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Abstract
Next-generation sequencing (NGS) is a fast and relatively inexpensive method to sequence a large number
of genes with crucial importance in cancer medicine. Nowadays, NGS is frequently used in diagnostic and
therapeutic decisions in oncology; however, recently, it was demonstrated that only a few cancer sites
actually benefit from this assessment. Moreover, the association of a mutant gene with a targeted drug is not
always as predicted during in-vitro trials and is often not associated with tumor response. To predict the
efficacy of such an association several classification systems have been developed. The present review aims
to analyze the most important tumor agnostic treatment trials and assess how they shape selecting cancer
patients for NGS. Moreover, it aims to determine how mutation-drug associations can be classified by their
targetability and level of evidence of efficacy in non-small-cell lung cancer.
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Introduction And Background
Next-generation sequencing (NGS) is the most accessible modality to describe genomic alterations in
patients with cancer from both tumor tissue samples and circulating cell-free DNA. The characteristics of
each tumor and possible drug targets can be determined using NGS. Tumor tissue samples can be inadequate
for biomarker analysis because the DNA extracted is insufficient and/or degraded. To overcome these
limitations, researchers have explored the possibility of using liquid biopsy as an alternative method for
biomarker testing. The possibility to personalize oncological treatment is thought to lead to superior efficacy
than classical drug targets. However, detecting targetable mutations is not always followed by therapeutic
success, and the same drug may not have the same results in different cancer sites and histologies [1].

In order not to use these costly genetic assessments in vain, the classification of genetic alterations by their
targetability has been proposed. Practicing oncologists report low self-confidence when choosing a type of
drug-alteration association, as has been reported in the literature [2].

The present review aims to describe the most important trials centered on personalized oncology and tissue
agnostic therapies, to describe how eligible patients for these tests can be selected, and to determine how
one alteration and its correspondent drug can be classified according to the targetability and level of
evidence of efficacy in non-small-cell lung cancer (NSCLC).

Review
Insights gained from important precision medicine trials
We consider the National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) and SHIVA
(molecularly targeted therapy based on tumor molecular profiling versus conventional therapy for advanced
cancer) to be the landmark trials for histology agnostic cancer treatment. These trials have shaped how we
view precision medicine today [3,4].

To better illustrate this some of the data presented in these two trials will be presented here. In the NCI-
MATCH trial, 65 patients with 45 different histologies were selected to receive the phosphoinositide 3-kinase
(PI3K) inhibitor taselisib. All of the selected patients had the phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha (PIK3CA) activator mutation, but no tumor response was recorded [5]. In addition,
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patients with solid tumors or lymphomas harboring BRAF mutations other than the well-known V600E did
not benefit from trametinib treatment in the same trial [6]. Moreover, when all human epidermal growth
factor receptor 2 amplified gene patients (except gastric and breast cancer patients) were treated with ado-
trastuzumab emtansine, no benefit was reported [7].

Second, we consider the data from the SHIVA trial, the first prospective trial that evaluated the efficacy of
NGS-selected oncology treatments in heavily treated patients with different cancer sites. The trial enrolled
195 patients with alterations in rapidly accelerated fibrosarcoma-mitogen-activated protein kinase, PI3K,
and hormonal receptor signaling pathways. The patients were randomized according to physician choice of
cytotoxic chemotherapy or targeted treatment. The progression-free survival (PFS) was not superior in the
experimental arm (2.3 months versus 2 months; hazard ratio = 0.88, confidence interval = 0.65-1.19, p =
0.41) [4].

Finally, the insight from these data can be summarized as the following: there was no reliable differentiation
between the supposed driver mutations and other possible actionable mutations and the design of these
trials was unidirectional and took into account only one treatment-alteration association. It would be ideal
to analyze the entire mutational landscape, discuss the significance of all alterations, and prioritize their
targeting. Even if not all tested patients have targetable mutations, the global data from this analysis can be
very helpful in cancer research. These trials not only teach how to design future tumor agnostic therapy
studies but also shape the way we view mutation targetability in general [8].

Tools to aid decision-making in precision medicine
To avoid these problems, classifications were developed to aid physicians in selecting targeted therapies for
the alterations. These classifications organize the current knowledge about the efficacy of drugs in different
alterations and histologies. All of them describe the antitumor effect analyzing the magnitude of clinical
benefit. Chronologically, the first classification was published in 2014 by Van Allen et al. and included five
levels of evidence that reported the predictive, prognostic, and diagnostic value of the biomarkers used to
select therapies [9]. In 2015, Dienstmann et al. proposed a different ranking method that considered the
genetic abnormality, the variant, and the cancer site in which it can be found and reported the magnitude of
clinical benefit considering each of these [10]. In 2016, Sukhai et al. focused on somatic variants and
proposed classification included the ability to be a driver mutation, the site it can be found in, and the
harboring histologies [11].

The first ranking that related possible drugs with their level of evidence and how they are perceived in
international guidelines, especially the National Comprehensive Cancer Network was published in 2017 and
was called OncoKB. This classification includes the alteration-drug associations categorized into four levels
of evidence and ranks them according to their acknowledgment by decision agencies, such as the Food and
Drug Administration. In addition, it also takes into consideration that targeting one association does not
have the same impact in different histologies, that some genetic abnormalities are predictive of resistance,
and that some oncogenic mutations cannot be targeted [12].

However, the most used ranking system is the ESMO Scale for Clinical Actionability of molecular Targets
(ESCAT) which links the genetic alteration to its clinical relevance. When establishing in which tier to
classify a drug, clinical trials are analyzed for statistical significance. One example for different histologies is
presented in Table 1. Tier I includes associations that are supported by proof from clinical trials and can be
considered as the standard of care. Tiers IA, IB, and IC can be defined as the following: IA, randomized
clinical trials that proved a benefit in survival; IB: randomized clinical trials that reported clinically
meaningful benefit; and IC, efficacy proven in basket trials.
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Tier level Alteration Tumor site Drug used

IA BRCA 1/2 germline mutation Breast cancer Talazoparib [13]

IB FGFR  fusion Cholangiocarcinoma Pemigatinib [14]

IC NTRK fusion Breast cancer, colorectal cancer, gastric cancer Entrectinib [15,16]

IIA PTEN deletion or mutation Prostate adenocarcinoma Ipatasertib(+abiraterone) [17,18]

IIB AKT1 mutation Breast cancer AZD5363 [19]

IIIA PIK3CA hotspot mutation Hepatocellular carcinoma Alpelisib [20]

IIIB ERBB3 mutation Breast cancer, gastric cancer Neratinib [21]

TABLE 1: ESCAT ranking in other histologies than NSCLC.
AKT1: AKT serine/threonine kinase 1; ERBB3: Erb-b2 receptor tyrosine kinase 3; ESCAT: ESMO Scale for Clinical Actionability of molecular Targets;
FGFR: fibroblast growth factor receptor; NSCLC: non-small-cell lung cancer; NTRK: neurotrophic tyrosine kinase; PIK3CA: phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha; PTEN: phosphatase and tensin homolog

Tier II describes associations that were reported as significant but are not sustained by prospective studies.
When deciding to treat with such an association, the drug should be given in an access program or in an
ongoing prospective trial. Tier IIA includes associations that were proven to be beneficial in retrospective
studies, and IIB includes associations that cannot be subjected to a prospective analysis. Tier III includes
alterations whose importance has been proven for other histologies than the one in question. In IIIA, the
benefit has already been proven in other tumor types, whereas IIIB describes an association with an
extremely probable clinical benefit with no proof of efficacy yet (for no histology). Tier IV describes genetic
abnormalities that have been proven to be targetable in preclinical trials. Tier IVA includes proof from in-
vitro studies or in-vitro cancer models, and IVB includes predictions of efficacy derived from informatic
systems. Tier X includes all abnormalities that are known to be untargetable or have never been proven
beneficial when associated with drugs. However, such abnormalities should not be permanently considered
part of this subgroup (they could prove useful when associated with a different alteration or when tested
with different technology) [22].

Next-generation sequencing for non-small-cell lung cancer: when and
where?
The latest recommendations for NGS testing made by the European Society of Medical Oncology) list NSCLC
as the only cancer in which it makes sense to use multigenic panels that include all alterations with ESCAT I
level of targetability. Given that gene fusions are very important in this cancer site, the NGS panels used are
of the DNA or the RNA type. The most important mutations and fusions are illustrated in Figure 1.
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FIGURE 1: Genetic alterations in NSCLC and their level of evidence for
targetability according to ESCAT
ALK: anaplastic lymphoma kinase; EGFR: epidermal growth factor receptor; ERBb2: erythroblastic oncogene
B; ESCAT: ESMO Scale for Clinical Actionability of molecular Targets; K-RAS: Kirsten rat sarcoma oncogene;
NRG1: neuregulin 1 gene; NSCLC: non-small-cell lung cancer; PIK3CA: phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha

For global benefit, the tests for alterations with evidence lower than ESCAT 1 have debatable significance.
They can be considered if the patient is negative for frequent alterations, the healthcare system in the
country has a reimbursement plan for off-label drugs, or if there is an early access program in which patients
can be enrolled to receive them [23].

The most common alterations in NSCLC are the well-known epidermal growth factor receptor (EGFR)
mutation and anaplastic lymphoma kinase (ALK) fusion. Within the different subtypes of EGFR mutations, the
levels of evidence for targetability vary. The most common driver mutations, namely, exon 19 deletion and
exon 21 (L858R) substitution (15% of the general population and 50-60% of the Asian population), are
associated with the most data. To these, the mutation T790M in exon 20 is added, which is usually acquired
and marks resistance to treatment with older generation tyrosine kinase inhibitors such as erlotinib [24,25].

All these alterations are classified as ESCAT I, and the preferred treatments in these circumstances include
osimertinib, erlotinib, afatinib, and gefitinib. Most countries reimburse at least one of these treatments as
the first line in these patients [26-29]. However, there are EGFR mutations with a lower level of targetability
such as G719X mutation in exon 18, S768I in exon 20, and L861Q in exon 21. The prevalence of these
mutations in NSCLC is 10% and can be classified as ESCAT IIB. Prospective, nonrandomized studies have
shown benefit in at least PFS when patients with rare EGFR mutations were treated with osimertinib and
afatinib [26,30-32].
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Insertions in exon 20, with a prevalence of approximately 2% in NSCLC, are considered predictive of the lack
of response to classical tyrosine kinase inhibitors used in patients with EGFR mutations. However, there is
currently a therapeutic option in this situation: poziotinib. An ongoing phase 2 trial has already reported a
response rate of approximately 64% with this treatment in patients with exon 20 EGFR insertions. ESCAT
ranking for this alteration remains open until further data are obtained [33].

The next gene alteration in prevalence and importance in NSCLC is ALK fusion (5%), classified as ESCAT IA.
The preferred treatment in this situation includes alectinib, brigatinib, or lorlatinib [34-36].

Among the alterations with a lower level of evidence for targetability, we mention MET, BRAF, neurotrophic
tyrosine kinase (NTRK), rearranged during transfection (RET), Kirsten rat sarcoma oncogene (K-RAS), ROS,
erythroblastic oncogene B (ERBB2), BReast CAncer gene (BRCA1/2), PIK3CA, and neuregulin 1 gene (NRG1).
Phase I and II clinical trials have confirmed clinical benefit in targeting and improving overall response rate
[23].

The next alteration worth reviewing is MET exon 14 skipping mutation considered targetable with crizotinib,
capmatinib, and tepotinib, with the latter two being considered by current guidelines as preferred
treatments. It has a level of evidence Ib and a frequency of 3% in NSCLC [23,37-39].

K-RAS can also be classified among the important mutations in NSCLC, being a relatively frequent mutation
(12%). It has a level IIB targetability [23]. The most druggable subtype of this mutation is K-RAS G12C
(substitution of glycine 12 to cysteine). Trials are underway with several drugs such as AMG510 (Amgen) and
MTRX849 (Mirati Therapeutics) in both monotherapy or combined with immunotherapy [40,41]. In addition,
some phase I trials with mature data included older drugs for K-RAS mutation. Two worth mentioning are
sorafenib, a multikinase inhibitor that targets upstream of the substrate of this mutation combined with the
mTOR inhibitor (mammalian target of rapamycin) and everolimus. Unfortunately, this combination was not
enough to induce a lasting tumor response [42,43].

Among the alterations with lower levels of targetability in NSCLC, but worthy of special attention, are
ESCAT IIB level: ERBB2 (amplifications or hotspot mutations); ESCAT IIIA: BRCA1/2 and PIK3CA (low
frequency, approximately 1.2%); and NRG 1-ESCAT fusion IIIB [23]. The most important alterations in
NSCLC and the proposed targeting drugs are illustrated in Figure 1.

The non-small-cell lung cancer issue: cost-effectiveness
Broad NGS testing is the most cost-effective in NSCLC of all histologies [44,45]. To analyze the financial
aspects of NGS in NSCLC, two trials were selected with similar endpoints but different populations. The first
one, by Mateo et al., included 174 patients with metastatic NSCLC and tested them for 29 DNA alterations
using an NGS panel (the panel included EGFR, BRAF, ERBB2, TP53) and three ARN fusions, namely, ALK,
ROS, RET. It aimed to determine the cost-effectiveness by analyzing the proportion of patients who would
not have had detected the gene alteration had it not been for this test by reporting the actual financial
burden and the time needed until the results were available [46]. However, the data can be considered biased
as patients were only of Singaporean nationality, for which the percentage of EGFR-positive patients is
higher than that for other populations. The trial concluded that NGS is a cost-efficient method to decide
treatment in metastatic NSCLC and supported the implementation of NGS as a standard in the Asian
population [46].

However, when NGS was compared with the classic sequencing test (the one including only EGFR mutations,
ALK translocation, and programmed death-ligand 1), only 1% of patients benefited from the additional
detection of alterations [47,48].

Steuten et al. compared the cost-effectiveness and clinical efficacy of single genetic marker tests with the
determination of classical alterations in metastatic NSCLC by NGS. Cost-effectiveness was classified as
moderate (after analyzing the cost of genetic tests, the frequency of targetable alterations, and the
availability of correspondent therapies). Of the 5,688 patients studied, only 875 were tested by NGS. Overall,
21% received targeted treatment compared to 19% of the patients who underwent classical determination
[49].

Overall, both trials reported moderate cost-effectiveness in the use of NGS in advanced NSCLC. To this must
be added the default longer time to results. In addition, and most importantly, the use of NGS may lead to a
situation where the patient has, according to the literature and guidelines, the indication of a targeted
treatment, but it is not reimbursed in the country. These situations must be foreseen by public health
forums of each country, eventually proposing a customized solution.

Conclusions
To conclude, NGS testing in NSCLC for ESCAT IA genetic alterations is of paramount importance and should
be considered standard. However, alterations with lower evidence targetability should always be considered,
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