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Abstract
Background: Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with
focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space
and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic
inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D
(rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production
of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the
structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency.

Methods: SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3
weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient
and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron
microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular
surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test.

Main Results: After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller
compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices
of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a
consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6
weeks of treatment.

Conclusion: Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema
and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become
a therapeutic option in diseases that are characterized by decreased SP-D levels in the lung.
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Background
Pulmonary emphysema or COPD is a common disease
for which there is currently no effective therapy. The WHO
estimates that COPD is the fifth leading cause of death
worldwide (WHO world health report 2002) and the
prevalence and mortality are expected to increase in the
coming decades [1]. Several studies demonstrated, that
surfactant protein D (SP-D) levels are diminished in the
lung of smokers or cystic fibrosis patients [2-5]. Another
study identified COPD susceptibility-alleles in the gene-
location of the surfactant proteins, suggesting their role in
the pathogenesis of COPD [6]. SP-D, along with sur-
factant protein A (SP-A) belong to the collectin family of
mammalian C-type lectins and are known to be important
innate host defense molecules at mucosal surfaces, with a
recognized role in controlling inflammation [7]. As
reviewed by Hartl and Griese recently, the anti-inflamma-
tory properties of SP-D seem to be of importance in many
human lung diseases [8]. Ablation of the gene for SP-D in
mice provided evidence that SP-D protects the normal
murine lung from chronic pulmonary inflammation and
emphysema since even in the absence of any infectious
challenge, SP-D-deficiency causes the spontaneous devel-
opment of emphysema-like pathology. The lungs of mice
deficient in SP-D exhibit hypertrophy and hyperplasia of
type II cells, a diminished number of alveoli, increased
alveolar size and decreased alveolar surface area [9]. Sur-
factant homeostasis is disturbed, indicated by the pres-
ence of giant lamellar bodies in some type II cells and the
development of alveolar lipoproteinosis [10]. In addition
to the increased intra-alveolar surfactant pool, stereologi-
cal analysis revealed an increased intracellular surfactant
pool [9].

We have previously reported that a considerable number
of apoptotic and necrotic alveolar macrophages are
present in the bronchoalveolar lavage (BAL) in SP-D
knock-out mice [11] and have postulated that delayed
clearance of dead and dying cells may be involved in gen-
erating a chronic inflammatory state which leads to
emphysema [12-15]. The chronic alveolar macrophage
mediated inflammatory state is characterized by increased
numbers of alveolar macrophages in the alveolar space,
high levels of reactive oxygen species (ROS) and raised
expression of matrix metalloproteinases (MMP) [16,17].
Treatment with a recombinant fragment of human SP-D
(rfhSP-D) was sufficient to reduce the numbers of dead
and dying alveolar macrophages, production of proin-
flammatory chemokines as well as alveolar lipoproteino-
sis [14]. Thus agents such as rfhSP-D may be protective
against lung remodeling and destruction due to their abil-
ity to reduce numbers of apoptotic and necrotic cells.

We therefore hypothesized that treatment with rfhSP-D
would lead to an attenuation of the structural alterations

present in SP-D-deficient mice. To test this, we quantified
the degree of pulmonary emphysema, type II cell altera-
tions and the intracellular surfactant pool by design-based
stereology at the light and electron microscopic level [18]
in lungs of mice, which were treated with rfhSP-D. Our
results imply that intranasal application of rfhSP-D is
effective in preventing structural abnormalities character-
istic of SP-D-deficiency.

Methods
Preparation of rfhSP-D
The recombinant fragment of SP-D was expressed in E coli
and purified as described in detail elsewhere [19]. Briefly,
the cDNA for the neck/CRD, including a short region of
the collagen stalk (8 Gly-X-Y) and representing residues
179–355 was cloned from human lung library DNA and
inserted into a pET-21d vector (Novagen, Nottingham).
The plasmid was transformed into BL21(λDE3) pLysS and
a single colony selected and re-plated to give 100–400 col-
onies/plate. These were scraped and used to inoculate
shake-flasks containing 500 ml LB medium supple-
mented with 100 µg/ml ampicillin and 25 µg/ml chlo-
ramphenicol and grown to an OD600 of 0.6–0.8 followed
by induction with 0.4 mM IPTG for 2–3 hours. Cells were
collected by centrifugation and lysed in 20 mM Tris-HCl,
150 mM NaCl, 5 mM EDTA, 0.1% v/v Triton X-100, 0.1
mM PMSF, pH 7.5 and sonicated for 3 minutes. The
rfhSP-D is expressed in insoluble inclusion bodies and
was collected by centrifugation and washed 4 times at
10000 × g. The pellet was solubilized in 100 ml of 8 M
Urea, 100 mM 2-mercaptoethanol, pH 7.5 and clarified
by centrifugation and refolded by overnight dialysis
against 10 L of 20 mM Tris-HCl, 150 mM NaCl, 5 mM
CaCl2 (TCB). Refolded rfhSP-D was separated from dena-
tured rfhSP-D by absorption onto maltose-agarose
(Sigma-Aldrich, Poole, UK) and eluted with 20 mM Tris-
HCl, 150 mM NaCl, containing 5 mM EDTA after first
washing the column with TCB containing 1 M NaCl to
remove impurities. Final purification was by gel filtration
column (Superose 12, Amersham Pharmacia, UK) in a
running buffer of 20 mM Tris-HCl, 150 mM NaCl, 5 mM
EDTA, 0.02% (w/v) sodium azide pH7.4 (TSE). The
rfhSP-D eluted as a single peak corresponding to 60 kDa
molecular weight. The recombinant preparation was
judged to be pure by using SDS-PAGE, immunoblotting,
and amino-terminal sequencing. The purified trimeric
recombinant protein was assessed for correct folding by
disulfide mapping and by its crystallographic structure
complexed with maltose in the carbohydrate-binding
pockets [20]. Endotoxin levels were reduced by passing
the purified rfhSP-D through a 10 ml Polymixin B column
(Detoxi-Gel, Pierce & Warriner, UK) and only prepara-
tions containing less than 5 pg/µg were used.
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Study subjects and administration of recombinant 
fragment SP-D
SP-D knock-out mice [10], back-crossed 10 generations
into a C57BL/6 background were fed ad libitum and
housed in isolators in a pathogen free environment in the
Biomedical Services Unit at Oxford University. Pathogen
free C57BL/6 wild-type controls were obtained from Har-
lan-OLAC (Shaw's Farm, Bicester, Oxfordshire, UK). Five
groups of mice were investigated. Each group consisted of
four to five animals. All mice included in this study were
12 weeks old when sacrificed. The animals of groups D3,
D6 and D9 were subjected to an intranasal treatment with
rfhSP-D. Five doses of 10 µg rfhSP-D in 50 µl PBS were
administrated per week, one dose per day from Monday
to Friday. As it has been shown previously, 40% of the
administrated rfhSP-D could be found in cell free BAL one
hour after application [11]. This corresponds to the con-
centration of native SP-D in WT group. After 21 hours no
rfhSP-D could be detected in the BAL [11].

The group D0 only received PBS from week 3 to week 12
and no rfhSP-D. The group D3 received therapy from the
age of 9 weeks, D6 from the age of 6 weeks and D9 from
the age of 3 weeks (Table 1). Animals of the group which
only contained wild-type mice (WT) neither got rfhSP-D
nor PBS. All experimental protocols were approved by
appropriate U.K. Home-Office licensing authorities and
by the University of Oxford Ethical Committee.

Fixation, sampling and processing
At age 12 weeks in all cases, the lungs were instillation
fixed at a hydrostatic pressure of 20 cm H2O, using a 1.5%
glutaraldehyde/1.5% paraformaldehyde mixture in 0.15
M Hepes buffer. After storage of the lungs in fresh fixative
for at least 2 hours, the lungs were sampled for stereolog-
ical analysis [18]. The total lung volume (V(lung)) was
determined by means of the fluid displacement method
[21]. In order to give every part of the lung an equal
chance of being included in the stereological analysis and
thereby represent the whole organ equally well, a system-
atic uniform random sampling design was applied and at
least four samples per lung were taken and processed for
light and electron microscopy [22].

By means of a tissue slicer, each organ was cut into 10 to
12 horizontal slices of 3 mm thickness. Starting with a
random number, every other slice was chosen for light or
electron microscopy, respectively. For light microscopy,
the entire slices were subsequently osmicated, immersed
in half-saturated watery uranyl acetate, dehydrated in ace-
tone and embedded in glycol methacrylate (Technovit
7100, Heraeus Kulzer, Wehrheim, Germany). For electron
microscopy, a transparent point grid was projected onto
the sampled slices. Whenever a grid point hit the cut sur-
face of a lung slice, tissue blocks were excised. By this
method 8–10 blocks were obtained from each single lung.
The tissue blocks were postfixed in osmium tetroxide,
stained en bloc in half-saturated watery uranyl acetate,
dehydrated in an ascending acetone series and embedded
in araldite (SERVA Electrophoresis GmbH, Heidelberg,
Germany). Three of the araldite blocks were randomly
sampled for ultrastructural analysis.

Stereological analysis
At the light microscopic level the stereological analysis
was carried out using an Axioskop light microscope (Zeiss,
Oberkochen, Germany) combined with a computer-
assisted stereology system (CAST 2.0; Olympus, Ballerup,
Denmark). From each lung, sections of 3 to 4 tissue blocks
were analyzed. From each block embedded in glycol
methacrylate, sections were cut with a thickness of 1.5 µm.
The first and the third section of a consecutive row of sec-
tions were mounted on one glass slide, so that a distance
from the top of the first to the top of third section of 3 µm
resulted. Afterwards an orcein staining was performed. By
means of point counting on the first of the parallel sec-
tions the volume fraction of parenchyma within the lung
(Vv(par/lung)) was determined. The estimation of the
alveolar number (N(alv,lung)) was conducted by means
of a physical disector principle using the two sections for
counting both ways, i.e. using each section once as sam-
pling section for counting and once as look-up section for
comparison. That allowed us to determine the Euler
number of the network of alveolar openings [18,23,24].
The orcein staining of the elastic fibres of the alveolar
openings was required to distinguish between real alveo-
lar openings and artefacts or pores of Kohn respectively.
Division of the total number of alveoli per lung by the vol-

Table 1: Definition of the groups

D0 D3 D6 D9 WT

genotype SP-D -/- SP-D -/- SP-D -/- SP-D -/- wild-type
treatment PBS rfhSP-D rfhSP-D rfhSP-D -
Number of animals 5 4 5 5 4
age at first application (weeks) 3 9 6 3 -
duration of treatment (weeks) 9 3 6 9 -
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ume of parenchyma brings about the numerical density of
alveoli (NV(alv/par)).

From each lung semi-thin sections of four blocks embed-

ded in araldite were cut with a thickness of 1 µm. The first
and the fourth section of a consecutive row of cuts were
mounted on one glass slide parallely and stained with
methylene blue. By means of point counting and intersec-
tion counting on the first of the parallel sections the vol-
ume fraction of both distal airspace (Vv(air/par)) and

septal tissue (Vv(sep/par)) within parenchyma as well as

the surface area of alveolar epithelium (S(alvepi,lung))
and the mean thickness of alveolar septa (  (sep)) was
determined according to established methods [18,25].
The mean alveolar volume ( N(alv)) was determined by

dividing the total volume of distal airspace by the total
number of alveoli per lung.

Applying the physical disector principle [26] the number
of type II cells per lung (N(typeII,lung)) was estimated.

The disector height was 3 µm. In order to estimate the
mean volume of type II cells ( N(typeII)), the planar

rotator was used [27]. The division of the total number of
type II cells by the volume of parenchyma leads to the
numerical density of alveolar type II cells (NV(typeII/

par)).

At the electron microscopic level ultrathin sections of
three blocks per lung were generated. At least 100 type II
cells per lung were chosen by systematic uniform random
sampling and analyzed. By point counting the volume
fraction of lamellar bodies within type II cells (Vv(lb/

typeII)) was determined. The intracellular surfactant pool
per cell, defined by morphological criteria as the total vol-
ume of lamellar bodies per type II cell (V(lb,typeII)), was
calculated by multiplication of Vv(lb/typeII) and

N(typeII). Accordingly, the intracellular surfactant con-

tent per lung (V(lb,lung)) was determined by multiplica-
tion of V(lb,typeII) and N(typeII,lung). Furthermore, the
volume-weighted mean volume of lamellar bodies
( v(lb)) was estimated using the point sampled inter-

cepts method [28].

For each parameter estimated, an observed coefficient of
variance (CVobs) within a group was determined. This var-
iance is composed of the biological variance due to given
inter-individual differences within a population (CVbiol)
and an error provided by the stereological method (CE).
Therefore the so called coefficient of error (CE) for each

stereological parameter and animal was calculated (data
not shown) [29,30]. The precision of stereological meth-
ods in this study was considered sufficient if the CE was
not the major factor contributing to the CVobs, meaning
that the given biological variance of the population is
mostly responsible for the observed variance [25].

Statistics
Data were analysed with the two sided non-parametric
Mann-Whitney U-test. Tests were performed using the Sta-
tistica 6.0 software (StatSoft, Hamburg, Germany). A
value of p < 0.05 was considered significant.

Results
Light and electron microscopy
The parenchymal architecture of the knock-out mice that
were not treated with rfhSP-D but with PBS demonstrated
typical features of SP-D-deficiency: the distal airspace was
enlarged and there were focal accumulations of foamy
alveolar macrophages particularly in the peri-bronchial
and sub-pleural regions (Fig. 1A). In general, the altera-
tions of the parenchymal architecture appeared much
improved in large areas of the lung as a consequence of
the treatment with rfhSP-D (Fig. 1B–D) and resembled
the architecture of wild-type mice (Fig. 1E). This was clear
after treatment for only three weeks (Fig. 1B). Neverthe-
less, in small areas, especially in the sub-pleural regions,
emphysematous alterations were still evident, independ-
ent of the duration of treatment. Moreover, small accumu-
lations of foamy alveolar macrophages were present in all
treated groups.

With respect to type II cell alterations, typical findings
were present in the lungs of mice which were not treated
with rfhSP-D. The type II cells were more numerous and
enlarged (Fig. 2A). Giant lamellar bodies were occasion-
ally observed. After a period of 3 weeks of treatment no
obvious effect on the number of type II cells could be
found. In several areas of the lungs the number of type II
cells even seemed to have increased, the size of type II cells
appeared to be unchanged (Fig. 2B). However, after 9
weeks of therapy, there was a clear decrease in the number
of type II cells, though the size remained unaffected. Giant
lamellar bodies were a rarity in all rfhSP-D treated groups.
All these parameters were formally quantified stereologi-
cally as shown below.

Stereological analyses
The stereological results are summarized in Table 2 and
illustrated in Figures 3, 4, 5. With respect to the total lung
volume, all rfhSP-D treated groups (D3, D6 and D9) dem-
onstrated a significant reduction of 23% on average com-
pared to D0 but did not differ from the WT group.
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Low power light micrographs (methylene blue stained sections) from lungs of (A) group D0, (B) group D3, (C) group D6, (D) group D9 and (E) group WTFigure 1
Low power light micrographs (methylene blue stained sections) from lungs of (A) group D0, (B) group D3, (C) group D6, (D) 
group D9 and (E) group WT. In contrast to untreated knock-out mice (A) the lungs of treated groups (B-D) demonstrate, 
compared to group WT (E), almost normal lung architecture with no major differences among them. In A an accumulation of 
intraalveolar surfactant (short arrow) and some foamy alveolar macrophages (long arrows) are visible.
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Parameters related to quantification of pulmonary 
emphysema
A significantly higher alveolar number per lung was found
after a duration of treatment of 3 weeks (Figure 3A) sug-

gesting a lower degree of emphysematous alteration.
Within the treated groups D3, D6 and D9 and the WT
group, no statistically significant differences in alveolar
number were observed. Consistent with a higher alveolar

Table 2: Summarized stereological data

Parameter D0 D3 D6 D9 WT

V(lung) [cm3] 1.00 (0.06) 0.72 (0.02)† 0.82 (0.07)† 0.76 (0.1)† 0.68 (0.22)†

N(alv,lung) [106] 5.80 (0.52) 7.03 (0.58)† 8.51 (1.01)† 7.36 (0.58)† 8.75 (3.18)
NV(alv/par) [103/mm3] 6.65 (0.58) 10.71 (0.51)† 11.17 (0.92)† 10.81 (0.95)† 14.11 (0.76)†||§**

N(alv) [103 µm3] 139.67 (6.87) 79.26 (5.78)† 75.66 (5.1)† 82.07 (8.19)† 59.40 (9.19)†||§**

S(alvepi,lung) [cm2] 597.7 (51.9) 583.3 (66.4) 671.5 (74.1) 592.8 (61.2) 575.3 (157.2)
SV(alvepi/par) [1/cm] 661.8 (46.3) 910.3 (65.7)† 881.1 (47.1)† 866.6 (38.0)† 959.5 (146.3)†

VV(air/par) [%] 90.4 (2.3) 86.8 (3.1) 84.2 (3.0)† 88.2 (4.1) 83.5 (11.1)
VV(sep/par) [%] 10.4 (0.5) 13.8 (1.7)† 13.6 (1.5)† 13.4 (1.8)† 17.3 (7.2)†

 (sep) [µm] 3.14 (0.22) 3.04 (0.58) 3.08 (0.46) 3.08 (0.4) 3.5 (0.86)

N(typeII,lung) [106] 12.57 (1.61) 12.58 (0.76) 11.02 (0.64)† 7.29 (0.97)†||§ 7.73 (1.91)†||§

NV(typeII/par) [103/mm3] 13.87 (1.12) 19.74 (1.58)† 14.52 (0.62)|| 10.6 (0.59)†||§ 13.15 (3.54)||

N(typeII) [µm3] 467.5 (18.6) 408.97 (36.1)† 417.15 (17.5)† 418.38 (10.9)† 348.5 (28.53)†||§**

VV(lb/typeII) [%] 24.7 (2.5) 23.5 (4.4) 19.7 (1.9)† 19.8 (2.1)† 15.3 (1)†||§**

V(lb,typeII) [µm3] 114.9 (8.3) 97.0 (25.7) 82.1 (8.7)† 82.7 (10.7)† 53.2 (6.2)†||§**

V(lb,lung) [mm3] 1.44 (0.19) 1.21 (0.31) 0.9 (0.11)† 0.61 (0.14)†||§ 0.42 (0.14)†||§

V(lb) [µm3] 0.93 (0.12) 1.40 (0.35) 0.67 (0.08)†|| 0.78 (0.03)|| 0.48 (0.08)†||§**

Summarized stereological data, grouped into parameters related to parenchymal architecture, to type II cells, and to lamellar bodies. Values are 
given as mean (SD) of n = 4–5 mice per group. Abbreviations: V = volume, VV = volume density, S = surface area, SV = surface area density,  = 

mean thickness, N = number, NV = numerical density, N = number-weighted mean volume, V = volume-weighted mean volume, par = 
parenchyma, air = airspace, sep = septal tissue, alvepi = alveolar epithelium, alv = alveoli, typeII = type II cells, lb = lamellar bodies. Statistically 
significant differences between groups are indicated as: † p < 0.05 vs. group D0, || p < 0.05 vs. group D3, § p < 0.05 vs. group D6, ** p < 0.05 vs. group 
D9.
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Low power electron micrographs from lungs of (A) group D0 and (B) group D3Figure 2
Low power electron micrographs from lungs of (A) group D0 and (B) group D3. Figure A demonstrates enlarged type II cells 
filled with abundant lamellar bodies and some alveolar macrophages. Compared to the untreated lung, B shows numerous type 
II cells without any obvious differences in size and lamellar body content per cell, emphasizing the need of proper design-based 
stereological investigation.
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number, there was a significantly smaller mean alveolar
volume in groups D3, D6 and D9 compared with D0 (Fig-
ure 3B). Again, the data did not show any differences
between rfhSP-D treated groups, indicating similar
dimensions in the distal airspaces. However, wild-type
mice had significantly smaller alveoli. Thus, a longer
period of treatment did not lead to a further attenuation
of the degree of these indices of emphysema. These find-
ings are consistent with a higher volume fraction of septal
tissue within the lung parenchyma in groups D3, D6 and
D9 compared to group D0. Unlike alveolar number and
volume, the total surface area of alveolar epithelium per
lung was not influenced by the treatment with rfhSP-D.
The same was the case for the thickness of the alveolar
septa. However, there was a significantly higher alveolar
epithelial surface area per volume unit of parenchyma due

to the treatment with rfhSP-D. Considering the volume
fraction of alveolar space within parenchyma, no relevant
differences could be observed, indicating that this param-
eter does not correlate with pulmonary emphysema.

In WT group, a rather high coefficient of variance could be
observed regarding the alveolar number (CVobs = 0.36). As
the coefficient of error of the alveolar number in this
group is very small (CE = 0.07), the observed variance is
mostly due to the biological variance of the given popula-
tion and not due to a lack of precision of the stereological
tool applied.

Parameters related to type II cell alterations
Regarding the type II cell alterations, the data revealed a
slightly but significantly smaller mean cell volume due to

A: Number of alveoli per lungFigure 3
A: Number of alveoli per lung. B: Mean alveolar volume. Already after 3 weeks of treatment an increase in alveolar number and 
a decrease in alveolar volume was observed.

A: Number of type II cells per lungFigure 4
A: Number of type II cells per lung. B: Mean volume of type II cells. Whereas only after 6 weeks of treatment a slight decrease 
in type II cell number was found the cellular volume was already reduced after 3 weeks. The reduction of cell number went on 
after 9 weeks of treatment.
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the treatment with rfhSP-D which did not depend on the
period of treatment (Figure 4B). This reduction amounted
to 12% on average but did not reach values within the
range of type II cell sizes in the WT group. The number of
type II cells per lung however, was slightly smaller in
group D6 and was clearly reduced in group D9. Thus the
effect on the number of type II cells demonstrated a
dependence on the duration of treatment and was, com-
pared to the WT group, normalized after 9 weeks of treat-
ment (Figure 4A). In group D3 the number of type II cells
per mm3 parenchyma was slightly higher in comparison
to group D0 but declined to lower values with longer peri-
ods of treatment.

Parameters related to lamellar bodies
Compared to group D0 the volume fraction of lamellar
bodies within type II cell was not significantly changed in
group D3 but was significantly smaller in group D6 and
D9. The same could be observed for the volume of lamel-
lar bodies per cell, which was significantly lower in group
D6 and D9 compared to group D0 but could not be nor-
malized in respect to WT group (Figure 5A). The lamellar
body content per lung was smaller, which was clearly
related to the duration of treatment (Figure 5B). Group
D6 contained significantly lower lamellar body volumes
than group D0. Group D9, moreover, had a significantly
lower volume of intracellular lamellar bodies than group
D6 and was within the range of normal values. The vol-
ume-weighted mean volume of lamellar bodies was sig-
nificantly smaller in group D6 compared to group D0 and
D3 but did not significantly differ between the groups D0
and D3. The wild-type mice had the significantly lowest
values compared to all other groups. The volume-
weighted mean volume of lamellar bodies contains infor-
mation on both mean particle size and variation in size

[18,28]. Therefore, smaller values in this parameter after 6
weeks of treatment could be interpreted as a reduction of
either the mean size of lamellar bodies or their variation
in size or both.

Discussion
Recent studies on SP-D have highlighted the protein's
immunomodulatory function. In addition to its ability to
enhance the clearance of pathogens, a dampening effect
on inflammatory processes has become more apparent
[7,8,31-34]. First applications of rfhSP-D to mice suffering
from allergic asthma also showed a dampening of the
allergic response due to allergen inhalation with a modi-
fication of cytokine levels and a decrease in airway hyper-
responsiveness on allergen challenge [19,35]. Similar
results were achieved in preterm newborn lambs which
were exposed to LPS and treated with recombinant full
length dodecamer SP-D or received no SP-D: in contrast to
control animals the lambs which were treated with SP-D
had stable lung function, a decreased systemic inflamma-
tory response and survived [36]. Several patient groups
show decreased levels of SP-D in their BAL, such as smok-
ers [2,3], and patients with cystic fibrosis [4,5]. It is possi-
ble that the administration of recombinant SP-D might
become a therapeutic option for patients suffering from
diseases in which native SP-D levels are low [37,38].
Whilst the precise pathogenic impact of decreased SP-D
levels in BAL in such diseases has not so far been clearly
elucidated, it is clear that low SP-D levels are a feature of
COPD, becoming more significant with years of smoking
[3].

Native SP-D consists of four trimeric subunits. Within
each subunit four domains can be distinguished: an N-ter-
minal cysteine rich domain, a collagen-like domain, an α-

A: Volume of lamellar bodies per cellFigure 5
A: Volume of lamellar bodies per cell. B: Volume of lamellar bodies per lung. The content of lamellar bodies per cell and lung 
subsided significantly only after 6 weeks of treatment. A longer period of treatment led to a further decrease in lamellar body 
volume per lung but not per cell.
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helical coiled-coil neck domain and a CRD. Possible
mechanisms for immunomodulation based on the CRD
and collagen-like domain have been suggested recently
[39]. Compared to native SP-D, the rfhSP-D used in the
present study consists only of a small collagen-chain, the
α-helical coiled-coil region and the CRD. Nevertheless,
rfhSP-D expressed in E. coli possesses structural features
that might be effective in binding ligands and recognizing
immune cells, as revealed by high-resolution crystal struc-
ture analysis [20]. Furthermore, previous studies demon-
strated its biological activity in vivo, although beneficial
effects on lung structure have not been depicted so far
[11,14,19,35].

The present study was performed to test the hypothesis
whether the findings in SP-D knock-out mice after rfhSP-
D treatment which demonstrate anti-inflammatory fea-
tures of this truncated protein, were accompanied by an
attenuation of the structural alterations present in SP-D
deficient mice. The anti-inflammatory features which
have been reported previously were characterized by
decreased levels of chemokines such as MCP-1 and a
diminished number of apoptotic and necrotic cells. The
design of the present study included two variables: total
dose and onset of treatment. Thus, the specific influence
of each of these variables on the overall results can not be
dissected, and the possibility that distinct developmental
windows may differentially influence certain parameters
can not be excluded. Our data provide evidence for the
biological activity of rfhSP-D on the structural remodeling
of the lung. In particular, we show that 1) the pulmonary
emphysema is less severe, 2) both hyperplasia and hyper-
trophy of type II cells are less severe and 3) the excess
intracellular surfactant pool is decreased due to rfhSP-D
treatment.

With respect to the emphysema, we found a significantly
higher alveolar number after only 3 weeks of treatment
compared to the PBS treated D0 group. Compared to wild
type mice, the number of alveoli was normalized. On the
other hand the total surface area of alveolar epithelium
was not influenced, independent of the duration of treat-
ment. Former studies demonstrated that the alveolar sur-
face area of human lungs compared to healthy lungs was
only decreased in severe but not in moderate or mild
emphysema so that this parameter is not sensitive enough
to find slight emphysematous alterations [40]. Therefore,
the total surface area of alveolar epithelium in the present
study might not be appropriate as a parameter to distin-
guish between mild to moderate differences of the degree
of emphysema. Moreover, in view of the fact that the
treated mice have smaller lung volumes but the same alve-
olar surface area than the untreated mice it seems to be
reasonable that the number of alveoli is higher in the
treated mice: in smaller lungs the alveolar surface area is

maintained by a higher number of alveolar septa. Consist-
ent with this, we found a smaller mean alveolar volume,
indicating smaller dimensions of the distal airspace as a
result of the therapy with rfhSP-D.

As the higher number of alveoli after treatment with
rfhSP-D is accompanied by a lower number of apoptotic
and necrotic alveolar macrophages (which is also appar-
ent after 3 weeks of treatment [14]) delayed corpse clear-
ance with attendant consequences like increased ROS-
production of bystander alveolar macrophages in SP-D
knock-out mice might at least partly be responsible for the
remodeling processes resulting in decreased alveolar
numbers. Whether the increase in alveolar number after
treatment results from a decreased destruction due to sup-
pressed inflammatory activity or a generation of new alve-
oli or both is not clear. Wert et al. demonstrated the
progressive character of the pulmonary emphysema in SP-
D knock-out mice from the third week of live on [16]. As
there was no difference in the degree of pulmonary
emphysema between the three rfhSP-D treated groups, a
generation of new alveoli as a result of the treatment with
rfhSP-D can not be excluded. A previous study by Zhang
et al. showed that a conditional expression of native rat
SP-D was not able to correct an existing pulmonary
emphysema according to qualitative findings, suggesting
that the higher number of alveoli in our study is in part a
consequence of an inhibition of alveolar destruction [41].
Kingma et al. provided evidence that the collagenous
domain of SP-D is important to prevent mice lungs from
emphysema development [42]. This study seems to con-
tradict findings in the present study. Although rfhSP-D is
missing a proper collagenous domain it was able to main-
tain lung structure, presumably by contributing to an anti-
inflammatory environment. The anti-inflammatory effect
of rfhSP-D can be explained by the model of Gardai et al.
[39]. By binding of the CRD to the signal inhibitory regu-
latory protein α (SIRP α) rfhSP-D inhibits NFκB and con-
secutively immune cell activation and MMP-expression.
Kingma et al. showed however that SP-D lacking the col-
lagenous domain was not able to both generate an anti-
inflammatory environment and prevent SP-D knock-out
mice from developing pulmonary emphysema [42]. This
contradiction to Gardai et al. [39] and other recently pub-
lished data [11,14,19,33] was discussed as a consequence
of an unanticipated change in the structure of the CRD
[42]. Moreover rfhSP-D expressed in yeast which,
opposed to E. coli expressed rfhSP-D, does not have any
portion of the collagen region, was not able to prevent SP-
D knock-out mice lungs from emphysema development
after intranasal application (our unpublished observa-
tions), indicating a role of the expression-system for the
biological activity of the fragment. Alternatively, the short
collagen domain of rfhSP-D used in this study might be
effective in maintaining its function. As previously shown,
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nearly 40% of the intranasally administered rfhSP-D
could be detected one hour after injection in cell free lav-
age (4 µg rfhSP-D) [11]. The level of native SP-D in con-
trol mice amounts to 3 µg [11]. According to
measurements in the study by Kingma et al. the levels of
the collagenous domain deprived SP-D in BAL were 11
µg/ml [42]. Therefore a higher concentration of rfhSP-D
in the present study is no appropriate explanation for the
observed beneficial effect on lung structure.

Like the conditional replacement of native SP-D [41], the
treatment with rfhSP-D led to lower surfactant phosphol-
ipid levels which, in case of the treatment with rfhSP-D,
were significant after 6 weeks of therapy [14] demonstrat-
ing a reversibility of the disturbed surfactant homeostasis.
In the present study, a decrease in the number of type II
cells and the total volume of intracellular lamellar bodies
per lung was not observed until after the same period of
treatment, namely 6 weeks. These parameters were nor-
malized after 9 weeks of treatment. This different behavior
of the number of type II cells which declines after 6 weeks
of treatment and the number of alveoli which is already
influenced after 3 weeks of treatment might be a conse-
quence of recently developed concepts, stating that the
pulmonary emphysema and the alterations relating to
type II cell and intracellular surfactant homeostasis are
mediated by different mechanisms [9,43]. The treatment
with rfhSP-D seems to influence both mechanisms. Botas
et al. first observed alterations of type II cells in SP-D
knock-out mice in the third week of life, indicating a
progress of these alterations with age [10]. The fact that
the type II cell number in knock-out mice is normalized
even if treatment with rfhSP-D begins after the third week
of life, suggests that the proliferation of these cells may be
inhibited by the truncated SP-D-fragment. Alternatively,
the anti-inflammatory effects of rfhSP-D may limit epithe-
lial damage and subsequent epithelial repair.

The stereological findings in mice treated with rfhSP-D
with respect to the type II cell alterations, as well as the
intracellular surfactant pool, are similar to results seen in
SP-D knock-out mice with additional ablation of the GM-
CSF-gene [9]. The absence of both GM-CSF and SP-D in
transgenic mice brought about a reduction of type II cell
volume and number per lung, as well as a correction of the
total volume of lamellar bodies per type II cell and lung,
indicating that the alterations with respect to type II cells
and the intracellular surfactant pool due to SP-D-defi-
ciency are at least partly mediated by GM-CSF [9,43].
Consistently, previous studies in mice over-expressing
GM-CSF showed a type II cell hypertrophy and also a
hyperplasia [44]. Fisher et al. found that local recom-
binant rat SP-D expression in the lungs of SP-D knock-out
mice was able to inhibit the synthesis of saturated phos-
phatidylcholine by type II cells, meaning that in SP-D-

deficient mice the synthesis of surfactant material is
increased [45]. The exact mechanism of this inhibition is
not known but it is possible that it is a secondary effect
due to a decrease of moderately elevated GM-CSF levels in
SP-D knock-out mice [9,43]. At any rate, the earlier the
therapy with rfhSP-D starts, and with it presumably the
inhibition of the synthesis of saturated phosphatidylcho-
line, the lower are the amounts of intracellular surfactant
content. Moreover, the absence of giant lamellar bodies
and the decrease in volume of the intracellular surfactant
per lung and cell as a consequence of rfhSP-D therapy
could be considered a result of a reduced inflammatory
state.

Conclusion
The present study demonstrates that rfhSP-D treatment in
SP-D knock-out mice results in beneficial effects on lung
morphology. Even after a relatively late start of treatment
in the ninth week of life, the degree of pulmonary emphy-
sema could be reduced, as indicated by higher numbers of
alveoli. A punctual start of the therapy in the third week of
life was able to normalize the number of type II cells as
well as the disturbances related to the intracellular pool of
lamellar bodies. Thus, our data support the concept that
patients suffering from lung diseases with decreased levels
of SP-D in BAL such as COPD due to smoking or cystic
fibrosis, might benefit from a therapy based on recom-
binant SP-D.
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