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A B S T R A C T   

Radiology is integral to cancer care. Compared to molecular assays, imaging has its advantages. Imaging as a noninvasive tool can assess the entirety of tumor 
unbiased by sampling error and is routinely acquired at multiple time points in oncological practice. Imaging data can be digitally post-processed for quantitative 
assessment. The ever-increasing application of Artificial intelligence (AI) to clinical imaging is challenging radiology to become a discipline with competence in data 
science, which plays an important role in modern oncology. Beyond streamlining certain clinical tasks, the power of AI lies in its ability to reveal previously un-
detected or even imperceptible radiographic patterns that may be difficult to ascertain by the human sensory system. Here, we provide a narrative review of the 
emerging AI applications relevant to the oncological imaging spectrum and elaborate on emerging paradigms and opportunities. We envision that these technical 
advances will change radiology in the coming years, leading to the optimization of imaging acquisition and discovery of clinically relevant biomarkers for cancer 
diagnosis, staging, and treatment monitoring. Together, they pave the road for future clinical translation in precision oncology.   

1. Introduction 

Fast emerging imaging technology and analytic tools allow radiology 
to play an increasingly important role in cancer screening, diagnosis 
staging, response assessment, and prognosis. In contrast to the inva-
siveness of the histopathological and molecular approaches that can be 
biased by intratumor heterogeneity, imaging offers a unique path to 
provide a holistic and dynamic view of disease at the whole organ or 
whole patient level, moving the assessment of cancer patients toward 
personalized oncology. 

For a decade, we have witnessed the proliferation of radiomics in 
oncological imaging. Radiomics is “the conversion of images to higher 
dimensional data and subsequent mining of these data for improved 
decision support” [1]. The image features can be extracted from specific 
area of interest which can be the entire tumor or sub volume within 
tumors or habitats [1]. Like the digital revolution that reshaped the 
remainder of our lives, radiomics has the potential to transform radi-
ology. Though quantitative image analysis existed before radiomics, it 
was carried out sporadically in different clinical applications, usually 
with a small amount of manually processed imaging features. By 
contrast, radiomics remolds the imaging analysis by introducing a more 

robust and universal framework that systematically extracts hundreds or 
thousands of features of the tumor shape, intensity, and texture for the 
prediction. 

More recently, artificial intelligence (AI), especially deep learning, 
offers an unprecedented way to interrogate informative imaging pat-
terns beyond radiomics. Distinct from radiomics which heavily relies on 
empirical knowledge, deep learning provides an end-to-end solution 
approach that can automatically learn by correlating raw data with 
ground truth, to eventually acquire sufficiently precise capability to help 
solve clinical challenges at scale. 

In this review, we focus on emerging applications of AI to empower 
oncologic imaging, ranging from imaging acquisition to cancer 
screening to treatment planning to response monitor (Fig. 1). An ap-
pendix of terminology and concepts has been included for readers who 
are unfamiliar with AI. We also provide an outlook on the challenges, 
new paradigms, and future directions of AI application to this discipline. 

2. Imaging acquisition optimization 

Patients with cancer undergo frequent imaging subjecting them to 
cumulative contrast doses, radiation, and potentially lengthy exams (if 
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undergoing MRI). Deep neural networks can efficiently map images 
from one high-dimensional data space to another. This enables various 
novel applications, in the area of CT-Dose reduction, faster MRI acqui-
sition, and reduced contrast/ radiotracer dosing, all benefits that have 
the potential to accrue to oncology patients. 

2.1. CT-Dose reduction 

The US’s annual per capita radiation dose has doubled over the past 
15 years, primaraily due to increased CT imaging [2]. Since image 
quality and signal-to-noise ratio are inversely correlated with radiation 
dose, it is not possible to arbitrarily reduce the radiation dose per ex-
amination. Although several sophisticated techniques have been 
developed with the aim to preserve image quality while reducing radi-
ation exposure, such as iterative reconstruction, radiation dose remains 
a concern in young patients (e.g., pediatrics), and/or patients under-
going multiple serial examinations (e.g., cancer survivors on 
surveillance). 

Deep neural networks can map data from one high-dimensional data 
space to another, e.g., transfer a CT image from the low-dose/high-noise 
space to a high-dose/low-noise representation. Hence, novel techniques 
are currently being developed based on deep learning reconstruction 
(DLR), which have the potential to significantly reduce radiation dose. 
Two DLR solutions have become FDA cleared and clinically available in 
2019 [3]. DLR based reconstruction methods have resulted in lower 
radiation doses and/or improved image quality, all the while offering a 
reasonably short reconstruction time. Recently, pilot DLR study reported 
volumetric tomographic imaging generated based on ultrasparse data 
sampling (i.e., single projection) and a patient-specific prior [4], which 
can further reduce the radiation dose if validated. 

However, as with any new technique, more research is needed to 
prove its clinical usefulness, safety, reproducibility and reliability. There 
is a need for larger and more diverse training and validation datasets for 
DLRs to improve and validate its generalizability. 

2.2. Optimization of MRI acquisition 

Magnetic Resonance Imaging (MRI) has a crucial role in Oncologic 

Imaging. It is a problem-solving tool for lesion characterization, enables 
local assessment and tumor staging, and with the advent of whole-body 
MRI it has the potential to become a staging, therapy response assess-
ment and surveillance tool [5]. One of the most challenging issues for 
patients is long scan time, which can introduce motion artifact and in-
creases cost and discomfort for patients. Recent developments in AI may 
help to address these issues. For example, deep-learning based tech-
niques have been developed to accelerate scan times in MRI by means of 
under-sampling, which can be classified into several groups of acceler-
ation techniques: image-based reconstruction, k-space based recon-
struction, adversarial networks and super-resolution. 

K-space based reconstruction techniques like robust artificial-neural 
network for k-space interpolation (RAKI) are applied directly on k-space 
data rather than image data [6]. They consistently outperform tradi-
tional parallel imaging techniques in terms of reconstruction speed by a 
factor of 2–4. Methods that use adversarial networks are being devel-
oped to account for loss functions in Convolutional Neural Networks 
(CNN), like pixel-wise loss that make the images look over-smoothed. 
However, adversarial networks are notoriously difficult to train and 
prone to hallucinating realistic-looking imaging features. Hence, they 
need to be carefully evaluated for every clinical indication. 
Super-resolution is a deep learning technique that can predict high 
resolution images from low resolution images. The idea is to accelerate 
acquisition by obtaining low resolution images and generating high 
resolution images with DL algorithms. A particularly successful 
image-based reconstruction method is a variational network (VN) that 
has shown successful image reconstruction with acceleration factor of 
four [7]. Even though promising, these techniques are still a subject of 
active research. 

Operationally, challenges exist with dealing with a heterogenous 
fleet of scanners that may be at different stages in their life cycle. Image 
quality may vary depending on brand, capabilities and whether the 
scanner is 1.5 T versus 3 T. Arshad et al., demonstrated that these 
problems can be addressed with Transfer Learning techniques that 
showed improved generalizability for: images acquired from scanners 
with different magnetic field strengths, MR images of different anato-
mies, and MR images under-sampled by different acceleration factors [7, 
8]. This can be particularly valuable in oncologic patients where com-
parison to prior imaging and consistent protocols are important in 
restaging and post-treatment scans. When deploying an increasing 
number of clinical AI algorithms, practices need to pay attention for 
input data (images) meeting minimum technical specifications by the AI 
manufacturer. Only then is there a reasonable chance of similar per-
formance of the AI in real world practice as was demonstrated in 
standalone performance testing prior to FDA clearance. This can be 
challenging in practices which manage multiple generations of scanners, 
and diverse imaging protocols and requires attention to achieve reliable 
results and is not specific to MR but extends to other modalities such as 
CT, PET/CT etc. 

2.3. Reduction of contrast 

Patients with cancer undergoing nephrotoxic chemotherapies often 
present to their imaging appointment with impaired renal function. 
Although there is no reliable predictor for development of contrast- 
induced acute kidney injury, volume of contrast has been included in 
some risk stratification systems [9]. In addition, repeated gadolinium 
administration has been linked to retention in the brain parenchyma 
[10]. Several techniques using deep learning are being developed to 
reduce the dose/volume of contrast media, which may enable lower 
costs and lower adverse event rates. 

Haubold et al., for example, proposed a deep learning algorithm with 
a generative adversarial network which reduced CT contrast media dose 
in up to 50% while preserving image and diagnostic accuracy [11]. Gong 
et al. reported up to 90% contrast media reduction with preserved image 
quality using deep learning models [12]. In another study, this group 

Fig. 1. Emerging AI applications in oncologic imaging are seen in four broad 
categories: Acquisition optimization, cancer screening, tumor response assess-
ment and treatment planning. 
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demonstrated that deep learning can enhance noisy PET images ac-
quired with 4-times fewer counts for clinical purposes in a blinded, 
multicenter study [13]. 

2.4. Screening 

Imaging plays a key role in early detection of colon, breast and lung 
cancer. Early detection of cancers in asymptomatic individuals is asso-
ciated with reduction in mortality. Historically, cancer screening stra-
tegies have been controversial due to overall costs and potential for 
overtreatment [14,15]. Additionally, health disparities related to 
under-screened populations contribute to differences in patient out-
comes. AI has the potential to address these issues in the future by 
decreasing costs, improving access to screening, and improving timeli-
ness of results. 

Stand-alone deep learning algorithms have shown to be effective in 
screening for breast cancer with noninferior performance to the average 
of 101 radiologists [16] and even outperforms a handful of radiologists 
[17]. Although many studies have been performed on cancer detection 
in mammography, there is limited evidence of AI in real-screening set-
tings. In Europe, double reading mammograms is standard of care. A 
population based screening study showed promise in cancer detection 
using commercially available AI systems compared to double-reading 
consensus [18]. AI has also been utilized to filter through normal digi-
tal breast tomosynthesis (DBT) studies to reduce screening workloads 
while improving diagnostic accuracy in a simulated workflow [19]. This 
could help to reduce the significant workload and preserve or enhance 
access to mammography in times of workforce challenges and recently 
documented burnout amongst breast imagers in the US[20]. 

Precise screening AI algorithms have the potential to optimize 
screening strategies at an individual patient level. Yala, et al. developed 
a reinforcement learning algorithm to predict follow-up imaging 
recommendation from an individualized patient risk assessment. The 
model was more efficient than annual screening by achieving earlier 
detection per screening cost [21]. By improving the precision of 
screening strategies, AI has the potential to decrease overall healthcare 
costs. 

Lung cancer screening is a two-step process including nodule 
detection and malignancy risk assessment. Numerous AI algorithms 
created for nodule detection have shown to be slightly inferior or 
equivalent to radiologists at the cost of increase in false positive rates 
[22]. Google AI researchers developed an end-to-end DL algorithm that 
detected and predicted malignancy in 8000 cases, outperforming 
non-thoracic radiologists [23]. However, limitations to the study 
included use of overlapping data sets to train and test the model. In 
addition, the model did not train based on development of cancer, but 
instead compared to Lung-RADs assessment. Trojanovski, et al. utilized 
a two-stage framework to detect and assess malignancy risk of pulmo-
nary nodules with comparable performance to a six-radiologist panel 
[24]. A recent study by Ziegelmayer, et al. suggested that the addition of 
AI support can potentially improve the cost-effectiveness of lung cancer 
screening [25], which is particularly important in the setting of the 
updated lung cancer screening recommendations released by the US 
Preventive Services Task Force (USPSTF) in 2021, expanding eligibility 
by lowering the screening age from 55 to 50 years and smoking history 
from 30 to 20 pack-years. In another study of NLST and Pan-Canadian 
Early Detection of Lung Cancer, Stephen Lam’s team developed a deep 
learning model that can accurately predict the risk of suspicious lung 
nodules growing to lung cancer within a 3-year period based on the 
radiologist’s CT report and clinical information [26]. 

2.5. Treatment planning 

Diagnostic imaging has traditionally played a central role in cancer 
staging by defining the extent of disease of the primary tumor and 
identifying local and distant metastases to determine the best treatment 

plan. Anatomic imaging can assist surgeons in surgical planning and 
allow radiation oncologists to define radiation fields. Some of the 
associated image processing tasks can be time consuming, tedious and 
prone to error. AI has the potential to help with some of these tasks and 
even support the referring providers use of imaging in pretreatment 
planning. In addition, some imaging assessments remain objective with 
variability in reads related to cancer detection, and AI can help to 
address this variability and elevate the level of care in under resourced 
areas where subspecialized radiologists may not be available. 

In renal tumors, 3D post-processing software utilized to accurately 
evaluate the anatomy and lesion volumes can be time consuming. CNN 
can be used to streamline this process and improve accuracy of deter-
mining volume of kidneys and renal tumors, important parameters 
surgeons use to evaluate patients for nephron-sparing interventions 
[27]. 

Detection of brain metastases for radiation planning can be a tedious 
task, particularly now that stereotactic radiosurgery of individual me-
tastases has become the preferred approach over whole brain radiation 
[28]. Furthermore, patients are more frequently undergoing multiple 
courses of stereotactic radiosurgery which adds to the complexity of 
reading follow-up studies with the need to differentiate between new 
lesions and treated lesions [29]. Similar to algorithms which have been 
used to detect pulmonary nodules, CNN has been used to detect brain 
metastases [30,31]. Although currently not adapted to clinical radiology 
workflows, CNN has the potential to facilitate the detection and tracking 
of brain metastases in the future. In addition, the CNN architecture can 
facilitate auto-segmentation for radiation oncologists. As in many other 
body regions, various deep learning algorithms have already achieved 
human-level performance in segmenting the organ or cancerous lesions, 
which may ultimately aid with focal therapies. This can dramatically 
reduce the time a radiation oncologist spends in manually contouring a 
patient study, increase contour consistency and improve accuracy [32]. 

In the past decade, MRI has gained a crucial role in the diagnosis and 
management of men with suspected prostate cancer owing to improved 
cancer detection. However, the interpretation of MRI remains highly 
dependent on the expertise of the radiologist. As a result, there is sig-
nificant variation in the accuracy of cancer detection across different 
institutions. The use of artificial intelligence in prostate MRI imaging 
may help to improve the accuracy of cancer detection, especially in a 
low-volume/community practice setting and reduce inter-observer 
variability. So far, AI has been shown to have potential in particular 
for challenging transition zone lesions [33]. Moreover, imaging-derived 
biomarkers are increasingly being recognized as complementary 
markers to histopathology for risk stratification, for example extra 
prostatic extension on MRI [34] or PSMA expression on PET [35]. 

Beyond the traditional tasks of radiologists, radiomic features 
coupled with AI can extract and analyze quantitative data to provide 
tumor characterizations to guide patient treatment, including predicting 
histologic and molecular subtypes. For example, the ML radiomics 
model has shown promise in differentiating small cell lung cancer from 
other lung lesions on CT for pulmonary nodules at least 1 cm in size 
[36]. Recently, Ma et al. used ML to differentiate between breast cancer 
molecular subtypes based on mammography and ultrasound. Both 
clinical data and imaging signs based on the BI-RADS lexicon served as 
inputs for the ML models [37]. In another breast cancer study, perfusion 
MRI radiomics were used to infer tumor infiltrating lymphocytes [38]. 
Though genomic biomarkers are commonly used in oncology to deter-
mine best treatment pathways, there are limitations because of the need 
for invasive biopsy and some biopsies may not be technically feasible. 
Moreover, large data sets with tissue diagnosis as the gold standard can 
be a challenge in developing biomarkers linked directly to known mo-
lecular biomarkers. Transfer learning methods (TLM) can be used to 
overcome limited data sets. Liu et al. used deep CNN and transfer 
learning methods to predict Ki-67 status, a biomarker to determine use 
of neoadjuvant chemotherapy in patients with breast cancer, using 
multiparametric MRI [39]. Additionally, core biopsy specimens may not 
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be representative of the intra-tumoral heterogeneity. Thus, integrating 
imaging and molecular biomarkers can potentially offer a comprehen-
sive and deep profiling of individual cancer patients [40]. 

In addition to predicting tumor molecular features, AI tools have 
shown promise in detecting imaging features that may correspond to 
prognosis and predict response to various treatments [41]. These fea-
tures in the future may aid in complex clinical decision making as an 
imaging biomarker. A prognostic biomarker in oncology is one that can 
help to identify likelihood of disease recurrence or progression. In breast 
cancer, multiparametric breast MRI paired with ML has been used to 
generate a predictive model for prognostic factors in breast cancer [42]. 
Studies have shown that MRI features have additive prognostic value in 
predicting clinical outcomes in brain tumors such as gliomas [43]. In-
tegrated MRI and histopathologic images can have higher accuracy in 
predicting OS compared with ML models with MR or histopathologic 
images alone [44]. In head and neck cancers, prediction of disease 
progression is helpful in intensifying therapeutic strategies to high-risk 
individuals. Patients who are at low risk for progression based on 
radiomics model may benefit from de-intensifying therapies thereby 
leading to reduction in morbidity, such as radiation-induced injury to 
surrounding tissues [45,46]. 

Also, biomarkers have been identified to predict response to specific 
therapies. In lung cancer patients, ML can predict epidermal growth 
factor (EGFR) and Kirsten rat sarcoma viral oncogene homologue 
(KRAS) mutations in non-small cell lung cancer. Cancers with EGFR 
show higher sensitivity to gefitinib and erlotinib, whereas those with 
KRAS mutations are prone to drug resistance [47]. Also, ML algorithms 
assessing brain metastases can predict local failure of stereotactic radi-
ation [48]. Imaging biomarkers have the potential to predict response to 
neoadjuvant chemotherapy in breast cancer patients [49]. A recent 
radiomic study investigated the predictive value of lesion-wise PET 
radiomics model in lymphoma patients who were given ibrutinib, out-
performing conventional PET metrics (eg, SUVmax, MTV, TLG) for 
response prediction [50]. Predictive biomarkers in head and neck can-
cers remain limited. ML-derived biomarkers developed using MRI fea-
tures have shown good performance in predicting disease progression in 
nasopharyngeal carcinoma and HPV- associated squamous cell carci-
noma [46]. 

Immunotherapy is a breakthrough in cancer treatment. However, 
only a subset of patients receives clinical benefit. Immunotherapy is 
expensive with potential for toxicity, and stratifying patients prior to 
therapy may be beneficial. The expression of the programmed cell 
prorotein-1 ligand (PDL-1) is an important predictive biomarker to 
determine which patients such receive immunotherapy, however this 
has not been sufficient or specific enough [51], and requires invasive 
biopsies. AI may be able aid in the development of imaging biomarkers 
that may be more specific and less invasive. Radiomics based on 
extraction of CT features has shown to predict response to immuno-
therapy in solid tumors including non-small cell lung cancer and mela-
noma [52]. The development of dual-energy CT (DECT), which has 
shown to outperform single-energy CT (SECT) in improving visualiza-
tion of biological processes, expands the potential for extracting radio-
mic features in oncologic imaging. ML using DECT-specific parameters 
has been able to predict response in patients with metastatic melanoma 
prior to initiation of immunotherapy [53]. 

More broadly, Wu et al. defined radiological phenotypes based on 
tumor morphology and spatial heterogeneity, across different imaging 
modalities such as CT and MRI and cancer types including lung, breast 
and brain malignancies [54]. This work provides proof of principle for 
pan-cancer radiomics classification scheme, defining imaging bio-
markers that span across tumor types and imaging modalities to deter-
mine prognosis and predict response to immunotherapies [54]. 

2.6. Tumor response 

Tumor response assessment based on standardized measurements 

utilizing criteria such as Response Evaluation Criteria in Solid Tumors 
(RECIST) and Response Assessment in Neuro-Oncology (RANO) have 
become defined endpoints for many clinical trials. These criteria are also 
often the basis of clinical decisions. Tumor measurements can be labo-
rious and prone to intra- and inter-reader variability [55,56]. In addi-
tion, linear measurements of tumor size do not always capture true 
extent of disease and changes in size due to various morphologies of 
tumors. Volumetric measurements of tumor would be ideal, but manual 
segmentation can be time consuming and prone to error. AI can facilitate 
the assessment of volumetric changes in tumor. 

In pleural tumors of the lung, change in size of tumor can be chal-
lenging. Deep learning CNN has shown promise in segmenting and 
calculating tumor volume in malignant pleural mesothelioma with the 
ability to accurately segment tumor volumes as low as ~100 cm3 [57]. 
Similarly, in the brain, assessment of tumor size can be challenging 
utilizing bi-dimensional measurements as used in RANO. Segmentation 
of gliomas can be complex with multiple components including the 
enhancing tumor, necrotic core and surrounding edema. Much work has 
been done on the 3D segmentation of gliomas for automated disease 
burden quantification. [58]. The Brain Tumor Segmentation Challenge 
(BRaTS), which has pooled together training data sets from 19 in-
stitutions, has enabled the development of numerous DL algorithms. 
While many segmentation algorithms have been developed, their inte-
gration into clinical workflow remains a challenge. More recently, Lotan 
et al. developed a DL based clinical workflow for segmentation of gli-
omas preoperatively and postoperatively [59]. However, there has not 
been widespread clinical adoption of these AI algorithms. 

While volumetric assessment of tumors has been the basis for 
assessing tumor response, it has been recognized that functional and 
molecular imaging features may be more precise markers of tumor 
response [60]. For example, changes in CT radiomics features in tumor 
and lymph nodes along with clinical variables have been associated with 
early radiation response in head and neck cancers [61] and lung cancers 
[62]. 

As inspired by multiregional gene sequencing study, habitat imaging 
[40,63] has also been proposed by explicitly segmenting whole tumors 
in intrinsic subregions of similar radiographic patterns, which has 
shown to be an independent prognostic risk factor beyond conventional 
risk predictors for breast cancer patients after neoadjuvant chemo-
therapy [49] (Fig. 2). Habitat imaging analysis has also shown novel 
spatiotemporal response patterns induced by radiotherapy from the 
primary tumor and nodal regions at baseline and mid-treatment PET/CT 
scans in head and neck cancers [46]. Further, this quantitative image 
analysis can help refine delivery of radiation therapy to different parts of 
the tumor. Habitat imaging, combining multiparametric MRI, or 
PET/CT to establish quantitative imaging signatures of tumors can help 
to understand the spatial distribution of tumor subregions. This could 
allow for targeting aggressive disease with radiation boost to improve 
local control and mortality. 

2.7. Current limitations and future directions 

Despite a growing body of evidence supporting the future utility of AI 
in oncologic imaging and a growing number of oncologic related FDA 
approved AI algorithms (Fig. 3), clinical applications and adoption have 
been limited [64,65]. Access to a diverse and large amount of data re-
mains a critical bottleneck in the creation of robust and clinically useful 
models. Privacy concerns and regulatory barriers are a major hindrance 
in the creation of such large datasets. However, this obstacle may be 
overcome by using local resources to train parts of a centralized model, 
without the training data actually leaving the local hospital infrastruc-
ture using federated learning, which is used in a multinational collab-
oration to develop CT deep learning model for COVID-19 diagnosis [66]. 
Nevertheless, many challenges remain in the curation of these 
multi-institutional datasets, such as standardized inclusion of patient 
demographics, cancer type, staging, molecular features, as well as 
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standardized imaging acquisitions. 
Aside from the need for rigorous clinical validation linked to patient 

outcomes, integration with current health IT systems and radiology 
workflow will also be a challenge. Radiology organizations such as the 
American College of Radiology (ACR) and Radiologic Society of North 
America (RSNA) have organized demonstrations to engage with relevant 
stakeholders and develop standards to facilitate this [67]. With ever 
increasing imaging volumes and workforce shortages, AI that increases 
the work time in a radiologist’s day will not be adopted. A healthcare 
system or institution’s ability to integrate new AI software into their IT 
system may also be constrained based on time and resources available, 
as well as general challenges of interoperability of production systems in 
medical informatics. 

Interpretability of AI is another emerging area of focus in order to 
improve transparency and move away from the “black box” models 
[68]. AI algorithms will become more acceptable and adopted if clinical 
rationale can support the prediction of AI. Interpretability is also 
important in order to predict when AI systems might fail. Regulatory 
bodies have recognized the importance of accountability and recently 
debated in the EU General Data Protection Regulation [69]. In fact, the 

EU Commission proposed the legal framework for AI, the AI Act, to 
“promote the uptake of AI and develop an ecosystem of trust” [70]. 

Finally, the business case for AI will be important to drive adoption. 
The initial use cases in clinical practice have largely centered on 
increased efficiency and the potential clinical benefit without well- 
defined measurable outcomes. For example, DL algorithms that can 
reduce acquisition time of MRI translates to direct cost savings in 
scanner and medical staff time, while also improving overall patient 
experience. More recently, direct reimbursement for AI in the United 
States has been given to a limited number of AI applications that have 
either demonstrated significant clinical improvement with the potential 
to decrease overall healthcare costs or democratized access to care 
through improving access of a particular service [71]. As we move 
progressively towards value-based payment models, a similar pathway 
will likely follow. Oncologic imaging AI algorithms that decrease the 
overall costs and increase access to screening tools such as mammog-
raphy or low-dose chest CT may be of value. Imaging biomarkers that 
reduce overall cost of care by optimizing treatment algorithms leading 
to improved patient outcomes will also be valued. 

Fig. 2. AI has the potential to address unmet gaps in personalized cancer therapy. ML radiomics can extract and analyze quantitative data to provide tumor 
characterizations that can help guide therapy. Habitat imaging is a proposed ML analysis that explicitly segments whole tumors in intrinsic subregions of similar 
radiographic patterns to help refine delivery of radiation therapy to different parts of tumors. 

Fig. 3. FDA-Approved AI software related to oncologic imaging from the ACR Data Science Institute Database.  
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3. Conclusion 

AI is augmenting the role of radiologists and radiology in modern 
oncology, as data science becomes increasingly incorporated into clin-
ical imaging, further enhancing imaging derived insights. The power of 
AI lies in its ability to reveal previously unknown or even counterintu-
itive information patterns that might have been overlooked/ missed or 
hard to perceive by radiologist. Besides imaging, ML is broadly applied 
to multimodal medical data, including medical text reports, 
biospecimen-based assays, and monitoring signals. An integrated anal-
ysis across different platforms that offers a comprehensive and dynamic 
view of heterogeneous cancer will further improve the AI model per-
formance. However, the existing ML studies mainly focused on tackling 
specific, well-defined clinical applications with structured input data 
and simplified clinical endpoints, known as narrow AI. Given the com-
plex nature of oncology, generalizable AI algorithms built on multi-
modal real-world data will become the next-generation approach to 
make real clinical impact. However, it is worth mentioning that the 
deployment of these technological advancements is complex and may 
take decades. More importantly, radiologists can and will play a lead-
ership role by directing ongoing AI research efforts to address the most 
pressing clinical challenges rather than comparing AI systems versus 
human experts. These new algorithms will be welcomed and adopted to 
benefit cancer patient management. 

CRediT authorship contribution statement 

Melissa Chen: Conceptualization, Writing – original draft, Admir 
Terzic: Writing – original draft, Anton Becker: Writing – review and 
editing, Jason Johnson: Writing – review and editing, Carol Wu: 
Writing – review and editing, Christoph Wald: Writing – review and 
editing, Jia Wu: Conceptualization, Writing – original draft, Writing – 
review and editing. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.ejro.2022.100441. 

References 

[1] R.J. Gillies, P.E. Kinahan, H. Hricak, Radiomics: images are more than pictures, 
they are data, Radiology 278 (2) (2016) 563–577. 

[2] Y. Nagayama, et al., Deep learning–based reconstruction for lower-dose pediatric 
CT: technical principles, image characteristics, and clinical implementations, 
RadioGraphics 41 (7) (2021) 1936–1953. 

[3] R. Singh, et al., Artificial intelligence in image reconstruction: the change is here, 
Phys. Med. 79 (2020) 113–125. 

[4] L. Shen, W. Zhao, L. Xing, Patient-specific reconstruction of volumetric computed 
tomography images from a single projection view via deep learning, Nat. Biomed. 
Eng. 3 (11) (2019) 880–888. 

[5] P. Summers, et al., Whole-body magnetic resonance imaging: technique, guidelines 
and key applications, Ecancermedicalscience (2021) 15. 

[6] M. Akçakaya, et al., Scan-specific robust artificial-neural-networks for k-space 
interpolation (RAKI) reconstruction: database-free deep learning for fast imaging, 
Magn. Reson. Med. 81 (1) (2019) 439–453. 

[7] P.M. Johnson, M.P. Recht, F. Knoll, Improving the speed of MRI with artificial 
intelligence. Seminars in musculoskeletal radiology, Thieme Medical Publishers.,, 
2020. 

[8] M. Arshad, et al., Transfer learning in deep neural network based under-sampled 
MR image reconstruction, Magn. Reson. Imaging 76 (2021) 96–107. 

[9] A.-L. Faucon, G. Bobrie, O. Clément, Nephrotoxicity of iodinated contrast media: 
from pathophysiology to prevention strategies, Eur. J. Radiol. 116 (2019) 231–241. 

[10] J.R. Dillman, M.S. Davenport, Gadolinium retention — 5 years later…, Pediatr. 
Radiol. 50 (2) (2020) 166–167. 

[11] J. Haubold, et al., Contrast agent dose reduction in computed tomography with 
deep learning using a conditional generative adversarial network, Eur. Radiol. 31 
(8) (2021) 6087–6095. 

[12] E. Gong, et al., Deep learning enables reduced gadolinium dose for contrast- 
enhanced brain MRI, J. Magn. Reson. Imaging 48 (2) (2018) 330–340. 

[13] A.S. Chaudhari, et al., Low-count whole-body PET with deep learning in a 
multicenter and externally validated study, NPJ Digit. Med. 4 (1) (2021) 1–11. 

[14] F. Passiglia, et al., Benefits and harms of lung cancer screening by chest computed 
tomography: a systematic review and meta-analysis, J. Clin. Oncol. 39 (23) (2021) 
2574–2585. 

[15] H.G. Welch, et al., Breast-cancer tumor size, overdiagnosis, and mammography 
screening effectiveness, N. Engl. J. Med. 375 (15) (2016) 1438–1447. 

[16] A. Rodriguez-Ruiz, et al., Stand-alone artificial intelligence for breast cancer 
detection in mammography: comparison with 101 radiologists, JNCI: J. Natl. 
Cancer Inst. 111 (9) (2019) 916–922. 

[17] S.M. McKinney, et al., International evaluation of an AI system for breast cancer 
screening, Nature 577 (7788) (2020) 89–94. 

[18] M. Larsen, et al., Artificial intelligence evaluation of 122 969 mammography 
examinations from a population-based screening program, Radiology (2022), 
212381. 

[19] Y. Shoshan, et al., Artificial intelligence for reducing workload in breast cancer 
screening with digital breast tomosynthesis, Radiology (2022), 211105. 

[20] J.R. Parikh, J. Sun, M.B. Mainiero, Prevalence of burnout in breast imaging 
radiologists, J. Breast Imaging 2 (2) (2020) 112–118. 

[21] A. Yala, et al., Optimizing risk-based breast cancer screening policies with 
reinforcement learning, Nat. Med. (2022) 1–8. 

[22] A. Schreuder, et al., Artificial intelligence for detection and characterization of 
pulmonary nodules in lung cancer CT screening: ready for practice? Transl. Lung 
Cancer Res. 10 (5) (2021) 2378. 

[23] D. Ardila, et al., End-to-end lung cancer screening with three-dimensional deep 
learning on low-dose chest computed tomography, Nat. Med. 25 (6) (2019) 
954–961. 

[24] S. Trajanovski, et al., Towards radiologist-level cancer risk assessment in CT lung 
screening using deep learning, Comput. Med. Imaging Graph. 90 (2021), 101883. 

[25] S. Ziegelmayer, et al., Cost-effectiveness of artificial intelligence support in 
computed tomography-based lung cancer screening, Cancers 14 (7) (2022) 1729. 

[26] P. Huang, et al., Prediction of lung cancer risk at follow-up screening with low-dose 
CT: a training and validation study of a deep learning method, Lancet Digit. Health 
1 (7) (2019) e353–e362. 

[27] R. Houshyar, et al., Outcomes of artificial intelligence volumetric assessment of 
kidneys and renal tumors for preoperative assessment of nephron-sparing 
interventions, J. Endourol. 35 (9) (2021) 1411–1418. 

[28] A. Niranjan, et al., Guidelines for multiple brain metastases radiosurgery, Prog. 
Neurol. Surg. 34 (2019) 100–109. 

[29] W.J. Lee, et al., Clinical outcomes of patients with multiple courses of radiosurgery 
for brain metastases from non-small cell lung cancer, Sci. Rep. 12 (1) (2022) 
10712. 

[30] Z. Zhou, et al., Computer-aided detection of brain metastases in T1-weighted MRI 
for stereotactic radiosurgery using deep learning single-shot detectors, Radiology 
295 (2) (2020) 407–415. 

[31] Z. Zhou, et al., MetNet: computer-aided segmentation of brain metastases in post- 
contrast T1-weighted magnetic resonance imaging, Radiother. Oncol. 153 (2020) 
189–196. 

[32] J.C. Asbach, et al., Deep learning tools for the cancer clinic: an open-source 
framework with head and neck contour validation, Radiat. Oncol. 17 (1) (2022) 
1–13. 

[33] S. Mehralivand, et al., Multicenter multireader evaluation of an artificial 
intelligence-based attention mapping system for the detection of prostate cancer 
with multiparametric MRI, Am. J. Roentgenol. 215 (4) (2020) 903–912. 

[34] A.G. Wibmer, et al., Local extent of prostate cancer at MRI versus prostatectomy 
histopathology: associations with long-term oncologic outcomes, Radiology 302 
(3) (2022) 595–602. 

[35] L. Papp, et al., Supervised machine learning enables non-invasive lesion 
characterization in primary prostate cancer with [68Ga] Ga-PSMA-11 PET/MRI, 
Eur. J. Nucl. Med. Mol. Imaging 48 (6) (2021) 1795–1805. 

[36] R.P. Shah, et al., Machine learning radiomics model for early identification of 
small-cell lung cancer on computed tomography scans, JCO Clin. Cancer Inform. 5 
(2021) 746–757. 

[37] M. Ma, et al., Predicting the molecular subtype of breast cancer and identifying 
interpretable imaging features using machine learning algorithms, Eur. Radiol. 32 
(3) (2022) 1652–1662. 

[38] J. Wu, et al., Magnetic resonance imaging and molecular features associated with 
tumor-infiltrating lymphocytes in breast cancer, Breast Cancer Res. 20 (1) (2018) 
1–15. 

[39] W. Liu, et al., Preoperative prediction of Ki-67 status in breast cancer with 
multiparametric MRI using transfer learning, Acad. Radiol. 28 (2) (2021) e44–e53. 

[40] J. Wu, A.T. Mayer, R. Li, Integrated imaging and molecular analysis to decipher tumor 
microenvironment in the era of immunotherapy. in. Seminars in Cancer Biology, 
Elsevier,, 2020. 

[41] K. Bera, et al., Predicting cancer outcomes with radiomics and artificial intelligence 
in radiology, Nature Rev. Clin. Oncol. (2021) 1–15. 

[42] J.Y. Lee, et al., Radiomic machine learning for predicting prognostic biomarkers 
and molecular subtypes of breast cancer using tumor heterogeneity and 
angiogenesis properties on MRI, Eur. Radiol. 32 (1) (2022) 650–660. 

[43] S. Bae, et al., Radiomic MRI phenotyping of glioblastoma: improving survival 
prediction, Radiology 289 (3) (2018) 797–806. 

[44] S. Rathore, et al., Combining MRI and histologic imaging features for predicting 
overall survival in patients with glioma, Radiol.: Imaging Cancer 3 (4) (2021), 
e200108. 

[45] M. Vallieres, et al., Radiomics strategies for risk assessment of tumour failure in 
head-and-neck cancer, Sci. Rep. 7 (1) (2017) 1–14. 

M.M. Chen et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.ejro.2022.100441
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref1
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref1
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref2
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref2
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref2
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref3
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref3
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref4
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref4
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref4
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref5
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref5
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref6
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref6
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref6
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref7
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref7
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref7
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref8
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref8
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref9
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref9
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref10
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref10
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref11
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref11
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref11
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref12
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref12
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref13
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref13
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref14
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref14
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref14
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref15
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref15
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref16
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref16
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref16
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref17
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref17
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref18
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref18
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref18
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref19
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref19
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref20
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref20
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref21
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref21
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref22
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref22
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref22
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref23
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref23
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref23
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref24
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref24
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref25
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref25
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref26
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref26
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref26
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref27
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref27
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref27
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref28
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref28
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref29
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref29
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref29
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref30
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref30
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref30
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref31
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref31
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref31
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref32
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref32
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref32
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref33
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref33
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref33
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref34
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref34
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref34
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref35
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref35
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref35
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref36
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref36
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref36
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref37
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref37
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref37
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref38
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref38
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref38
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref39
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref39
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref40
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref40
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref40
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref41
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref41
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref42
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref42
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref42
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref43
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref43
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref44
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref44
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref44
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref45
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref45


European Journal of Radiology Open 9 (2022) 100441

7

[46] J. Wu, et al., Tumor subregion evolution-based imaging features to assess early 
response and predict prognosis in oropharyngeal cancer, J. Nucl. Med. 61 (3) 
(2020) 327–336. 

[47] N.Q.K. Le, et al., Machine learning-based radiomics signatures for EGFR and KRAS 
mutations prediction in non-small-cell lung cancer, Int. J. Mol. Sci. 22 (17) (2021) 
9254. 

[48] E. Karami, et al., Quantitative MRI biomarkers of stereotactic radiotherapy 
outcome in brain metastasis, Sci. Rep. 9 (1) (2019) 1–11. 

[49] J. Wu, et al., Intratumoral spatial heterogeneity at perfusion MR imaging predicts 
recurrence-free survival in locally advanced breast cancer treated with 
neoadjuvant chemotherapy, Radiology 288 (1) (2018) 26–35. 

[50] J.E. Jimenez, et al., Lesion-based radiomics signature in pretherapy 18F-FDG PET 
predicts treatment response to ibrutinib in lymphoma, Clin. Nucl. Med. 47 (3) 
(2022) 209–218. 

[51] R. Makuku, et al., Current and future perspectives of PD-1/PDL-1 blockade in 
cancer immunotherapy, J. Immunol. Res. 2021 (2021), 6661406. 

[52] R. Sun, et al., A radiomics approach to assess tumour-infiltrating CD8 cells and 
response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, 
retrospective multicohort study, Lancet Oncol. 19 (9) (2018) 1180–1191. 

[53] A.S. Brendlin, et al., A machine learning model trained on dual-energy CT 
radiomics significantly improves immunotherapy response prediction for patients 
with stage IV melanoma, J. Immunother. Cancer 9 (2021) 11. 

[54] J. Wu, et al., Radiological tumour classification across imaging modality and 
histology, Nat. Mach. Intell. 3 (9) (2021) 787–798. 

[55] J.M. Provenzale, C. Ison, D. Delong, Bidimensional measurements in brain tumors: 
assessment of interobserver variability, AJR Am. J. Roentgenol. 193 (6) (2009) 
W515–W522. 

[56] J.M. Provenzale, M.C. Mancini, Assessment of intra-observer variability in 
measurement of high-grade brain tumors, J. Neurooncol 108 (3) (2012) 477–483. 

[57] A.C. Kidd, et al., Fully automated volumetric measurement of malignant pleural 
mesothelioma by deep learning AI: Validation and comparison with modified 
RECIST response criteria, Thorax (2022). 

[58] E. Lotan, et al., State of the art: machine learning applications in glioma imaging, 
Am. J. Roentgenol. 212 (1) (2019) 26–37. 

[59] E. Lotan, et al., Development and practical implementation of a deep 
learning–based pipeline for automated pre-and postoperative glioma 
segmentation, Am. J. Neuroradiol. 43 (1) (2022) 24–32. 

[60] M. Nishino, Tumor Response Assess. Precis. Cancer Ther.: Response Eval. Criteria Solid 
Tumors Beyond Am. Soc. Clin. Oncol. Educ. Book 38 (2018) 1019–1029. 

[61] J. Wu, et al., Integrating tumor and nodal imaging characteristics at baseline and 
mid-treatment computed tomography scans to predict distant metastasis in 
oropharyngeal cancer treated with concurrent chemoradiotherapy, Int. J. Radiat. 
Oncol. * Biol. * Phys. 104 (4) (2019) 942–952. 

[62] N. Zhang, et al., Early response evaluation using primary tumor and nodal imaging 
features to predict progression-free survival of locally advanced non-small cell lung 
cancer, Theranostics 10 (25) (2020) 11707. 

[63] R.J. Gillies, P.E. Kinahan, H. Hricak, Radiomics: images are more than pictures, 
they are data, Radiology 278 (2) (2016) 563–577. 

[64] B. Allen, et al., ACR data science institute artificial intelligence survey, J. Am. Coll. 
Radio., 2021 18 (8) (2020) 1153–1159. 

[65] Dreyer, K. ACR Data Science Institute AI Central. 2022 [cited 2022 9/24/22]; ACR 
Data Science Institute AI Central]. Available from: https://aicentral.acrdsi.org/. 

[66] X. Bai, et al., Advancing COVID-19 diagnosis with privacy-preserving collaboration 
in artificial intelligence, Nat. Mach. Intell. 3 (12) (2021) 1081–1089. 

[67] W.F. Wiggins, et al., Imaging AI in practice: a demonstration of future workflow 
using integration standards, Radiol.: Artif. Intell. 3 (6) (2021), e210152. 

[68] P. Linardatos, V. Papastefanopoulos, S. Kotsiantis, Explainable AI: a review of 
machine learning interpretability methods, Entropy 23 (1) (2020) 18. 

[69] F. Doshi-Velez, et al., Accountability of AI under the law: the role of explanation, 
1711.01134, arXiv Prepr. arXiv (2017), 1711.01134. 

[70] K.N. Vokinger, U. Gasser, Regulating AI in medicine in the United States and 
Europe, Nat. Mach. Intell. 3 (9) (2021) 738–739. 

[71] M.M. Chen, L.P. Golding, G.N. Nicola, Who will pay for AI, Radiol.: Artif. Intell. 3 
(3) (2021), e210030. 

M.M. Chen et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref46
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref46
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref46
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref47
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref47
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref47
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref48
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref48
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref49
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref49
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref49
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref50
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref50
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref50
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref51
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref51
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref52
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref52
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref52
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref53
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref53
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref53
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref54
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref54
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref55
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref55
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref55
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref56
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref56
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref57
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref57
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref57
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref58
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref58
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref59
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref59
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref59
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref60
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref60
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref61
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref61
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref61
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref61
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref62
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref62
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref62
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref63
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref63
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref64
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref64
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref65
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref65
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref66
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref66
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref67
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref67
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref68
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref68
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref69
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref69
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref70
http://refhub.elsevier.com/S2352-0477(22)00048-X/sbref70

	Artificial intelligence in oncologic imaging
	1 Introduction
	2 Imaging acquisition optimization
	2.1 CT-Dose reduction
	2.2 Optimization of MRI acquisition
	2.3 Reduction of contrast
	2.4 Screening
	2.5 Treatment planning
	2.6 Tumor response
	2.7 Current limitations and future directions

	3 Conclusion
	CRediT authorship contribution statement
	Appendix A Supporting information
	References


