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Abstract: Pedestrian detection has been widely used in applications such as video surveillance and
intelligent robots. Recently, deep learning-based pedestrian detection engines have attracted lots
of attention. However, the computational complexity of these engines is high, which makes them
unsuitable for hardware- and power-constrained mobile applications, such as drones for surveillance.
In this paper, we propose a lightweight pedestrian detection engine with a two-stage low-complexity
detection network and adaptive region focusing technique, to reduce the computational complexity
in pedestrian detection, while maintaining sufficient detection accuracy. The proposed pedestrian
detection engine has significantly reduced the number of parameters (0.73 M) and operations (1.04 B),
while achieving a comparable precision (85.18%) and miss rate (25.16%) to many existing designs.
Moreover, the proposed engine, together with YOLOv3 and YOLOv3-Tiny, has been implemented
on a Xilinx FPGA Zynq7020 for comparison. It is able to achieve 16.3 Fps while consuming 0.59 W,
which outperforms the results of YOLOv3 (5.3 Fps, 2.43 W) and YOLOv3-Tiny (12.8 Fps, 0.95 W).

Keywords: pedestrian detection; lightweight; neural network; adaptive; FPGA

1. Introduction

Pedestrian detection has been widely used in applications such as autonomous driv-
ing, video surveillance, and intelligent robots. In the past, the pedestrian detection was
realized by traditional image processing and machine learning methods, such as the his-
togram of oriented gradient (HOG) and the support vector machine (SVM). The HOG
is a classic feature descriptor used in image processing, which can effectively extract the
features of pedestrians and send them to classifiers, such as SVM, to realize pedestrian
detection [1]. Later, a discriminatively trained part-based models (DPM) detection method
is proposed, which improves the detection accuracy by constructing the excitation template
of each component, such as an edge and corner feature, then determines the target position
according to the distribution of the excitation [2]. Wavelet domain-based pedestrian detec-
tion methods have also been proposed, for instance, a multi-feature (Multiftr) detection
method is proposed, which extracts Haar-like wavelets features for the detection [3]. To
further improve the detection accuracy, an aggregate channel features (ACF) detection
method is proposed, which classifies aggregated channel features by decision tree [4]. As
the features of pedestrians become more and more complex, such as appearance, cloth-
ing, dress, posture, lighting, background, and image resolution, it becomes increasingly
challenging for the traditional methods to extract the effective features and achieve high
detection accuracy. Also, it takes significant engineering effort to find suitable features for
the detection.

To address the above issues, deep learning-based pedestrian detection methods have
been proposed. Compared to the traditional methods, using signal processing and machine

Sensors 2021, 21, 5851. https://doi.org/10.3390/s21175851 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6685-5576
https://doi.org/10.3390/s21175851
https://doi.org/10.3390/s21175851
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175851
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175851?type=check_update&version=2


Sensors 2021, 21, 5851 2 of 15

learning, these methods are able to extract the complex features of pedestrians more
effectively and automatically through an end-to-end neural network, which leads to a
higher detection accuracy and reduced effort for feature engineering. There are some
scholars using a combination of machine learning- and deep learning-based methods. For
example, in [5], a pedestrian method, which used SVM and CNN, is proposed. In this
method, a motion detection method is used to locate the interested area, then principal
component analysis and support vector machines are used to extract the textural feature
vector and filter out interference regions, and, at last, a CNN is used to execute the
pedestrian classification. Besides, many deep learning-based pedestrian methods have
been proposed, such as active detection module (ADM) [6], multi-scale deep convolutional
neural network (MS-CNN) [7], and graininess-aware deep feature learning (GDFL) [8].
These methods significantly improve the detection accuracy. In addition to the dedicated
pedestrian detection methods, some methods are proposed by modifying the general
object detection methods. For instance, pedestrian detection methods [9,10] based on
YOLO and pedestrian methods [11,12] based on Faster R-CNN. However, while achieving
a higher detection accuracy, the deep learning-based methods significantly increase the
computational complexity, and cause high power consumption and a large processing time,
making them unsuitable for hardware- and power-constrained mobile applications, such
as drones and mobile robots.

In this work, we propose a lightweight pedestrian detection engine with a two-
stage low-complexity neural network and adaptive region focusing technique, for power-
and resource-constrained intelligent video surveillance applications, such as drone-based
surveillance.

The main contribution of this work can be summarized as follows:

• A two-stage low-complexity neural network for pedestrian detection is proposed,
which significantly reduces the number of parameters and operations of the detection
neural network, while maintaining a high detection accuracy;

• An adaptive region focusing technique is proposed, which further reduces the compu-
tational complexity by removing the redundancy in the pedestrian detection in video
streams;

• The proposed lightweight pedestrian detection engine has been implemented on a
Xilinx FPGA Zynq7020, to evaluate its performance and power consumption.

2. Related Work

In the early stages, pedestrian detection was performed by extracting various features
in the input image and sending them to a classifier for detection. For example, in [1], it
is proposed to extract the HOG features of the image and use an SVM classifier for the
pedestrian detection. To improve the accuracy, a latent SVM classifier is proposed and
used with the HOG features for the pedestrian detection [13], which achieves a higher
detection accuracy than using the conventional SVM classifier. In [14], it is proposed to
combine the HOG features with the local binary pattern (LBP) features for the pedestrian
detection. Other than the HOG-related methods, in [15], it is proposed to extract the
gradient responses of the input image in different directions, and compute the local average
of these responses around each pixel, to build shapelets features. The features are then sent
to an Adaboost classifier for pedestrian detection. However, this method only relies on the
edge features, which is not very efficient. In [16], the edge features are combined with the
texture and color features to improve the detection accuracy.

In the recent years, deep learning-based methods have been heavily used in pedestrian
detection, due to their high detection accuracy. Many works used the semantic information
of a pedestrian for the detection. For example, the part and context network (PCN), using
the semantic and contextual information of the body parts of the pedestrian [17]. Liu
proposed a pedestrian detection method using the semantic labeling with the traditional
HOG + SVM method, to improve the detection accuracy [18]. In pedestrian detection, the
detection of small-scale pedestrians and occluded pedestrians are two major challenges. A
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pedestrian detection network (PedJointNet) is proposed that uses the head–shoulder feature
of pedestrians as a complement to full-body prediction, to boost the detection accuracy [19].
In [20], a location bootstrap module and a semantic transition module are proposed to
improve the detection accuracy of small-scale and occluded pedestrians. The location
bootstrap is used to address predicted bounding boxes with relatively worse location
precision, and the semantic transition module is used to extract more contextual information
to relieve the semantic inconsistency of the skip-layer fusion for the detection of occluded
pedestrians. Pedestrian detection in low-resolution images is also a challenge. In [21], a
multi-resolution generative adversarial network (MRGAN) is proposed to simultaneously
conduct multiresolution pedestrian detection, by generating high-resolution pedestrian
images from low-resolution images. In [22], a fused discriminative metric learning (F-
DML) approach is proposed to learn the optimal Mahanalobis metric, which transforms
the low-resolution feature space into a new classification space, to improve the detection
accuracy for low-resolution images. In addition, some works focus on pedestrian detection
in low-light conditions. For example, a guided deep network is proposed to learn the
extraction of multi-modal-like features from a single data modality in the framework of
knowledge distillation via teacher–student training [23]. The teacher network, trained
using the multi-modal data of RGB and thermal images, guides the student network to
extract RGB and thermal-like features from RGB images alone. The multiScale detection
network (MSDN) has also been proposed to solve the low-light problem [24]. In this
method, a deep neural network is used to learn a non-linear mapping between RGB and
thermal data. The learned feature representations are then transferred to another deep
network, which receives the RGB image and generates the detection result.

Compared with the conventional machine learning methods, the deep learning-based
methods achieve a higher detection accuracy. However, the computational complexity,
including the number of parameters and operations, has been significantly increased.
To address this issue, some low-complexity pedestrian detection methods have been
proposed [25,26]. These works propose a lightweight neural network with a reduced
number of parameters and operations. However, the reduction is still limited and/or the
detection accuracy is heavily affected.

3. Proposed Pedestrian Detection Engine

In this work, a low-complexity pedestrian detection method has been proposed for
power- and resource-constrained intelligent video surveillance applications. In this method,
a two-stage low-complexity pedestrian detection network (TLDN) is proposed, to reduce
the number of parameters and operations in deep learning-based pedestrian detection.
An adaptive region focusing technique (ARFT) is proposed to further reduce the number
of operations, by utilizing the feature of pedestrian detection in a video stream. Figure 1
shows the overall architecture of the proposed pedestrian detection method.

3.1. Proposed Two-Stage Low-Complexity Pedestrian Detection Network

The details of the proposed two-stage low-complexity pedestrian detection network
are shown in Figure 2. The first stage of the detection network is used to generate the
initial bounding boxes (bbox) of the pedestrians. Before the network, pyramid images
are generated to obtain different scales of the input image. The first-stage network is a
fully convolution network and, therefore, the size of the input image is flexible. As shown
in Figure 2, the first-stage network contains only six convolution layers. As the network
is shallow, in order to improve the efficiency of the feature extraction of pedestrians,
rectangular-shaped kernels, instead of square-shaped kernels, are used for the convolution.
We have conducted some experiments regarding the shape of the convolution kernel,
as shown in Figure 3. It can be observed that with square-shaped convolution kernels,
regardless of the kernel size, the precision is below 68% and the miss rate is above 64%.
After changing the kernel shape to rectangular, the precision is improved to 85.18% and
the miss rate is reduced to 25.15%. All the convolution layers in the first-stage network use
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rectangular-shaped kernels with different sizes, as shown in Table 1 and Figure 2, where
CK, CS, PK, and PS are the convolution kernel size, convolution stride, max pooling kernel
size, and max pooling stride, respectively. The outputs of the first network include the
offset values of the obtained bboxes and their confidence scores.

Figure 1. Overall architecture of the proposed method.

Figure 2. Proposed TLDN. The upper part is the first-stage detection network and the lower part is the second-stage
detection network.
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Figure 3. Comparison of experiment results of different kernels. SS-Kernel means square-shaped
kernel and RS-Kernel means rectangular-shaped kernel.

Table 1. The values and specific names of CK, CS, PK and PS in every layer.

Stage Layer
Convolution
Kernel Size

(CK)

Convolution
Stride
(CS)

Max Pooling
Kernel Size

(PK)

Max Pooling
Stride
(PS)

First stage

1 6 * 4 1 2 * 2 2
2 5 * 3 1 / /
3 5 * 3 1 / /
4 4 * 2 1 / /
5 4 * 1 1 / /
6 3 * 1 1 / /

Second stage

1 5 * 3 1 2 * 2 2
2 5 * 2 1 2 * 2 2
3 6 * 2 1 2 * 2 2
4 4 * 2 1 / /
5 3 * 1 1 / /

With the offset values of the bboxes, the coordinates of the bboxes can be calculated.
Firstly, the coordinates of the base bboxes can be calculated using Equations (1)–(4).

x1 = (sw ∗ idx)/r (1)

y1 =
(
sh ∗ idy

)
/r (2)

x2 = (sw ∗ idx + cw)/r (3)

y2 =
(
sh ∗ idy + ch

)
/ r (4)

where x1, y1, x2, y2 are the horizontal and vertical coordinates of the upper left corner and
the lower right corner of the base bboxes, respectively. sw is the ratio of the width of the
input image to the width the output feature map, sh is the ratio of the height of the input
image height to the height of the output feature map, r is the ratio of the size of the input
image to the size of the largest scale pyramid image, cw is the allowed minimum width of
the pyramid image, which is set to 15 (below this width, the pyramid image generation is
stopped), and ch is the allowed minimum height of the pyramid image, which is set to 39.
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idx is the horizontal index of each pixel of the output feature map, and idy is the vertical
index of each pixel of the output feature map.

After the coordinates of the base bboxes are calculated, the coordinates of the actual
bboxes can be generated using Equations (5)–(8).

x′1 = x1 + ∆x1 ∗ (x2 − x1) (5)

y′1 = y1 + ∆y1 ∗ (y2 − y1) (6)

x′2 = x2 + ∆x2 ∗ (x2 − x1) (7)

y′2 = y2 + ∆y2 ∗ (y2 − y1) (8)

where x′1,y′1,x′2, y′2 are the horizontal and vertical coordinates of the upper left corner and
the lower right corner of the actual bboxes after offset, respectively. ∆x1, ∆y1, ∆x2, ∆y2 are
the offsets of the horizontal and vertical coordinates of the upper left corner and the lower
right corner, respectively.

After that, the bbox selection is performed. First, some of the bboxes are filtered out
based on their confidence score. A threshold is set to filter out the bboxes with a confidence
score less than the threshold. Then, non-maximum suppression (NMS) is applied to
remove the redundant bboxes, by selecting the bbox with the highest confidence score and
calculating the intersection over union (IoU) value between it and all the candidate bboxes.
The bboxes with IoU values higher than the threshold are removed. This process is iterated
until no bbox can be removed.

The images corresponding to the resultant bboxes are sent to the second-stage network
for computation one-by-one. The second stage of the detection network contains five
convolution layers and two fully connected layers. All the convolution layers in the second-
stage network use rectangular-shaped kernels with different sizes, as shown in Figure 2.
The outputs of the second-stage network include the offset value of the obtained bbox and
its confidence score for each image.

The second stage of the detection network is used to re-evaluate the initial bboxes.
Its inputs are the images captured from the original image, based on the bboxes from the
first stage. We will uniformly scale these images to 104 × 40, and then input them into the
second-stage detection network. When the last layer of the second-stage detection network
gets the output, we use Equations (5)–(8) to correct the bboxes represented by the input
images.

The re-evaluated bboxes will be closer to the real situation. We filter all the re-evaluated
bboxes, set a stricter score threshold, and then use the NMS algorithm to remove duplicate
bboxes again. Through this stage of evaluation and filtering, we get the final pedestrian
detection results.

3.2. Proposed Adaptive Region Focusing Technique

The proposed TLDN has small number of parameters; however, the second stage of
the network needs to be computed multiple times, depending on the number of output
bboxes from the first stage, which involves a large number of operations. To reduce the
number of operations, we have proposed the ARFT technique, by utilizing the correlation
among a sequence of frames in the video stream. The basic idea of the ARFT is to focus on
the regions of the pedestrians in the image, and only perform the pedestrian detection in
these regions for subsequent frames, to reduce the number of operations. The details of the
technique are shown in Figure 4. When the pedestrians are detected in the input image, the
regions of the pedestrians will be identified and used to guide the pedestrian detection for
subsequent frames. A way to do this is to identify the regions for each detected pedestrian
in the image and send them one-by-one to the detection network. However, this causes
repeated computation of the detection network, especially when the number of regions is
large, resulting in a limited reduction in the number of operations. To address this issue,
we propose to identify the common region for all the detected pedestrians, as shown in



Sensors 2021, 21, 5851 7 of 15

Figure 4, and send it to the detection network for the subsequent frame. We first find a
region that just includes all the bboxes of the detected pedestrians. Then, this region is
enlarged by increasing its height and width outwards by 20%. This acts as a safeguard
area to avoid a miss detection for next time, as the pedestrians may be moving. In this
way, the detection network only needs to be computed once. Although the common region
method slightly increases the region size compared to the separate region method, the
final number of operations is significantly reduced (as shown in the experimental results
in Section 5–D). In addition, to avoid the miss detection of newly appearing pedestrians
outside the common region, a full-region pedestrian detection is performed intermittently
(e.g., every five frames), or when no pedestrian is detected in the current frame.

Figure 4. Proposed adaptive region focusing technique.

4. FPGA Design

The proposed pedestrian detection engine has been implemented on a Xilinx Zynq7020
FPGA, based on the deep learning processor unit (DPU). The DPU is an IP core provided
by Xilinx for accelerating neural networks. It is able to support different neural network
structures through reconfigurable hardware architecture (i.e., a neural network hardware
accelerator including an array of processing engines, which are reused to execute the
network layer-by-layer). As shown in Figure 5, the ZYNQ processing system based on
the ARM Cortex A9 processor is used for realizing a Linux operating system, while the
DPU is synthesized using FPGA logic as a hardware accelerator to communicate with the
ZYNQ through AXI bus, for accelerating the neural network. During the operation, the
main software program is executed partly in the Linux and partly on the DPU (the neural
network part). The FPGA chip can communicate external peripherals, such as camera,
PC, and SD card for data exchange. This forms a heterogeneous computing system for
applications involving neural network computation.

The FPGA implementation flow is shown in Figure 6. First, the TLDN network model
is quantized and compiled into DPU instruction codes by DNNDK, which is a toolchain
provided by Xilinx. DPU is synthesized using FPGA logic as a hardware accelerator
to communicate with the ZYNQ through AXI bus, for accelerating the neural network.
Moreover, the inputs and outputs of the DPU unit are input nodes and output nodes of
the TLDN network model. Then, a C++ program is written to initialize the DPU kernel,
preprocess image, or video stream, before feeding them into the DPU task, processing on
DPU, gaining the DPU output, and operating the postprocess on CPU. After completing
the steps described above, the final result of the model will be gained. It also implements
the algorithm to perform the ARFT operations, such as region identification and region
selection. After that, the C++ program is cross-compiled together with the DPU instruction
codes, which is included in the DPU driver provided by Xilinx, to generate an executable
file to run in the Linux operating system. In the meantime, the root and kernel files for
the ARM-based Linux operating system are built and placed in the SD card. During the



Sensors 2021, 21, 5851 8 of 15

operation, the root and kernel files are loaded into ZYNQ to start up the Linux operating
system. Then, the executable file is run to execute the C++ program partly in the Linux and
partly on the DPU (the neural network part), which calls the DPU instruction codes for
accelerating the TLDN when needed.

Figure 5. FPGA implementation.

Figure 6. FPGA implementation flow.

Figure 7 shows the test setup. A PYNQ-Z2 board is used for testing the speed and
power consumption, which includes the Xilinx Zynq7020 FPGA chip, USB port, DDR
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memory, SD card, and Ethernet port. During the operation, the input video stream from a
camera enters the system through the USB port. Based on the Linux system and OpenCv,
the movie from the camera is read and preprocessed in the software before running the
DPU task. The DPU implemented on the ZYNQ accelerates the TLDN layer-by-layer and
exchanges intermediate feature map data with the on-board DDR. The pedestrian detection
results are transferred to the PC through the Ethernet port, for monitoring. The architecture
of the DPU is configured as B1152 (i.e., single DPU core), the system operating frequency is
140 MHz, and the resource utilization is shown in Table 2.

Figure 7. Experimental setup.

Table 2. Resource utilization.

LUTs Registers DSPs Block RAM

utilization 87,049 93,981 396 14,652 Kb

5. Experimental Results

Experiments have been conducted to evaluate the performance of the proposed pedes-
trian detection engine, and it has been compared with the existing pedestrian detection
engines.

5.1. Training and Testing Dataset

The training dataset is built by combining a public dataset (i.e., Caltech dataset [27])
with a customized dataset. It includes more than 24,000 images from 110,000 pedestrians,
under various scenes and illuminations. The training dataset is divided into the follow-
ing three categories based on IoU: positive, partial, and negative, as shown in Table 3.
The testing dataset is only the Caltech dataset, which includes 4024 images from 5051
pedestrians.

Table 3. Categories of training dataset.

Categories IOU

Positive ≥0.65
Partial ≥0.4 ∩ <0.65

Negative <0.3

Specifically, for the training, the mixture of the Caltech dataset and a customized
dataset is used, which includes only static images. For testing the accuracy, the Caltech
dataset is used, which includes only static images. For testing the speed and power
consumption, a camera is used to capture 10 min of movie (30 fps) as the input of the
proposed network. This is able to evaluate the effect of the proposed adaptive region
focusing technique.
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5.2. Training

The training data of the first-stage detection network are generated as follows. First,
random bboxes, with constraints on the width (15 pixels to half of the image width) and
height (39 pixels to half of the image height), are generated for each image. Then, IoU is
calculated between the generated bboxes and the label bboxes, to obtain the categories in
Table 3. During the training of the first-stage detection network, the images with generated
bboxes are cropped in the original images and resized to 39 × 15. Then, they are sent to
the first-stage detection network in batches for training. After the first-stage detection
network, the 39 × 15 images become 1 × 1, which corresponds to a set of classification
and border regression values. The training data of the second-stage detection network are
generated in a similar way, except that the bboxes are generated by the first-stage detection
network instead of random functions and the cropped images are resized to 104 × 40. The
base learning rate of the two-stage network training is set to 0.01 and the optimizer is a
momentum optimizer.

The detection network has the following two outputs: the pedestrian/non-pedestrian
classification result and the bbox regression. Therefore, a joint loss function is adopted for
the training as follows:

(1) Pedestrian classification: Pedestrian classification is used to distinguish whether the
image in the frame is a pedestrian or a background, so this is a two-classification task.
We use the cross-entropy loss function for training. For each sample xi, we use the
following function:

Lcls
i = −

(
ydet

i log(pi) +
(

1− ydet
i

)
(1− log(pi))

)
(9)

where pi is the network output for the sample xi, which is used to indicate the
probability that xi is a pedestrian. ydet

i ∈{0, 1} is from the ground-truth tag and
represents the true value.

(2) Frame regression: Frame regression is used to reduce the position gap between the
real frame and the predicted frame. Each frame includes the following four pieces
of information: left border, upper border, height, and width. Therefore, we adopt
Euclidean distance measure loss, as follows:

Lbox
i =‖ ŷbox

i − ybox
i ‖ (10)

where ŷbox
i is the target frame obtained from the network output. ybox

i is the real
coordinate information, and it includes four dimensions, so ybox

i ∈ R4.
(3) Joint loss function: since the network needs to complete two different tasks at the

same time, it cannot use (9) or (10) alone as the loss function, so the joint loss function
is introduced as follows:

Lsum = ∑N
i=1

(
λ1Lcls

i + λ2Lbox
i

)
(11)

where Lcls
i is the loss function for the pedestrian classification, which uses the cross-

entropy function, Lbox
i is the loss function for the bbox regression, which uses the

Euclidean distance, and λ1 and λ2 are the weight coefficients for the two loss functions.
For the first-stage detection network, we set λ1 = 1 and λ2 = 0.5. For the second-
stage detection network, we set λ1 = 1 and λ2 = 0.6, to obtain more-accurate bbox
coordinates.

5.3. Evaluation of Detection Accuracy

The detection accuracy is evaluated using precision, recall, miss rate and
f alse positives per image, as shown in Equations (12)–(15). Figures 8 and 9 show the
precision− recall curve and miss rate curve of the proposed pedestrian detection engine. For
comparison, we have evaluated some existing methods using the same testing dataset. As
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shown in Figures 8 and 9, the proposed engine achieves a precision of 85.18% and miss rate of
25.16%, under the IoU threshold of 0.5, which are comparable to most of the existing methods.

precision =
true positives

true positives + f alse positives
(12)

recall =
true positives

true positives + f alse negatives
(13)

miss rate =
f alse negatives

true positives + f alse positives
(14)

f alse positives per image =
f alse positives

the number o f image
(15)

Figure 8. The precision–recall curve of the proposed method and the comparison with the existing
methods.

5.4. Evaluation of Computational Complexity

Table 4 shows the computational complexity of the proposed engine and the com-
parison with the existing methods. Only the engines based on deep learning are listed
here, as it is difficult to calculate the computational complexity of the engines based on
conventional machine learning methods. The numbers of parameters and operations of
deep learning-based engines are obtained by calculation using the neural network models
provided in their papers. In Table 4, Ours-CR and Ours-SR both refer to the result of using
a common region for the adaptive region focusing. It can be observed that our engine
(Ours-CR) only requires 0.73 M parameters and 1.04 B operations. It outperforms the other
engines in terms of the computational complexity, while achieving a comparable precision
and miss rate. Compared to Ours-SR, Ours-CR has a reduced number of operations, due to
the reduced number of computations of the detection network.
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Figure 9. The miss rate curve of the proposed method and the comparison with the existing methods.

Table 4. Computation complexity comparison of different methods.

Methods Parameters Operations Precision Miss Rate

OURS-CR 0.73M 1.04B 85.18% 25.16%
OURS-SR 0.73M 2.75B 85.18% 25.16%
SDN [28] 2 \ \ 84.18% 37.87%

DeepParts [29] 2 187.10M 6.81B 88.70% 11.89%
LFOV [30] 2 135.27M 0.64B 84.64% 35.85%

SA-FastRCNN [31] 2 266.84M 41.35B 88.39% 9.68%
MS-CNN [7] 2 ~217M \ 88.66% 9.95%
OR-CNN [32] 2 138.34M 30.94B \ 4.1%
ALFNet [33] 2 48.4M 5.07B \ 22.5%

CSP [34] 2 ~31.23M ~67.03B \ 4.5%
CSANet [35] 2 ~22.66M ~11.54B \ 3.88%

YOLOv3-Tiny 3 7.86M 5.56B 83.74% 1 40.66% 1

YOLOv3 [36] 3 61.57M 65.86B 88.51% 1 14.63% 1

YOLOV4 [37] 3 64.03M 62.25B 88.66% 1 10.21% 1

YOLOV5s 3 7.3M 17.0B 88.16% 1 25.65% 1

MDFL [38] 2 ~276.69 ~61.88B \ 31.46%
MultiSDP [39] 2 \ \ 82.51% 45.39%
DBN-Mut [40] 2 \ \ 79.48% 48.22%

SCF+AlexNet [41] 2 233M 727M 88.39% 23.32%
1 This accuracy is obtained by replication the work and testing it using the same testing dataset. 2 Pedestrian
detection network. 3 Objection detection network.

5.5. Evaluation of Speed and Power Consumption

Table 5 shows the measured power consumption and frame rate per second of the
proposed engine for FPGA implementation. For comparison, we have also implemented
YOLOv3 and YOLOv3-Tiny on the same FPGA board. However, DPU does not support
the upsampling structure in YOLOv4 and v5, which is why we only implemented YOLOv3
and YOLOv3-Tiny for comparison. The power consumption is measured by using a power
meter on the electrical socket of the FPGA board, as shown in Figure 7. As the FPGA board
has a constant power consumption of ~2.6 W without any design implementation, this
power consumption is removed during the measurement, for all the compared methods. It
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can be observed that the power consumption of the proposed engine achieves 16.3 FPS,
while consuming 0.58 W on the PYNQ-Z2 FPGA board, which is significantly better than
that of the YOLOv3 (5.3 Fps, 2.43 W) and YOLOv3-Tiny (12.8 Fps, 0.95 W).

Table 5. FPS and power of different methods 1.

Methods FPS Power (W)

OURS-CR 16.3 0.59
OURS-SR 8.6 0.68

YOLOv3-Tiny 12.8 0.95
YOLOv3 [36] 5.3 2.43

1 The input image size is 224 × 224.

6. Conclusions

In this paper, we propose a lightweight pedestrian detection engine with a two-
stage low-complexity detection network and an adaptive region focusing technique, to
reduce the computational complexity in pedestrian detection, while maintaining a high
detection accuracy. Compared to the existing designs, the proposed pedestrian detection
engine significantly reduces the number of parameters and operations, with a comparable
precision (85.18%) and miss rate (25.16%). The proposed design has been implemented on
FPGA for the evaluation of its real-time performance and power consumption. It is able to
achieve 16.3 Fps while consuming 0.59 W, which is better than the mainstream detection
engines, such as YOLOv3 (5.3 Fps, 2.43 W) and YOLOv3-Tiny (12.8 Fps, 0.95 W).
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