic

engineering of upstream pathways. We selected an optimally

balanced pathway variant where all of its enzymes have approxi-

mately zero FCCs and an imbalanced pathway variant where a

positive FCC for crtE indicates that it remains a rate-limiting step

(0.65 for CrtE, near 0 for CrtB and CrtI) (Fig 6A). We then

employed the RBS Library Calculator’s Genome Editing mode

to optimize a 16-variant RBS library controlling genomic dxs
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Figure 5. Using SEAMAPs to design multi-enzyme pathways with desired activity response curves.

A A promoter’s transcription rate r and the crtEBI translation rates (x, y, z) are inputted into SEAMAP’s kinetic model to determine the pathway’s productivity.
B A slice of the CrtEB expression-activity space is shown, where CrtI expression is 200,000 au. The effects of transcriptional regulation for four pathway variants are

shown as diagonal lines at their respective translation rates. The productivity of a reference pathway variant in one condition (black square) was characterized to
determine its location in expression-activity space, which provides orientation for all other locations.

C Left: The effect of the PlacO1 promoter’s transcription rate on the pathway variants’ productivities is calculated. The location of the global maxima depends on the
promoter’s transcription rate and the mRNA translation rates. Right: The productivities of the four pathway variants are measured as transcription rate is increased
via IPTG induction. Changes in translation rate cause the global maxima to appear at lower transcription rates, consistent with model calculations. Data averages and
standard deviations from two measurements.

ª 2014 The Authors Molecular Systems Biology 10: 731 | 2014

Iman Farasat et al Optimizing multi-protein genetic systems Molecular Systems Biology

9



expression, the enzyme that controls the first committed step to

isoprenoid biosynthesis (Supplementary Table S13). Using co-selec-

tion MAGE mutagenesis (Wang et al, 2012), 16 genome variants

were constructed and verified. The RBS library varied dxs transla-

tion from 110 to 291000 au. The increase in dxs expression signifi-

cantly improved the optimally balanced pathway’s productivity up

to 517 lg/gDCW/h (Fig 6B; Supplementary Table S14), while only

increasing the imbalanced pathway’s productivity up to 81 lg/
gDCW/h (Fig 6C). Thus, a pathway variant’s flux control coeffi-

cients provided the quantitative criteria for indicating when to

cease pathway engineering efforts and redirect toward improving

precursor biosynthesis rates. These results suggest an iterative

metabolic engineering strategy where upstream pathways are addi-

tionally optimized, applying the optimality criteria in a successive

fashion.

More broadly, both the optimization of genetic systems and the

study of evolutionary dynamics can be understood as time-iterated

DNA mutations to navigate an organism’s sequence-expression-

activity space. Evolution acts on a slower time scale and only selects

for population members whose activities have improved their over-

all fitness; in contrast, optimizing genetic systems can be conducted

independent of fitness evaluations and can be directed toward rare

DNA sequences. Both processes operate on the same sequence-

expression-activity landscape. Using the multi-enzyme pathway’s

SEAMAP, we show how evolution could shape pathway productiv-

ity, due to random mutation. Starting from the optimally balanced

pathway shown in Fig 6, the effects of single, double, and triple RBS

mutations are calculated, showing that pathway productivity

decreases in almost all cases (Fig 7). From an evolutionary perspec-

tive, if the multi-enzyme pathway is essential to cell growth, then

these mutations will never proliferate in the population. However,

for pathways involved in manufacturing chemical products, path-

way productivity is more likely to be inversely coupled to cell

growth, which will lead to mutation enrichment. Thus, building

SEAMAPs allows one to visualize a genetic system’s evolutionary

landscape and potentially to design DNA sequences toward becom-

ing insensitive to evolutionary dynamics.

Discussion

A key challenge to successfully engineering cellular organisms has

been the combinatorial vastness of their genetic instruction space,

and the complex relationship between genotype and phenotype.

We present a new approach to overcoming this design challenge

by combining a biophysical model of gene expression with a

system-level mechanistic model to quantitatively connect a genetic

system’s sequence, protein expression levels, and behavior. We

illustrate how to efficiently build sequence-expression-activity

maps (SEAMAPs), performing the fewest number of characteriza-

tion experiments, by using an automated search algorithm to

uniformly explore a multi-dimensional expression space (Fig 1).

Both the biophysical model and automated search algorithm are

highly versatile; they can be used in diverse gram-negative and

gram-positive bacteria, and to modify both plasmids and genomes

(Figs 2 and 3). Using the search algorithm, we built a SEAMAP for

a multi-enzyme pathway and demonstrated how it can be used to

design pathway variants with targeted productivities (Fig 4) and

tailored activity response curves (Fig 5), while quantitatively guid-

ing further metabolic engineering efforts to increase precursor

biosynthesis rates (Fig 6). Altogether, creating a SEAMAP for a

genetic system provides a coherent and predictive model that can

be repeatedly used to optimize non-natural sequences and achieve

complex design objectives.

Overall, our computational design approach combines principles

from both systems and synthetic biology to build predictive models

(Kitano, 2002). We formulate models using physical principles that

can be re-used across different systems and scales (Hyeon &
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Figure 6. Increasing precursor biosynthesis for optimally balanced versus imbalanced pathways.

A The relationship between crtEB translation rates and CrtE’s flux control coefficient (FCC) is calculated using SEAMAP predictions. A lower FCC indicates that the
enzyme is less rate limiting. Here, the crtI translation rate is 100,000 au. According to their FCCs, increasing precursor biosynthesis is predicted to improve the
optimally balanced pathway variant (black circle) more than the imbalanced pathway variant (black diamond).

B, C An optimized RBS library is integrated to control genomic dxs translation initiation rate and systematically vary precursor biosynthesis, followed by productivity
measurements using either (B) an optimally balanced pathway or (C) an imbalanced pathway variant. Predicted crtEBI translation initiation rates are (305,000 au;
17,120 au; 886,364 au) for the optimally balanced pathway variant and (1,046 au; 20,496 au; 200,300 au) for the imbalanced pathway variant.
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Thirumalai, 2011), and their unknown parameters are parameter-

ized using rationally designed genetic system variants with synthe-

sized sequences. The number of unknown parameters can scale

proportionally with the number of proteins in a genetic system,

particularly in biosynthesis pathways and engineered genetic

circuits where proteins typically interact with a small number of

partners. Specifically, modeling each reversible reaction in a multi-

enzyme pathway requires two kinetic parameters, and modeling a

transcription factor’s binding occupancy in a genetic circuit requires

one thermodynamic parameter. Our search algorithm greatly

improves the efficiency of model building by designing the minimal

number of genetic system variants that maximally span the multi-

dimensional expression-activity space, eliminating redundant

measurements and increasing the information content of datasets.

As a result, the parameterized model can accurately represent the

genetic system’s nonlinear behavior over its sequence-expression-

activity space, while reducing characterization effort. These aspects

of our approach become more important as larger genetic systems

are modified and characterized, for example, using chip-based oligo-

nucleotide synthesis and next-generation sequencing (Goodman

et al, 2013; Kosuri et al, 2013).

When mechanistic information is unavailable, there are black-

box approaches to building expression-activity relationships that

utilize geometry, informatics, and statistics. Using our pathway vari-

ant dataset as an example, we illustrate the advantages and limita-

tions of two alternative non-mechanistic system-level models. First,

we use computational geometry to decompose the four-dimensional

expression-activity space into Voronoi polygons, and to calculate

unknown activities using linear interpolation between adjacent

Voronoi cells (Supplementary Information). Using this approach, a

geometric SEAMAP could use intermediate enzyme expression levels

to predict pathway activities with 15% error (interpolation) (Supple-

mentary Fig S9, Supplementary Fig S10). However, to design path-

way variants with higher enzyme expression levels and activities

(extrapolation), we would need to simplify the expression-activity

relationship outside the model’s convex hull, for example, by assum-

ing linearity and independence. Based on the mechanistic modeling

and FCC calculations, we know such assumptions are incorrect; the

expression-activity relationship is nonlinear, and all enzyme expres-

sion levels co-dependently control pathway flux. Consequently,

geometric models can be used to formulate accurate expression-

activity models, although their ability to design genetic systems

outside the previously characterized expression space is limited.

Second, we employ a statistical linear regression model to relate

expression to activity, using an Exterior Derivative Estimator to

determine best-fit coefficients (Aswani et al, 2011) that is similar to

a recent approach (Lee et al, 2013). This statistical model assigns

RBS variants as categories that are present or absent for each gene

and finds coefficients that linearly relate individual RBS variants’

effects on expression to measured pathway productivities. The linear

regression model could predict the pathway variants’ activities with

a 46% error (Supplementary Information). Using a previous

approach (Lee et al, 2013), when the productivity data are log-trans-

formed, a statistical model with the same training size predicted the

pathways’ activities with a 10% error. To design new pathway vari-

ants, the category-based statistical model predicts pathway produc-

tivities when utilizing RBS variants that were characterized in the

existing training set. However, it cannot predict pathway productivi-

ties when utilizing newly designed RBS variants, which creates gaps

in the expression-activity relationship. This becomes important

when, for example, the optimal expression levels to achieve a

desired design objective fall within a gap in the characterized expres-

sion space, or are located outside the initially selected expression

range; a newly designed RBS sequence would be needed to achieve

optimality. Additional information on these non-mechanistic modeling

approaches and their differences are available in the Supplementary

Information and Supplementary Table S18.

Regardless of the modeling approach, it is important to criti-

cally test whether parameterization using randomly generated

expression-activity data also leads to an accurate representation.
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Figure 7. Predicting the evolutionary landscape of a multi-enzyme pathway.
Histograms show that random mutations will more likely decrease a pathway’s productivity.

A–C Either (A) one-, (B) two-, or (C) three-nucleotide mutations are randomly introduced into the 35 nucleotide-long ribosome-binding site sequences of the crtEBI
operon. Changes in enzyme expression levels and pathway productivities are predicted using the SEAMAP.
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A well-defined model should not equally represent both real and

random data. We carried out a test of this null hypothesis and

found that the kinetic, computational geometry, and linear regres-

sion models all had high prediction errors (70–110%), except

when log-transforming the random productivity data (15%). The

variable transformation allowed the random data to fit the statisti-

cal model with similar error, compared to the real data (Supple-

mentary Fig S11). These comparisons provide an important

baseline to error measurements.

Our approach to designing genetic systems also departs from

recent efforts to characterize genetic part toolboxes to control

expression (Mutalik et al, 2013). A part-centric approach to a

statically tuning expression requires a tremendous amount of

characterization to ensure that parts are modular, orthogonal, and

insensitive to surrounding sequence changes, while being similarly

functional in diverse hosts (Nielsen et al, 2013). Further, to be

useful, a part-centric toolbox must both be wide and deep. Many

genetic parts with similar expression levels must be available,

together with many genetic parts that span the entire expression

level range. Genetic parts must not have long repetitive sequences

to minimize rates of homologous recombination and undesired

navigation of the sequence-expression-activity space (Lovett, 2004;

Sleight et al, 2010). By combining sequence-dependent biophysical

models with optimization, we can generate an unlimited number

of non-repetitive genetic parts that span the entire expression

range, and in diverse bacterial hosts. In another distinction, a

toolbox is a static list of DNA sequences and cannot incorporate

additional design criteria ex post facto without additional charac-

terization to ensure similar function. However, as demonstrated,

our validated model can be repeatedly re-used with different

design objectives to optimize a genetic system’s sequence toward

a desired behavior.

As synthetic biology matures into an engineering discipline, addi-

tional effort will be needed to ensure continuity between design

approaches, where numbers have a physical meaning and the

origins of design rules have a molecular basis. In that regard, our

computational design approach is seamlessly augmented by an

improved understanding of translation initiation (Borujeni et al,

2013) and the development of new mechanistic models that use

sequence information to predict changes in DNA bending and loop-

ing, transcription factor and nucleosome binding, transcription

initiation and elongation rate, transcriptional termination efficiency,

RNA folding and stability, polarity, translation elongation and

coupling, regulation by cis- and trans- RNAs, and other interactions

that affect protein expression levels (Geggier & Vologodskii, 2010;

Rhodius & Mutalik, 2010; Brewster et al, 2012; Johnson et al, 2012;

Chen et al, 2013; Kilpinen et al, 2013; Rodrigo et al, 2013). The

integration of models, to relate sequence to expression and expres-

sion to activity, should be a central goal of synthetic biology as it

will expand our ability to navigate a genetic system’s behavior

space, and to optimize entire synthetic genomes to achieve a desired

sensing, signaling, and metabolic performance.

A software implementation of the RBS Library Calculator is avail-

able at http://www.salis.psu.edu/software, online since 2011. As of

April 2014, 463 unaffiliated researchers have designed 4,354 opti-

mized RBS libraries for diverse biotechnology applications. The

algorithm’s predictions have already been independently verified by

a non-affiliated laboratory (Coussement et al, 2014).

Materials and Methods

Strains and plasmid construction

All strains and plasmids are listed in Supplementary Table S2.

To construct plasmid-based RBS libraries in E. coli strain

DH10B, protein-coding sequences (mRFP1 or sfGFP) were PCR

amplified from pFTV1 or pFTV2 using mixed primers that encode

optimized degenerate RBSs. The gel-purified PCR product was

joined with digested, gel-purified vector backbone using a 2-part

chew-back anneal-repair (CBAR) reaction (Gibson et al, 2009) to

create the pIF1, pIF2, and pIF3 expression plasmids. Plasmids were

transformed into E. coli DH10B, selected on chloramphenicol, and

verified by sequencing. Expression plasmids contain a ColE1 origin

of replication, a chloramphenicol resistance marker, the J23100

sigma70 constitutive promoter, the optimized degenerate ribosome-

binding site, and the selected reporter gene. Selected plasmids

from the pIF1 series were transformed into E. coli BL21 and

S. typhimurium for expression characterization. mRFP1 expression

cassettes from the same plasmids were sub-cloned into a modified

pSEVA351 vector, replacing J23100 with a Ptac promoter (Gen-

Bank Accession JX560335, CmR, OriT replication origin), and

transformed into P. fluorescens and C. glutamicum B-2784 by elec-

troporation.

To construct genomic RBS libraries in B. subtilis strain 168, a

Bacillus integration vector pDG1661 was modified by replacing the

spoVG-lacZ region with an mRFP expression cassette, containing

the pVeg constitutive promoter from Bacillus, an RBS sequence

flanked by BamHI and EcoRI restriction sites, the mRFP1-coding

sequence, and a T1 terminator. A mixture of annealed oligonucleo-

tides containing optimized RBS libraries was inserted between the

BamHI and EcoRI sites by ligation, and the constructs were verified

by sequencing. The integration vector was integrated into the amyE

genomic locus of B. subtilis 168 using the standard protocol,

selected on 5 lg/ml chloramphenicol, and the integration verified

by iodide starch plate assay.

To construct genomic RBS libraries in E. coli EcNR2 (Wang et al,

2009), 90mer oligonucleotides were designed to have minimal

secondary structure at their 50 and 30 ends and were synthesized

with 50 phosphorothioate modifications and 20 flurouracil to

improve their allelic replacement efficiencies (Integrated DNA Tech-

nologies, Coralville, Iowa). Their concentrations were adjusted to 1

uM in water. The EcNR2 strain was incubated overnight in LB broth

with antibiotic (50 lg/ml ampicillin or chloramphenicol) at 30°C

and with 200 RPM orbital shaking. The culture was then diluted to

early exponential growth phase (OD600 = 0.01) in 5 ml SOC, reach-

ing mid-exponential growth phase within 2–3 h. When reaching an

OD600 of 0.5–0.7, the culture was warmed to 42°C for 20 min and

then placed on ice. One milliliter culture was centrifuged for 30 s at

>10,000 g, and the supernatant was discarded. The cell pellet was

washed twice with chilled water, dissolved in the oligo aqueous

solution, and electroporated using an Eppendorf electroporator

(model 2,510) at 1,800 V. The culture was recovered by incubation

in pre-warmed SOC at 37°C until reaching an OD600 of 0.5–0.7. The

culture was then used for an additional cycle of mutagenesis, plated

on LB agar to obtain isogenic clones, or pelleted to make glycerol

stocks. Mutagenesis was verified by sequencing PCR amplicons of

the lacZ locus.
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To vary genomic dxs expression, co-selection MAGE was

performed on an E. coli EcNR2 strain whose lacZ contains two early

stop codons, performing 12 mutagenesis cycles using 1 lM of an

oligonucleotide mixture to introduce the dxs RBS library and 10 nM

of an oligonucleotide to restore lacZ expression (Supplementary

Table S2). Culturing and selection took place over a 36-h growth

period in M9 minimal media supplemented with 0.4% lactose at

30°C and shaking at 250 RPM. Forty colonies were selected, and 16

unique RBS variants were verified by sequencing PCR amplicons.

To combinatorially assemble 3-reporter operons in E. coli strain

DH10B, PCR amplicons containing Cerulean, mRFP1, and

GFPmut3b/vector backbone were amplified from pFTV3 using

mixed primers containing optimized degenerate RBS sequences and

40 bp overlap regions. The PCR products were Dpn1 digested, gel-

purified, and joined together into the pFTV vector using a 3-part

CBAR assembly reaction (Gibson et al, 2009), using the existing

J23100 constitutive promoter. The library of plasmids was trans-

formed into E. coli DH10B and selected on LB plates with 50 lg/ml

chloramphenicol.

To combinatorially assemble crtEBI operons driven by a PBAD
promoter, the crtE-coding sequence was first sub-cloned into a

FTV3-derived vector that replaced the constitutive J23100 promoter

with an araC-PBAD cassette, followed by PCR amplification of crtE,

crtB, and crtI/vector using mixed primers containing optimized

degenerate RBS sequences and 40 bp overlap regions. PCR products

were joined together using a 3-part CBAR assembly reaction to

create a library of plasmids, which was transformed into E. coli

DH10B, selected on LB agar plates with 50 lg/ml chloramphenicol.

Isolated pathway variants were verified by sequencing. crtEBI-coding

sequences originated from Rhodobacter sphaeroides 2.4.1 and were

codon-optimized and synthesized by DNA 2.0 (Menlo Park, CA).

Growth and measurements

Escherichia coli strains and P. fluorescens were cultured in LB broth

Miller (10 g tryptone, 5 g yeast extract, 10 g NaCl) or M9 minimal

media (6 g Na2HPO4, 3 g KH2PO4, 1 g NH4Cl, 0.5 g NaCl, 0.24 g

MgSO4, 0.011 g CaCl2), as indicated. Salmonella typhimurium LT2

and C. glutamicum B-2784 were cultured in LB Lennox broth (10 g

tryptone, 5 g yeast extract, 5 g NaCl) and Brain Heart Infusion broth

(6 g brain heart infusion, 6 g peptic digest of animal tissue, 14.5 g

digested gelatin, 3 g glucose, 5 g NaCl, 2.5 g Na2HPO4, 7.4 pH),

respectively.

To record fluorescence measurements from RBS variants control-

ling reporter expression, transformed strains and a wild-type E. coli

DH10B strain were individually incubated overnight at 37°C,

200 RPM in a 96-deep-well plate containing 750 ll LB broth and

50 lg/ml chloramphenicol, or 50 lg/ml streptomycin for the

DH10B strain. Five microliter of the overnight culture was diluted

into 195 ll M9 minimal media supplemented with 0.4 g/l glucose,

50 mg/l leucine, and 10 lg/ml antibiotic in a 96-well micro-titer

plate. The plate was incubated in a M1000 spectrophotometer

(TECAN) at 37°C until its OD600 reached 0.20. Samples were

extracted, followed by a 1:20 serial dilution of the culture into a

second 96-well micro-titer plate containing fresh M9 minimal media.

A third plate was inoculated and cultured in the same way to main-

tain cultures in the early exponential phase of growth for 24 h. The

fluorescence distribution of 100,000 cells from culture samples was

recorded by a LSR-II Fortessa flow cytometer (BD biosciences).

Protein fluorescences were determined by taking fluorescence distri-

butions’ averages and subtracting average auto-fluorescence.

Growth temperature for S. typhimurium LT2, P. fluorescens, and

C. glutamicum was 30°C.

To record fluorescence measurements from 3-reporter operon

libraries, 500 colonies were randomly selected and grown indi-

vidually using LB Miller media with 50 lg/ml chloramphenicol,

for 16 h at 37°C with 200 RPM orbital shaking, inside a

96-deep-well plate. Cultures were then diluted 1:20 into fresh

supplemented LB Miller media within a 96-well micro-titer plate,

incubated at 37°C in a M1000 spectrophotometer (TECAN) until

the maximum OD600 reached 0.20. The blue, red, and green

fluorescence distributions of samples were recorded using flow

cytometry, applying a previously calibrated color correction to

remove cross-fluorescence. The average blue, red, and green

fluorescence is determined by subtracting average DH10B auto-

fluorescence.

To record lacZ activities using Miller assays, E. coli EcNR2

genome variants containing lacI knockouts and lacZ RBS muta-

tions were grown overnight at 30°C with 250 RPM orbital shaking

in a 96-deep-well plate containing LB Miller and 50 lg/ml

chloramphenicol. Cultures were then diluted into fresh supple-

mented LB Miller media and cultured at 30°C to an OD600 of 0.20.

Twenty microliter of cultures were diluted into 80 ll permeabiliza-

tion solution and incubated at 30°C for 30 min. Twenty-five micro-

liter samples were then transferred into a new microplate to

perform Miller assays. One hundred and fifty microliter of ONPG

solution was added, and absorbances at 420 and 550 were

recorded by the M1000 for a 3 h period. Using this data, Miller

units were calculated by finding the average value of (OD420 –

1.75 OD550)/OD600 during the times when the product synthesis

rate was constant.

To measure neurosporene productivities, pathway variants were

incubated for 16 h at 30°C, 250 RPM orbital shaking in 5 ml

culture tubes, then washed with PBS, dissolved in fresh LB miller

(50 lg/ml chloramphenicol, and 10 mM arabinose), and grown for

another 7 h. Cells were centrifuged (Allegra X15R at 4,750 RPM)

for 5 min, washed with 1 ml ddH2O, and dissolved in 1 ml

acetone. The samples were incubated at 55°C for 20 min with

intermittent vortexing, centrifuged for 5 min, and the supernatants

transferred to fresh tubes. Absorbance was measured at 470 nm

using NanoDrop 2000c spectrophotometer and converted to lg
neurosporene (× 3.43 lg/nm absorbance). The remaining pellet

was heated at 60°C for 48 h to determine dry cell weight. Neuro-

sporene content was calculated by normalizing neurosporene

production by dry cell weight. Neurosporene productivity was

determined by dividing by 7 h.

To record neurosporene productivity under optimized growth

conditions, pathway variants were incubated overnight in 5 ml LB

miller, followed by inoculating a 50-ml shake flask culture using

2×M9 media supplemented with 0.4% glucose and 10 mM arabi-

nose. The culture was grown for 10 h at 37°C with 300 RPM orbital

shaking. The neurosporene productivity was measured using 10 ml

of the final culture as stated above. To record neurosporene produc-

tivity from pathway variants using IPTG-inducible promoters,

cultures were grown overnight and then diluted into 50 ml 2×M9

media supplemented with 2% glucose, grown at 30°C with
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250 RPM shaking, and induced with increasing IPTG concentra-

tions. Pathway productivity was recorded after 22 h of growth.

Models and Computation

The RBS calculator

The RBS Calculator v1.1 was employed to calculate the ribosome’s

binding free energy to bacterial mRNA sequences, and to predict the

translation initiation rate of a protein-coding sequence on a propor-

tional scale that ranges from 0.1 to 100,000 or more. The thermo-

dynamic model uses a 5-term Gibbs free energy model to quantify

the strengths of the molecular interactions between the 30S

ribosomal pre-initiation complex and the mRNA region surrounding

a start codon. The free energy model is:

DGtotal ¼ DGmRNA:rRNAþDGspacingþDGstartþDGstandby �DGmRNA (1)

Using statistical thermodynamics and assuming chemical equilib-

rium between the pool of free 30S ribosomes and mRNAs inside the

cell, the total Gibbs free energy change is related to a protein-coding

sequence’s translation initiation rate, r, according to:

r / exp ð�bDGtotalÞ (2)

This relationship has been previously validated on 132 mRNA

sequences where the DGtotal varied from �10 to 16 kcal/mol, result-

ing in well-predicted translation rates that varied by over 100,000-

fold (Salis et al, 2009). The apparent Boltzmann constant, b, has

been measured as 0.45 � 0.05 mol/kcal, which was confirmed in a

second study (Hao et al, 2011). In practice, we use a proportional

constant of 2,500 to generate a proportional scale where physio-

logical common translation initiation rates vary between 1 and

100,000 au.

In the initial state, the mRNA exists in a structured conforma-

tion, where its free energy of folding is DGmRNA (DGmRNA is nega-

tive). After assembly of the 30S ribosomal subunit, the last nine

nucleotides of its 16S rRNA have hybridized to the mRNA while

all non-clashing mRNA structures are allowed to fold. The free

energy of folding for this mRNA–rRNA complex is DGmRNA:rRNA

(DGmRNA:rRNA is negative). mRNA structures that impede 16S rRNA

hybridization or overlap with the ribosome footprint remain

unfolded in the final state. These Gibbs free energies are calculated

using a semi-empirical free energy model of RNA and RNA–RNA

interactions (Xia et al, 1998; Mathews et al, 1999) and the

minimization algorithms available in the Vienna RNA suite,

version 1.8.5 (Gruber et al, 2008).

Three additional interactions will alter the translation initia-

tion rate. The tRNAfMET anti-codon loop hybridizes to the start

codon (DGstart is most negative for AUG and GUG). The 30S ribo-

somal subunit prefers a five-nucleotide distance between the 16S

rRNA-binding site and the start codon; non-optimal distances

cause conformational distortion and lead to an energetic binding

penalty. This relationship between the ribosome’s distortion penalty

(DGspacing > 0) and nucleotide distance was systematically

measured. Finally, the 50 UTR binds to the ribosomal platform with

a free energy penalty DGstandby.

There are key differences between the first version of the RBS

Calculator (v1.0) (Salis et al, 2009) and version v1.1 (Salis, 2011).

The algorithm’s use of free energy minimization was modified to

more accurately determine the 16S rRNA-binding site and its aligned

spacing, particularly on mRNAs with non-canonical Shine-Dalgarno

sequences, and to accurately determine the unfolding free energies

of mRNA structures located within a protein-coding sequence. For

the purpose of this work, a ribosome-binding site (RBS) sequence is

defined as the 35 nucleotides located before the start codon of a

protein-coding sequence within a mRNA transcript. However, the

presence of long, highly structured 50 UTRs can further alter the

translation initiation rate of a protein-coding sequence by manipu-

lating its DGstandby. The ribosome’s rules for binding to long, highly

structured 50 UTRs has been characterized (Espah Borujeni et al,

2014) and will be incorporated into a future version of the RBS

Calculator (v2.0).

The RBS library calculator

The objective of the RBS Library Calculator is to identify the small-

est RBS library that uniformly varies a selected protein’s expression

level across a targeted range to efficiently identify optimal protein

expression levels and quantify expression-activity relationships. The

RBS Library Calculator designs degenerate ribosome-binding site

(RBS) sequences that satisfy the following mini-max criteria: First,

the RBS sequence variants in the library shall express a targeted

protein to maximize coverage, C, of the translation rate space

between a user-selected minimum (rmin) and maximum rate (rmax);

second, the number of RBS variants in the library, Nvariants, shall be

minimized. The allowable range of translation rates is between 0.10

au and over 5,000,000 au though the feasible minimum and maxi-

mum rates will also depend on the selected protein-coding

sequence. These criteria are quantified by the following objective

function:

F ¼ 10C � 0:02Nvariants (3)

The coverage of an RBS library is determined by first converting

the translation rate space into a log10 scale and discretizing it into

equal width bins. For this work, the bin width W is called the search

resolution as it ultimately defines how many RBS variants will be

present in the optimized RBS library. The total number of bins is

determined by the user-selected maximum and minimum transla-

tion rates and the search resolution W, while the RBS library cover-

age C is determined by the ratio between filled bins and total bins,

according to the following equations:

Btotal ¼ ðrmax=rminÞ
W

� �
C ¼ Bfilled

Btotal
(4)

For example, there will be a total of 17 bins when using a search

resolution W of 0.30 and a translation rate space between 1.0 and

100,000 au. A bin at position y in translation rate space will be filled

when at least one RBS variant in the library has a predicted transla-

tion initiation rate that falls within the range [y/10W, y 10W]. An

RBS library’s coverage is one when all translation rate bins are

filled by at least one RBS variant. The objective function F has a

maximum value of 1 – 0.02 Btotal, which is achieved when all bins

are filled by a single RBS variant, yielding the most compact RBS

library that expresses a protein with uniformly increasing transla-

tion rates.
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The solution to the RBS Library Calculator optimization problem

is a list of near-optimal degenerate ribosome-binding site sequences.

A degenerate RBS is a 35-nucleotide sequence that uses the 16-letter

IUPAC code to indicate whether one or more nucleotides shall be

randomly incorporated at a particular sequence position. The alpha-

bet defines the inclusion of either single nucleotides (A, G, C, U/T),

double nucleotides (W, S, M, K, Y, B), triple nucleotides (D, H, V),

or all four nucleotides (N) in each sequence position. Nvariants is

determined by the number of sequence combinations according to

these degeneracies.

Chemical synthesis of degenerate DNA sequences creates a

mixture of DNA sequence variants, which are then incorporated into

a natural or synthetic genetic system, either plasmid-encoded or

chromosomally encoded. Chemical synthesis of the degenerate DNA

oligonucleotides may introduce non-random bias in nucleotide

frequency, due to differences in amidite substrate-binding affinities.

The concentrations of manually mixed precursors can be adjusted

to eliminate this bias.

Several properties of the RBS Library Calculator’s mini-max opti-

mization problem have influenced the selection of an appropriate

optimization algorithm. First, the number of possible degenerate

RBS sequences is very large (1635), though many of these sequences

will yield the same objective function. Further, the relationship

between a degenerate RBS sequence and its library coverage is

highly nonlinear and discontinuous. The addition of degeneracy to

some nucleotide positions will greatly increase library coverage,

whereas modifying other nucleotide positions has no effect on

coverage. The nucleotide positions that affect the library coverage

will typically include portions of the Shine-Dalgarno sequence,

but also other positions that modulate the energetics of mRNA

structures. The locations of mRNA structures will depend on the

selected protein-coding sequence, which will significantly influence

the optimal degenerate RBS sequence. Consequently, an evolution-

ary (stochastic) optimization algorithm was chosen to rapidly

sample diverse sequence solutions and use mixing (recombination)

to identify nucleotide positions that are most important to maximiz-

ing library coverage.

A genetic algorithm is employed to identify an optimal degener-

ate RBS sequence that maximizes the objective function, F. The

procedure performs iterative rounds of in silico mutation, recombi-

nation, and selection on a population of degenerate RBS sequences

to generate a new population with improved fitness (Fig 1B). First,

a mutation operator is defined according to the following frequen-

cies: (i) 40%, two degenerate sequences are recombined at a

randomly selected junction; 15%, the degeneracy of a randomly

selected nucleotide is increased; 15%, the degeneracy of a randomly

selected degenerate nucleotide is decreased; 15%, a non-degenerate

nucleotide is mutated to another non-degenerate nucleotide; 10%,

the degenerate sequence is not modified (designated elites); or 5%,

a new degenerate sequence is randomly generated. Second, one or

two degenerate sequences in the population are randomly selected

with probabilities proportional to their evaluated objective func-

tions, a randomly selected mutation operator is performed on these

degenerate sequences, and the results are carried forward into the

new population. This process is repeated until the objective function

for the most-fit sequence has reached the maximum value, the

maximum objective function has not changed for a user-selected

number of iterations, or when the total number of iterations has

reached a user-selected maximum. The top five degenerate RBS

sequences in the population are then returned, including the

predicted translation initiation rates for each variant in the RBS

library.

The genetic algorithm typically requires 50–100 iterations to iden-

tify optimal degenerate RBS sequences, starting from a population of

randomly generated, non-degenerate RBS sequences. During the

optimization procedure, the most common mutational trajectory is

the broad expansion of sequence degeneracy toward maximizing

coverage of the translation rate space, followed by targeted reduc-

tion of degeneracy to eliminate RBS variants with similar translation

rates. The number of iterations is substantially reduced when a ratio-

nally designed RBS sequence is used as an initial condition, particu-

larly when the selected maximum translation rate is over 10,000 au.

Kinetic model formulation, transformation, and identification

Mass action kinetics was utilized to formulate an ordinary

differential equation (ODE) model to quantify the rates of produc-

tion and consumption of the 24 metabolite, free enzyme, and bound

enzyme species in the pathway’s reaction network. A derivation is

found in the Supplementary Information. The reaction network

includes 10 reversible reactions catalyzed by Idi, IspA, CrtE, CrtB,

and CrtI enzymes, including reversible binding of substrate to

enzyme and reversible unbinding of product from enzyme (Supple-

mentary Fig S4). IspA, CrtE, CrtB, and CrtI catalyze multiple reac-

tions. These reactions convert intracellular isopentenyl diphosphate

(IPP) and fimethylallyl diphosphate (DMAPP) to neurosporeneid.

An additional five mole balances on intracellular enzyme were

derived. There are 48 unknown kinetic parameters.

De-dimensionalization of the model was carried out by trans-

forming all metabolite and enzyme concentrations into ratios,

compared to the concentrations in a reference pathway variant. For

example, the forward vf1 and reverse vr1 reaction rates for the

binding of IPP to idi enzyme were multiplied and divided by the

reference pathway’s concentrations for IPP and free idi enzyme,

yielding:

vf1 ¼ k1 � ½IPP�ref � ½idi�totalref

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

apparent kinetic parameter

� ½IPP�
½IPP�ref|fflfflffl{zfflfflffl}
metabolite

concentration
ratio

� ½idi�free
½idi�totalref|fflfflfflffl{zfflfflfflffl}

enzyme
concentration

ratio

vr1 ¼ k�1 � ½CM1�ref
� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

apparent kinetic parameter

� ½CM1�
½CM1�ref|fflfflfflffl{zfflfflfflffl}

enzyme
concentration

ratio

(5)

As a result, metabolite and enzyme concentration ratios are

compared across pathway variants using dimensionless units.

Accordingly, the total enzyme concentration ratios for each pathway

variant were determined by comparing a pathway variant’s transla-

tion rates to the reference pathway’s translation rates. As an exam-

ple, the crtE concentration ratio is:

½CrtE�total
½CrtE�totalref|fflfflfflfflfflffl{zfflfflfflfflfflffl}

enzyme
concentration

ratio

¼ translation initation rate of crtE in a pathway variant

translation initation rate of crtE in the reference pathway|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
translation initation rate ratio

(6)
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The choice of the reference pathway variant will alter the appar-

ent kinetic parameter values, but it will not alter the solution to the

ODEs; increases in the apparent kinetic parameters are compensated

by decreases in the enzyme concentration ratios. The reference

pathway (#53) has predicted translation initiation rates of 72,268,

20,496, and 203,462 au for crtE, crtB, and crtI, respectively.

Numerical integration of the transformed kinetic model is carried

out using a stiff solver (ode23s, MATLAB) over a 7-h simulated time

period to correspond to experimental conditions. The inputs into the

kinetic model are the kinetic parameter values and the total enzyme

concentration ratios. The resulting neurosporene production fluxes

rp are related to measured neurosporene productivities by compari-

son to the reference pathway according to:

rp;i
rp;ref|ffl{zffl}
simulated
production
fluxratio

¼ predicted neurosporene productivity of the ith pathway variant

measured neurosporene productivity of the reference pathway|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pathway productivity ratio

(7)

The reference pathway has a neurosporene productivity of 196

ug/gDCW/h when grown in LB media (non-optimized growth

conditions). Each pathway variant will have a different neurospo-

rene production flux and predicted neurosporene productivity as a

result of the different total enzyme concentrations, controlled by the

crtEBI translation rates according to Equation 6. The kinetic parame-

ters remain constant for all pathway variants.

Model reduction and identification were carried out to reduce the

number of model degrees of freedom and to determine the kinetic

parameter values that best reproduced the measured neurosporene

productivities for the 73 pathway variants designed using Search

mode. From the 48 unknown kinetic parameters, 10 non-indepen-

dent parameters were eliminated, and an additional 5 were

constrained using available biochemical data (Supplementary Infor-

mation). A genetic algorithm was employed to identify the model’s

kinetic parameter values that best predicted the neurosporene

productivities of the 72 non-reference pathway. On average, the

resulting model predicts the neurosporene productivities to within

32% of the measurements (Supplementary Fig S5). We then

performed inverse model reduction to determine the 48 kinetic

parameter values that define the identified kinetic model (Supple-

mentary Table S8). Model identification can be performed on the

non-reduced model, though it would result in greater variability in

best-fit kinetic parameters, longer optimization convergence times,

and a requirement for more characterized pathway variants to

achieve the same predictive error.

Supplementary information for this article is available online:

http://msb.embopress.org
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