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A B S T R A C T

The epithelial–mesenchymal transition (EMT) is considered an essential process for cancer development and
metastasis. Sorafenib, a RAF kinase and VEGFR-2 inhibitor, exhibits efficacy against advanced hepatocellular
carcinoma (HCC), renal carcinoma, and thyroid cancer. It is well established that transforming growth factor-β
(TGF-β) activated EMT is involved in the invasion and metastasis of Hep G2 cells in HCC. In this study, we
investigated the effects of sorafenib on various biomarkers associated with EMT using flow cytometry. We found
that sorafenib upregulated the epithelial marker E-cadherin and downregulated the mesenchymal marker
vimentin. Furthermore, sorafenib downregulated the level of the EMT-inducing transcription factor SNAIL. Our
findings provide insights into the mechanisms associated with the anti-EMT effects of VEGFR-2/RAF kinase
inhibitors.
1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most commonly occur-
ring malignancy worldwide and the third main cause of cancer-related
mortality (Kew, 2014; Rawla et al., 2018). Metastasis and the develop-
ment of new tumors are fundamental causes of the death of patients with
HCC (Yamamoto et al., 1996). Furthermore, most patients are diagnosed
at an advanced stage of hepatocarcinogenesis due to a lack of early-stage
detection and the silent progression of the disease. The epi-
thelial–mesenchymal transition (EMT) involves the transient conversion
of epithelial cells into quasi-mesenchymal cells, where they acquire the
spindle-shaped morphology of mesenchymal cells by losing their
epithelial cell appearance (Fig. 1) (Nieto, 2009, 2017). The formation of
the epithelial state is characterized by apical–basal polarity, which is
organized and tightly connected by various tight junction proteins
(zonula) and adherence junctions (occludins and claudins), where the
latter are formed by the cell surface protein E-cadherin (Dongre and
Weinberg, 2019). After activation, EMT leads to the suppression of
E-cadherin and the loss of epithelial cell morphology. As tumor devel-
opment progresses, the cancerous cells (early stage) are in the
epithelial-like stage and they acquire mesenchymal cell characteristics.
Quasi-mesenchymal cells are characterized by changes in mesenchymal
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markers, such as fibroblast-specific protein (FSP-1), vimentin, N-cad-
herin, α-smooth muscle actin (α-SMA), and EMT-inducing transcription
factors (EMT-TFs) comprising SNAIL (SNA 1), SLUG (SNA 2), TWIST, and
ZEB1 (Ye et al., 2015; Fontana et al., 2019). At the molecular level,
metastasis begins with EMT, which is followed by remodeling of the
extracellular matrix, cancer cell invasion via intravasation into the
bloodstream, the persistence of cancer cells in the bloodstream, extrav-
asation of cells from capillaries into distinct organs, and the settlement
and replication of cancerous cells in a more favorable environment
(Banyard and Bielenberg, 2015). The transforming growth factor-β
(TGF-β) signaling cascade is involved in metastatic events and it has been
shown to elevate the capacity of tumors to spread throughout the host.
The TGF-β-induced SMAD complex activates the mesenchymal markers
vimentin and fibronectin as well as EMT-TFs comprising SNAIL, SLUG,
ZEB1, and TWIST, which then suppress the expression of E-cadherin
(Padua and Massagu�e, 2009; Nagai et al., 2011). Therefore, the reversal
of EMT under stimulation by TGF-β is essential for preventing metastasis
in cancer. In the present study, we assessed the antiproliferative activity
of sorafenib in the Hep G2 cell line, as well as its effects on the epithelial
marker E-cadherin, mesenchymal marker vimentin, and EMT-TF SNAIL
using flow cytometry.
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Fig. 1. Epithelial–mesenchymal transition (EMT) process. Epithelial cells exhibit apical–basal polarity and they are attached tightly via tight junctions and adherence
junctions, and desmosomes are attached to the basement membrane via hemidesmosomes. Induction of EMT leads to the expression of EMT-inducing transcription
factors (EMT-TFs), i.e., SNAIL, TWIST, and ZEB. These factors suppress epithelial genes and activate mesenchymal genes. Expression of these genes result in cellular
changes such as disassembly of epithelial cell–cell junctions and loss of apical–basal cell polarity (color of the cell indicates EMT progression). Loss of the epithelial
phenotype results in the gain of a mesenchymal phenotype, where cells become motile with the capacity for invasion. Mesenchymal cells can convert into epithelial
cells and this process known as the mesenchymal–epithelial transition is more common in malignancy. During EMT, the loss of epithelial markers such as E-cadherin,
occludins, and claudins is observed, whereas mesenchymal markers such as N-cadherin, vimentin, and fibronectin are overexpressed.
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2. Experimental section

2.1. Materials

The required quantities of fetal bovine serum (FBS), antibiotic solu-
tion, and Dulbecco's modified Eagle's medium (DMEM) were procured
from Gibco (BRL, CA, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) and dimethyl sulfoxide were obtained from
Sigma-Aldrich (St Louis, MO, USA). 1� Phosphate-buffered saline (PBS),
Anti-Human vimentin PE (# 562337), and Anti-Human E-cadherin FITC
(#612130) were purchased from BD Biosciences (USA). Tissue culture
plates (six, 24, and 96 wells), wash beakers, centrifuge tubes, serological
pipettes, and tips were purchased from Tarsons Products Pvt. Ltd (India).
All other chemicals used were analytical reagent grade and they were
procured from Sigma-Aldrich.

2.2. Cell line and transfection

The Hep G2 cell line was procured from the National Center for Cell
Science (NCCS), Pune, Maharashtra, India. Hep G2 cells were cultured in
liquid DMEM containing 10% FBS, penicillin, and streptomycin, and they
were maintained in a controlled environment (37 �C under 5% CO2
atmosphere).

2.3. In vitro antiproliferative activity assay

The antiproliferative activity of sorafenib tosylate (ST) was deter-
mined using the MTT assay (Fig. 2). Trypsinization was conducted to
harvest the cell culture, which was pooled in a 15-mL tube. Cells at a
density of 1 � 105 cells/mL were plated in tissue culture plates (96-well)
containing DMEM with 10% FBS and 1% antibiotic solution, and incu-
bated for 24–48 h at 37 �C. Sterile PBS was used to wash the wells and
various concentrations (0.01 μM–100 μM) of ST in DMEM (free of serum)
were added to treat the cells, before incubating at 5% CO2 and 37 �C for
24 h. After incubation, MTT was added to each well and the cell cultures
were incubated for 2–4 h. Next, the medium containing MTT was aspi-
rated from the wells and the wells were washed with 1� PBS solution.
Dimethyl sulfoxide was then added and the plate was shaken for 5 min. A
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microplate reader was employed to quantify the absorbance of each well
at 570 nm (Zhou et al., 2017).

2.4. EMT marker expression studies

Hep G2 cells at a density of 3 � 105 cells per 2 mL were plated in
tissue culture plates (six-well) containing DMEM and incubated for 24 h
at 37 �C and 5% CO2. After incubation, the medium was removed from
each well, before treating with ST at its IC50 concentration (214.80 nM)
and incubating again for 48 h. The medium was removed from each well,
which was then treated with trypsin-EDTA solution (200 μL). Next, 2 mL
of culture medium was added to each well and the cells were pooled in
polystyrene tubes (12� 75 mm). The tubes were then centrifuged (5 min
at 300 rpm and 25 �C). The cell concentration was adjusted to 1–2 � 106

cells/mL in ice-cold 70% ethanol (Mali et al., 2018).

2.4.1. Cytoplasmic marker and cell surface marker staining
Anti–vimentin PE antibody (10 μL) was added to each tube, before

mixing thoroughly and incubating in the dark at 25 �C for 30 min. Anti-
SNAIL primary antibody (50 μL; 1:100) was also added, before mixing
thoroughly and incubating in the dark at 25 �C for 30 min. Dulbecco's
phosphate-buffered saline (D-PBS) was added to wash the cells and Goat
Anti-Rabbit IgG H&L (FITC) (100 μL; 1:200) was added to the cells in
each tube, before incubating for 1 h at 25 �C. Finally, 1� PBS and 0.1%
sodium azide were added to wash the cells, which were then analyzed by
flow cytometry. In addition, the E-cadherin FITC antibody (10 μL) was
added to polystyrene culture tubes, before mixing and incubating at 25
�C for 30 min. After incubation, the cells were analyzed by flow
cytometry.

2.5. Statistical analysis

All experiments were conducted in triplicate and repeated three
times. The data were expressed as the mean� standard error of the mean.
GraphPad Prism 5.0 (San Diego, CA) was used to perform statistical an-
alyses. One-way analysis of variance followed by Turkey's test was used
to assess significant differences among groups and differences were
considered significant at P � 0.05.



Fig. 2. In vitro antiproliferative activity determined using the MTT assay. (a) Chemical structure of sorafenib. (b) Graph of log concentration vs. percentage inhibition
against Hep G2 cell line after treatment with various concentrations of sorafenib tosylate (ST) (0.01 μM–100 μM). Determination of IC50 value: (c) graph of con-
centration (μM) vs. cell viability (%) in Hep G2 cell line after treatment with various concentrations of ST (0.01 μM–100 μM), where a dose-dependent reduction in cell
viability was observed. (d) Microscopic images (10�) of Hep G2 cells after treatment with ST. Experiments were performed in triplicate (n ¼ 3) and results are
expressed as the mean � standard error of the mean. *P � 0.05, **P � 0.01, and ***P � 0.001 indicate statistically significant differences.
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3. Results

3.1. In vitro antiproliferative activity assay

The MTT assay is a quantitative, sensitive, and reliable colorimetric
method for measuring the viability, proliferation, and activation of cells.
Moreover, receptor tyrosine kinases (Raf and VEGFRs) have essential
roles in the proliferation of cancer cells. In the present study, the anti-
proliferative activity was determined to evaluate the IC50 value for ST in
Hep G2 cells. In the Hep G2 cell line, ST achieved dose-dependent inhi-
bition with a highly potent IC50 value of 214.80 nM.

3.2. Sorafenib reversed TGF-β-induced EMT in HCC

The effect of ST on EMTwas analyzed using the Hep G2 cell line. After
treatment with TGF-β, morphological changes indicative of EMT were
observed in Hep G2 cells (Fig. 3a). TGF-β-stimulated Hep G2 cells un-
derwent EMT and developed a fibroblast-like mesenchymal appearance,
but treatment with ST for 48 h reversed these changes and a more
epithelial cell-like morphology was observed. The reversal of EMT was
confirmed by the effects of ST treatment on the expression patterns of the
epithelial biomarker E-cadherin and the mesenchymal biomarker
vimentin by using flow cytometry. The TGF-β-induced Hep G2 cells
exhibited reduced expression levels of E-cadherin (down to ~2.92%),
whereas ST significantly increased the expression of E-cadherin in TGF-
β-induced cells to ~97.84% (P < 0.001) compared with that in TFG-
β-induced cells alone (Fig. 3d). Furthermore, we analyzed the expression
of the mesenchymal marker vimentin. The expression level of vimentin
increased remarkably (~98.19%; P < 0.001) after treatment with TGF-β
compared with the control Hep G2 cells. Treatment with ST decreased
the expression level of vimentin (~0.14%) in TGF-β-induced cells (P �
0.001; Fig. 4c). The expression of the EMT-TF SNAIL was also examined
to confirm the reversal of EMT. ST significantly decreased the expression
of SNAIL (~0.20%) compared with that in TGF-β-induced cells alone
(~97.78; P < 0.001; Fig. 5c).
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4. Discussion

Vascular endothelial growth factor-mediated VEGFR-2/KDR trans-
membrane receptor tyrosine kinases are highly overexpressed in
advanced HCC, renal carcinoma, and thyroid cancer (Modi and Kulkarni,
2019). The current anticancer drugs are ineffective in clinics due to
aberrant metastasis and resistance (Voulgari and Pintzas, 2009). Metas-
tasis induced by EMT is a crucial factor that determines mortality, tumor
recurrence, and treatment failure in patients with advanced HCC. EMT is
a complex physiological process associated with tissue regeneration,
embryonic development, and wound healing (Kim et al., 2018). In the
EMT process, the epithelial cell phenotype converts into the mesen-
chymal cell phenotype. The plasticity of epithelial cells is an essential
component of hepatocarcinogenesis. A recent report suggested that EMT
is associated with the sensitivity of anticancer drugs; for example,
resistance was observed in pancreatic cancer after treatment with gem-
citabine due to the presence of mesenchymal type cancer cells, and this
mechanism may have been attributable to the induction of the NOTCH
signaling pathway, which is associated with a mesenchymal cell pheno-
type (Arumugam et al., 2009). Thus, inhibiting EMT may suppress
metastasis as well as having beneficial effects on the sensitivity of anti-
cancer agents. The cytokine transforming TGF-β, which is an inducer and
promoter element in EMT that regulates various transcription factors,
leads to the suppression of epithelial characteristics and induction of
mesenchymal features in HCC. In the present study, we found that ST can
potentially reverse TGF-β-stimulated EMT by suppressing E-cadherin and
inducing vimentin and SNAIL. Recent studies also suggested that ST in-
hibits the migration and invasion of liver cancer cells (Ha et al., 2015).
Furthermore, after treatment with TGF-β, epithelial cells lost their
baso–apical polarity, gained plasticity, became invasive, acquired a
self-renewal capacity, and developed mesenchymal characteristics, but
ST significantly reversed these mesenchymal characteristics to yield a
more epithelial cell-like morphology.



Fig. 3. (a) Inverted microscopy images showing the effects of sorafenib tosylate (ST). Induction of epithelial–mesenchymal transition by TGF-β (10 ng/mL) char-
acterized by fibroblast-like morphology, which was reversed to yield a more epithelial-like appearance. (b) Graph of E-cadherin vs. cell count after treatment with
TGF-β and ST. (c) Graphical representation of E-cadherin expression against control, TGF-β, and ST determined using flow cytometry. Decreased expression of E-
cadherin was observed after induction of TGF-β. The decreased expression of E-cadherin was reversed after treatment with ST. Experiments were performed in
triplicate (n ¼ 3) and results are expressed as the mean � standard error of the mean. ***P � 0.001 indicates statistically significant differences.
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Fig. 4. Vimentin expression. (a) Graph of vimentin vs. cell count after treatment with TGF-β and sorafenib tosylate (ST). (b) Graphical representation of vimentin
expression against control, TGF-β, and ST determined using flow cytometry. Expression of vimentin increased after induction of TGF-β. The increased expression of
vimentin was reversed after treatment with ST. Experiments were performed in triplicate (n ¼ 3) and results are expressed as the mean � standard error of the mean.
***P � 0.001 indicates statistically significant differences.

S.J. Modi et al. Current Research in Pharmacology and Drug Discovery 2 (2021) 100014

5



Fig. 5. SNAIL expression. (a) Graph of SNAIL vs. cell count after treatment with TGF-β and sorafenib tosylate (ST). (b) Graphical representation of SNAIL expression
against control, TGF-β, and ST determined using flow cytometry. Expression of SNAIL increased after induction of TGF-β. Increased expression of SNAIL reversed after
treatment with ST. Experiments were performed in triplicate (n ¼ 3) and results are expressed as the mean � standard error of the mean. ***P � 0.001 indicates
statistically significant differences.
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5. Conclusion

In the present study, we investigated the effects of sorafenib on TGF-
β-induced EMT in HCC using flow cytometry. Our results suggest that ST
can potentially upregulate the epithelial biomarker E-cadherin and
downregulate the mesenchymal biomarker vimentin. Furthermore, ST
was effective against the EMT-inducing transcription factor SNAIL. These
findings indicate that ST may able to convert EMT into the mesen-
chymal–epithelial transition. Finally, our results obtained using ST sug-
gest that VEGFR-2 inhibitors may be effective against malignant cells
with the mesenchymal phenotype, and thus they could have greater
potential in the treatment of metastatic cancer.
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