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Abstract

The molecular mechanism underlying renal hypertrophy and progressive nephron damage remains 

poorly understood. Here we generated congenic ribosomal protein S6 (rpS6) knockin mice 

expressing non-phosphorylatable rpS6 and found that uninephrectomy-induced renal hypertrophy 

was significantly blunted in these knockin mice. Uninephrectomy-induced increases in cyclin D1 

and decreases in cyclin E in the remaining kidney were attenuated in the knockin mice compared 

to their wild-type littermates. Uninephrectomy induced rpS6 phosphorylation in the wild type 

mice; however, no rpS6 phosphorylation was detected in uninephrectomized or sham-operated 

knockin mice. Nonetheless, uninephrectomy stimulated comparable 4E-BP1 phosphorylation in 

both knockin and wild type mice, indicating that mTORC1 was still activated in the knockin mice. 

Moreover, the mTORC1 inhibitor rapamycin prevented both rpS6 and 4E-BP1 phosphorylation, 

significantly blunted uninephrectomy-induced renal hypertrophy in wild type mice, but did not 

prevent residual renal hypertrophy despite inhibiting 4E-BP1 phosphorylation in 

uninephrectomized knockin mice. Thus, both genetic and pharmacological approaches 

unequivocally demonstrate that phosphorylated rpS6 is a downstream effector of the mTORC1-

S6K1 signaling pathway mediating renal hypertrophy. Hence, rpS6 phosphorylation facilitates the 

increase in cyclin D1 and decrease in cyclin E1 that underlie the hypertrophic nature of 

uninephrectomy-induced kidney growth.
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INTRODUCTION

Reduction in the number of functioning nephrons stimulates increased protein synthesis 

causing increases in cell size, with minimal cell proliferation, in the components 

(particularly the proximal tubule) of the residual nephrons. This type of growth response is 

called compensatory renal hypertrophy.1-3 Compensatory renal hypertrophy can occur in 

kidney donors, kidney transplant recipients, in response to surgical renal ablation (due to 

renal trauma or tumor), and in virtually all kidney diseases that cause nephron damage and 

consequently a reduction in the number of functioning nephrons.1, 2, 4 Although the 

hypertrophy is presumably to enhance the functional capacity of the residual nephrons to 

maintain normal renal function, previous studies have suggested that in some cases, 

compensatory renal hypertrophy may actually be an excessive or maladaptive response that 

fosters further nephron damage, progressive decline of renal function, and ultimately end 

stage renal disease.1-5 To date, however, the molecular signaling mechanism underlying 

compensatory renal hypertrophy remains poorly understood.

The mechanistic (formerly mammalian) target of rapamycin (mTOR) is an evolutionarily 

conserved serine/threonine protein kinase that controls protein synthesis, cell growth and 

metabolism in response to growth factors, nutrients, oxygen, energy levels, and stress in the 

cell.6 mTOR forms two structurally and functionally distinct multiprotein complexes: 

mTOR complex 1 (mTORC1) and mTORC2, in all mammalian cells.6 Increased mTORC1 

activity not only stimulates ribosome biogenesis and protein synthesis but also modulates a 

range of cellular activities that are essential for cell growth.7, 8 Unlike mTORC1, mTORC2 

neither regulates the phosphorylation of S6 kinase 1 (S6K1) and eukaryotic translation 

initiation factor (eIF) 4E-binding protein 1 (4E-BP1) nor is sensitive to rapamycin;9, 10 

instead, mTORC2 regulates the class I phosphatidylinositol 3-kinase (PI3K) signaling 

pathway by directly phosphorylating Akt on the key residue Ser473.11 However, further 

studies showed that prolonged rapamycin treatment reduces the levels of mTORC2 by 

inhibiting the assembly of mTORC2 in some cell types,12 and more recent studies showed 

that mTORC1 negatively regulates mTORC2.13, 14

Our previous studies demonstrated that unilateral nephrectomy (UNX) increased 

phosphorylation of both the small ribosomal protein S6 (rpS6) and 4E-BP1 and the content 

of not only 40S and 60S ribosomal subunits but also 80S monosomes and polysomes in the 

remaining kidney, suggesting activation of the mTORC1 signaling pathway.15 Rapamycin 

blocked UNX-induced phosphorylation of both rpS6 and 4E-BP1, decreased UNX-induced 

polysome formation, shifted the polysome profile in the direction of monosomes and 

ribosomal subunits, and inhibited UNX-induced renal hypertrophy, suggesting that 

mTORC1 activation plays a key role in compensatory renal hypertrophy.15 We and others 

have also demonstrated increased mTORC1 activity during renal hypertrophy in response to 
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diabetes.16, 17 Diabetic renal hypertrophy is associated with reduced phosphorylation of the 

AMP-activated protein kinase (AMPK) at Thr172, leading to increased mTORC1 activity.18 

Our more recent studies demonstrated that S6 kinase 1 knockout (S6K1−/−) mice exhibited 

moderately elevated basal levels of rpS6 phosphorylation, which did not increase further in 

response to hypertrophic stimuli such as UNX. Northern blotting analysis revealed 

moderately up-regulated S6 kinase 2 (S6K2) expression, presumably accounting for the 

elevated basal level of rpS6 phosphorylation in the kidneys of S6K1−/− mice. However, 

homozygous S6K1 knockout did blunt UNX-induced compensatory renal hypertrophy, and 

rapamycin also inhibited an equivalent degree of renal hypertrophy in wild type mice in 

response to UNX.16 These studies indicate that UNX-induced mTORC1 activation 

selectively activates S6K1 without activating S6K2, thus demonstrating that S6K1, but not 

S6K2, plays a major role in medicating renal hypertrophy.

However, S6K1 has multiple substrates.19 For example, S6K1 phosphorylates eEF2K to 

enhance protein synthesis,20 and the cell growth regulator SKAR (S6K1 Aly/REF-like 

target) has also been identified as a substrate for S6K1, but not for S6K2.21 S6K1 also 

phosphorylates insulin receptor substrate 1 (IRS1)22 and mTOR23 in response to nutrients 

and growth factors, albeit in a feedback fashion. Of interest, previous studies have shown 

that mouse embryonic fibroblasts (MEFs) with deficiency in rpS6 phosphorylation are 

significantly smaller than wild-type MEFs, but their size is not further decreased by 

rapamycin treatment, suggesting that rpS6 is a critical mTORC1 effector that regulates cell 

size.24 Moreover, the small size phenotype is not limited to embryonic cells, since S6 

phosphorylation-deficient adult mice also have smaller pancreatic β-cells and smaller 

myoblasts than their will-type counterparts, respectively.24, 25 These results suggest that 

rpS6 phosphorylation plays a physiological role in regulation of cell size.

Although previous studies have demonstrated that activation of the mTORC1-S6K1 

signaling pathway is a major mechanism underlying renal hypertrophy,16-18 the existence of 

multiple S6K1 substrates warranted our further studies to determine the downstream effector 

of the mTORC1-S6K1 pathway in renal hypertrophy. Previous studies consistently revealed 

a marked increase in rpS6 phosphorylation in the remaining kidney in response to 

UNX.15, 16 Hence, in the present study we generated a congenic knockin mouse line 

expressing unphosphorylatable rpS6 and examined the effect of rpS6 phosphorylation 

deficiency on UNX-induced renal hypertrophy. Our results demonstrated that 

phosphorylated rpS6 is the downstream effector of the mTORC1-S6K1 signaling pathway, 

whose activation is necessary for compensatory renal hypertrophy.

RESULTS

Generation of congenic rpS6 knockin mice deficient in phosphorylation of the ribosomal 
protein S6

There are totally five phosphorylatable serine residues in rpS6 at positions 235, 236, 240, 

244, and 247, clustered at the carboxyl-terminus that are encoded by the exon 5 of rpS6 gene 

and are conserved from Drosophila to human.26, 27 Using site-directed mutagenesis, a 

targeting vector was constructed to mutate the serine codons within the exon 5 of rpS6 gene 

derived from a 129Sv/J library (Stratagene) so all five phosphorylatable serine residues were 
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replaced with alanine residues in the rpS6 protein, as depicted in Fig. 1a24 Through 

homologous recombination in ES cells derived from the R1 (129Sv × 129Sv-CP) mice, the 

mutated allele of rpS6 gene was knocked in and chimeric mice were generated. Male 

chimeras were mated with ICR females to produce heterozygous mutant mice, which were 

intercrossed to produce homozygous mutant mice, which ended up on 129Sv/J × ICR mixed 

genetic background.24 However, a recent study reported that 75% nephrectomy induced 

severe renal lesions within 2 months only in FVB/N mice but not in other strains such as 

129S2/Sv, C57BL/6, DBA/2, (C57BL/6×DBA/2)F1 hybrid, or (C57BL/6×SJL)F1 hybrid 

mice,28 which confirmed the previous finding that the response of the kidney to 

nephrectomy is highly strain-dependent in mice.29, 30 Therefore, to minimize individual 

variability and generate a stable mouse line more susceptible to kidney phenotypes in 

response to nephrectomy, we backcrossed the rpS6 mutant mice that were on 129Sv/J and 

ICR-mixed background24 to the inbred FVB/NJ mice (Jackson Laboratory) for 10 

generations and produced congenic rpS6 knockin mice expressing unphosphorylatable rpS6 

on FVB/NJ background (rpS6P−/−), as indicated in Fig.1b, and used their gender-matched 

wild type littermates as control mice (rpS6P+/+) for the subsequent experiments.

We first determined the genotype of the mice by PCR of the genomic DNA from ear-punch 

biopsy and detected the expected 339-bp band of the mutant allele in both rpS6P+/− and 

rpS6P−/− mice but not in rpS6P+/+ mice while the 639-bp band of wild type allele was 

detected in both rpS6P+/− and rpS6P+/+ mice but not in rpS6P−/− mice (Fig. 1c). 

Immunoblotting of kidney homogenates with specific phospho-rpS6 antibodies detected 

both Ser235/236-phosphorylated rpS6 and Ser240/244-phosphorylated rpS6 in rpS6P+/+ 

mice; in contrast, both Ser235/236-phosphorylated rpS6 and Ser240/244-phosphorylated 

rpS6 were completely deleted in rpS6P−/− mice (Fig. 1d)Immunofluorescence staining 

further confirmed complete deletion of rpS6 phosphorylation in rpS6P−/− mice and revealed 

that both Ser235/236-phosphorylated rpS6 and Ser240/244-phosphorylated rpS6 were 

primarily localized to the renal tubules of rpS6P+/+ mice (Fig. 1e). We performed co-

immunofluorescence staining for synaptopodin, a marker for podocytes, to highlight 

podocytes so that the locations of glomeruli relative to renal tubules could be visualized; 

rpS6P+/+ mice and rpS6P−/− mice had similar synaptopodin expression (Fig. 1e). Additional 

quantitative immunoblotting analysis of synaptopodin confirmed that deletion of rpS6 

phosphorylation had no effect on the protein expression level of synaptopodin (Fig. 1d).

Deletion of rpS6 phosphorylation had no effect on the body weight, renal histology, and 
kidney function

Previous studies demonstrated that homozygous S6K1 knockout did not affect viability or 

fertility but had a significant effect on animal growth, resulting in a small mouse 

phenotype.31 Here we found that homozygous deletion of rpS6 phosphorylation did not 

affect the fertility, development, and growth of the mice. Homozygous rpS6P−/− knockin 

pups were born at expected Mendelian ratios (data not shown) and were indistinguishable 

from their rpS6P+/+ littermates at birth. Even after they became adult, rpS6P−/− mice had a 

mean body weight similar to that of their gender-matched rpS6P+/+ littermates (Fig. 2a). The 

renal histology of rpS6P−/− mice was also similar to that of rpS6P+/+ mice (Fig. 2b).

Xu et al. Page 4

Kidney Int. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also examined the kidney function of rpS6P−/− mice by measuring the blood urea 

nitrogen (BUN) level and found no difference compared with rpS6P+/+ mice (Fig. 2c). 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by 

Coomassie blue staining did not detect any proteinuria in rpS6P−/− or rpS6P+/+ mice (Fig. 

2d), although with a loading of only 1 μl urine, SDS-PAGE assay clearly visualized the 

apparent increases in urinary protein excretion in 2 to 3-week-old podocyte-specific mVps34 

knockout mice, which have been shown previously to develop massive proteinuria by 6 

weeks of age.32 In additional experiments, we measured urinary albumin/creatinine ratio and 

confirmed that there was no proteinuria in rpS6P+/+ mice and rpS6P−/− mice in response to 

either sham or uninephrectomy (UNX) surgery, as indicated by the similar level of urinary 

albumin/creatinine ratio in all four groups of mice, although the assay showed a significant 

increase of urinary albumin/creatinine ratio in podocyte-specific mVps34 knockout mice, 

which were known to develop proteinuria after 2 weeks of age32 and so used as a positive 

control group (Fig. 2e).

Deletion of rpS6 phosphorylation blunted development of compensatory renal 
hypertrophy in response to UNX

It is well known that UNX-induced increases in kidney weight are primarily the result of 

increased protein content in cells along the nephron (particularly in the proximal tubule), 

rather than cell proliferation or increased water content.1-3, 33, 34 Thus, UNX-induced 

percent increase in kidney-to-body weight ratio in comparison with sham-operated control 

animals has been widely used to determine the degree of renal hypertrophy. As shown in 

Table 1, seven days after right UNX, we observed significant increases in left kidney weight 

and left kidney weight to body weight ratio in rpS6P+/+ mice. Although the left kidney to 

body weight ratio of rpS6P−/− mice was not statistically different from that of rpS6P+/+ mice 

in the sham-operated group, the mean left kidney weight of rpS6P−/− mice was significantly 

less than that of rpS6P+/+ mice in the UNX group, consequently resulting in decreased left 

kidney weight/body weight ratio in rpS6P−/− mice compared with that in rpS6P+/+ mice in 

the UNX group. However, the mean body weight of rpS6P−/− mice was not significantly 

different from that of their rpS6P+/+ littermates, either in the sham-operated group or in the 

UNX group, respectively. Also, the mean left kidney weight of rpS6P−/− mice was not 

significantly different from that of rpS6P+/+ littermates in the sham group (Table1). As 

shown in Fig. 3a, deletion of rpS6 phosphorylation significantly inhibited the increases in 

left kidney weight/body weight ratio in response to right UNX. Such an inhibitory effect was 

confirmed by a significant reduction of the UNX-induced increases in protein/DNA ratio in 

rpS6P−/− mice compared with that in rpS6P+/+ control mice; these data further confirmed 

that what we observed were hypertrophy, rather than hyperplasia (Fig. 3b).

Previous studies have indicated that compensatory renal hypertrophy is mediated by a cell 

cycle-dependent mechanism.35 In a mouse model of UNX, it has been demonstrated that 

UNX stimulated an increase in the protein/DNA ratio without a change in BrdU 

incorporation in the remaining kidney, and cdk4/cyclin D kinase activity was progressively 

increased while cdk2/cyclin E kinase activity was decreased 4-7 days following UNX.35 In 

the present study, we also observed increases in cyclin D and decreases in cyclin E in the 

remaining kidney of rpS6P+/+ mice in response to UNX. Of interest, these changes were 
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attenuated in rpS6P−/− mice subjected to UNX (Fig. 3c). These data revealed that the 

increases in cyclin D and decreases in cyclin E seen in the rpS6P+/+ mice are mediated by 

UNX-induced rpS6 phosphorylation.

Although without any challenge, the renal histology and function of rpS6P−/− mice were not 

noticeably different from that of rpS6P+/+ mice (Fig. 2), deletion of rpS6 phosphorylation 

significantly inhibited UNX-induced renal hypertrophy, as indicated by blunted increases in 

kidney/body weight ratio (Fig. 3a) and protein/DNA ratio (Fig. 3b). In response to UNX, 

although the other components of the nephrons in the remaining kidney may also 

hypertrophy, the proximal tubule has been consistently demonstrated to be the nephron 

segment that undergoes the most prominent hypertrophy.36-39 Since renal proximal tubules 

make up 80% of the mass of the kidney, their growth accounts for most of the hypertrophic 

growth in the kidney.1-5 In the present study, in additional to using H&E staining to show 

the renal histology (Fig. 4a), to determine the inhibitory effect of rpS6 phosphorylation 

deficiency on the hypertrophy of renal proximal tubules and glomeruli, we conducted 

morphometric analysis in rpS6P−/− mice and rpS6P+/+ mice with or without UNX following 

immunofluorescence staining with fluorescein-labeled Lotus Tetragonolobus Lectin (LTL, a 

specific marker to visualize proximal tubules) and an antibody to synaptopodin (specific for 

podocytes to visualize glomeruli), as shown in Fig. 4b. We selected and measured the size of 

renal proximal tubules in three different ways as detailed in the Methods. Comparing the 

areas of the largest proximal tubules (Fig. 4c and Supplementary Fig. S1), the areas of 

randomly measured proximal tubules (Supplementary Fig. S2a and b), and the diameters of 

randomly selected circular (transversely cut) proximal tubules (Supplementary Fig. S3a and 

b) all led to the same conclusion that deletion of rpS6 phosphorylation significantly inhibited 

UNX-induced proximal tubule hypertrophy.

For morphometric comparison of glomerular size, we measured the areas and calculated the 

volumes of all glomeruli in each captured image as detailed in the Methods and shown in 

Supplementary Fig. S4a. Surprisingly, deletion of rpS6 phosphorylation numerically, but not 

statistically, reduced UNX-induced increases in either glomerular areas (Fig. 4d) or 

glomerular volumes (Supplementary Fig. S4b). Thus, our morphometric data indicate that 

rpS6 phosphorylation plays an important role in compensatory proximal tubular, but not 

glomerular, hypertrophy, suggesting that the mechanism of glomerular hypertrophy may not 

be the same as that of proximal tubular hypertrophy. There were no apparent morphological 

changes in the interstitium of the kidney in rpS6P+/+ mice and rpS6P−/− mice with or without 

UNX (Fig. 4a).

Deletion of rpS6 phosphorylation had no effect on UNX-induced mTORC1 activation

Immunoblotting revealed increases in rpS6 phosphorylation at both Ser235/236 and 

Ser240/244 in rpS6P+/+ mice in response to UNX but not in rpS6P−/− mice subjected to 

either sham-operation or UNX (Fig. 5a). However, the total rpS6 protein level in rpS6P−/− 

mice remained unchanged, compared with that in rpS6P+/+ control littermates, indicating 

that rpS6 phosphorylation deficiency had no effect on the expression of total rpS6 protein.

Our previous studies also demonstrated that UNX increased the phosphorylation of 4E-BP1, 

another substrate of mTORC1 kinase activity.15, 16 There is also evidence that Ser65-
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phosphorylated 4E-BP1 dissociates from the eukaryotic translation initiation factor (eIF) 4E 

and consequently allows eIF4E to bind the 5’-cap structure of mRNA, which is a key step in 

the initiation of cap-dependent translation and cell proliferation.8, 40 To evaluate whether 

mTORC1 was activated in the remaining kidney of rpS6P−/− mice in response to UNX, we 

measured the level of Ser65-phosphorylated 4E-BP1. As shown in Fig. 5b, UNX stimulated 

an equivalent increase in 4E-BP1 phosphorylation at Ser65 in both rpS6P−/− and rpS6P+/+ 

mice, indicating that mTORC1 was still activated to the same degree in rpS6P−/− mice as in 

rpS6P+/+ littermates.

To determine the mTOR complex 2 (mTORC2) signaling activities during UNX-induced 

renal growth, we examined the level of Ser473-phosphorylated Akt, a serine/threonine 

protein kinase that is also known as protein kinase B (PKB), because previous studies have 

clearly demonstrated that activated mTORC2 directly phosphorylates Akt specifically at 

Ser473 residue, and this phosphorylation is required for the full activation of Akt.11 As 

shown in Fig. 5c, our results indicated that neither UNX nor deletion of rpS6 

phosphorylation affected Akt phosphorylation at Ser473, indicating that the mTORC2-Akt 

signaling pathway is not involved in UNX-induced renal hypertrophy.

Rapamycin inhibited 4E-BP1 phosphorylation at Ser65 and rpS6 phosphorylation at 
Ser235/236/240/244

The mTOR inhibitor, rapamycin, prevented UNX-induced rpS6 phosphorylation at 

Ser235/236 as well as Ser240/244 in rpS6P+/+ mice, although no rpS6 phosphorylation at 

Ser235/236 or Ser240/244 was detected in either vehicle- or rapamycin-treated rpS6P−/− 

mice subjected to either sham or UNX surgery (Fig. 6a).

Our previous studies with inbred DBA/2 mice have clearly showed that UNX induces 4E-

BP1 phosphorylation at multiple sites including Thr37, Thr46, Thr70, and Ser65 in the 

remaining kidney, but only the phosphorylation of Ser65 and Thr70 can be completely 

inhibited by rapamycin, with phosphorylation of Thr46 and Thr37 being resistant to 

rapamycin treatment.15 Hence, we utilized this rapamycin-sensitive characteristic of Ser65 

phosphorylation in 4E-BP1 to monitor whether the administered rapamycin had effectively 

blocked mTORC1 signaling activity in the rpS6P−/− knockin mice, since the phosphorylation 

status of rpS6 could not be used anymore in these mice as a readout for mTORC1 signaling. 

As shown in Fig. 6b, rapamycin blocked the increased 4E-BP1 phosphorylation at Ser65 in 

rpS6P−/− mice as well as rpS6P+/+ mice in response to UNX but did not inhibit the total 4E-

BP1 protein expression level, although rapamycin treatment markedly accelerated the 

migration of total 4E-BP1 bands, consistent with mTORC1 inhibition-mediated 

dephosphorylation of 4E-BP1 as reported previously.15 Of note, even the basal level of 4E-

BP1 phosphorylation at Ser65 was blocked by rapamycin, indicating that both the basal 

level of 4E-BP1 phosphorylation and the UNX-induced 4E-BP1 phosphorylation at Ser65 

are mediated by rapamycin-sensitive mTORC1 kinase activity in the remaining kidney (Fig. 

6b). In contrast, rapamycin did not affect the level of Ser473 phosphorylated Akt in rpS6P−/− 

mice and rpS6P+/+ mice after either sham-surgery or UNX, indicating that mTORC2 activity 

was not altered (Fig. 6c).
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Rapamycin had no effect on UNX-induced renal hypertrophy in rpS6P−/− knockin mice

As demonstrated in Figure 3a and b, deletion of rpS6 phosphorylation did not completely 

prevent the development of compensatory renal hypertrophy in response to UNX, and 

mTORC1 was still activated in the remaining kidney of rpS6P−/− mice (as indicated by 

UNX-induced increases in 4E-BP1 phosphorylation shown in Fig. 5b). Therefore, we 

examined whether preventing mTORC1 activation could block the residual renal 

hypertrophy seen in rpS6P−/− mice. Our results indicated that administration of rapamycin 

for 7 days (with the first injection being 2 h before the surgery) following UNX significantly 

blunted the increases in absolute kidney weight and kidney weight to body weight ratio in 

rpS6P+/+ mice, compared with the UNX-rpS6P+/+ mice treated with vehicle alone (Table 2 

and Fig. 7a). Rapamycin treatment also significantly reduced UNX-induced increases in 

protein/DNA ratio in rpS6P+/+ mice (Fig. 7b). However, rapamycin failed to completely 

block right UNX-induced increases in the absolute value of left kidney weight (compared 

rpS6P+/+/UNX/Rapa group with rpS6P+/+/Sham/Vehicle group in Table 2) and was unable to 

completely prevent UNX-induce increases in kidney/body weight ratio (Fig. 7a) or 

protein/DNA ratio (Fig. 7b) in rpS6P+/+ mice. Moreover, rapamycin had no statistically 

significant effect on the kidney weight/body weight ratio (Table 2 and Fig. 7a) and 

protein/DNA ratio (Fig. 7b) in rpS6P−/− mice, even though rapamycin did block mTORC1 

activation in rpS6P−/− mice, as indicated by the blockade of UNX-induced increases in 4E-

BP1 phosphorylation (Fig. 6b). These data suggest that phosphorylated rpS6 is the 

downstream effector of the mTORC1-S6K1 signaling pathway that mediates the major 

fraction of compensatory renal hypertrophy seen in rpS6P+/+ mice in response to UNX.

DISCUSSION

The phenomenon of compensatory renal hypertrophy has been observed for more than a 

century,41 and significant evidence suggests that excessive compensatory renal hypertrophy 

may be a maladaptive response that sets the stage for an inexorable progression of further 

nephron damage, interstitial fibrosis, tubular atrophy, progressive decline of renal function 

and development of end-stage renal disease, while attenuation of compensatory renal 

hypertrophy might limit progressive kidney damage1-5, 42-44. It is important to emphasize 

that compensatory renal hypertrophy occurs in virtually all kidney diseases that cause 

nephron damage and consequently a reduction in functioning nephron number.1, 2, 4, 43, 45 

However, the growth signal and molecular signaling mechanism mediating the onset and 

extent of compensatory renal hypertrophy remain poorly understood. Here we report that 

rapamycin-sensitive rpS6 phosphorylation is a major downstream effector of the mTORC1-

S6K1 signaling pathway that mediates compensatory renal hypertrophy.

Interestingly, recent studies suggest that cell growth and cell cycle progression are separable 

and distinct processes.40, 46, 47 There is a study demonstrating that mTORC1 signals 

downstream to at least two independent targets, S6K1 and 4E-BP1, that function in 

translational control to regulate mammalian cell size.47 Yet, more recent evidence indicates 

that the eukaryotic translation initiation factor 4E-binding proteins (4E-BPs, which have 

three family members: 4E-BP1, 2, and 3) mediate the effect of mTORC1 to promote cell 

proliferation, but not growth (thus regulating the number, but not the size) of mammalian 
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cells.40 In contrast to 4E-BPs, increasing evidence indicates that S6K1 plays an important 

role in regulating both cell growth and organ size in mammals47-50 Of note, this growth 

regulatory effect is also true for the S6 kinase in Drosophila, as it regulates cell size in a 

cell-autonomous manner without affecting cell number.46 Overexpression of S6K1 

increased cell size, due to augmented cell growth but not to delayed cell cycle progression.47 

Deletion of S6K1 did not affect myoblast cell proliferation but reduced myoblast cell size to 

the same extent as that observed with mTORC1 inhibition by rapamycin.50 In the 

differentiated state, S6K1-null myotubes had a normal number of nuclei but were 

significantly smaller, and their hypertrophic response to IGF1, nutrients and membrane-

targeted Akt was blunted.50 Moreover, homozygous S6K1 knockout in mice significantly 

reduced the size of the animals compared to their wild type littermates.31 This study resulted 

in the identification of the S6K1 homologue, S6K2,31 and subsequent studies demonstrated 

that mice with homozygous S6K2 deletion tend to be slightly larger while mice lacking both 

S6K1 and S6K2 genes exhibit a sharp reduction in viability due to perinatal lethality.49

Our initial studies with wild type mice alone demonstrated that in kidneys undergoing 

hypertrophy, phosphorylation of 4E-BP1 was detected at multiple sites including Thr37, 

Thr46, Thr70, and Ser65.15 However, phosphorylation of Ser65 and Thr70 was completely 

prevented by rapamycin, with phosphorylation of Thr46 being less inhibited and that of 

Thr37 the least inhibited by rapamycin.15 These observations are consistent with previous 

reports by others, indicating that phosphorylation of Thr37 and Thr46 is relatively resistant 

to rapamycin, whereas phosphorylation of Ser65 and Thr70 is rapamycin-sensitive.51 Our 

results in the present study showed that genetic deletion of rpS6 phosphorylation 

significantly inhibited compensatory renal hypertrophy. Furthermore, in rpS6P+/+ mice, 

rapamycin prevented UNX-induced rpS6 phosphorylation at both Ser235/236 and 

Ser240/244 as well as 4E-BP1 phosphorylation at Ser65 and inhibited the hypertrophy to the 

same extent as inhibited by the deletion of rpS6 phosphorylation, compared with renal 

hypertrophy in the rpS6P−/− mice in response to UNX without rapamycin treatment. 

Moreover, rapamycin treatment of the rpS6P−/− knockin mice failed to induce any additive 

effect, i.e., rapamycin did not further inhibit the residual renal hypertrophy seen in rpS6P−/− 

knockin mice in response to UNX, although it did block UNX-induced increases in 4E-BP1 

phosphorylation and even blocked the basal 4E-BP1 phosphorylation at Ser65. Thus, our 

results demonstrate that phosphorylated rpS6 is the downstream effector of mTORC1-S6K1 

activation that mediates the major fraction of compensatory renal hypertrophy while a 

rapamycin-insensitive and rpS6 phosphorylation-independent mechanism mediates the 

residual portion of compensatory renal hypertrophy seen in the rpS6P−/− knockin mice.

Noteworthy, phosphorylation of 4E-BP1 (also a downstream target of mTORC1) was 

stimulated to equivalent levels in rpS6P−/− and rpS6P+/+ mice in response to UNX, 

indicating that mTORC1 was still activated to a comparable degree in the rpS6P−/− knockin 

mice. Moreover, even the basal level of 4E-BP1 phosphorylation at Ser65 was blocked by 

rapamycin, suggesting that both the basal level of 4E-BP1 phosphorylation at Ser65 and the 

UNX-induced 4E-BP1 phosphorylation at Ser65 are mediated by rapamycin-sensitive 

mTORC1 kinase activity. However, a previous study reported that the ATP-competitive 

mTOR inhibitor, Torin1, directly inhibited both mTORC1 and mTORC2 and impaired cell 
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growth and proliferation to a far greater degree than rapamycin; these effects were 

independent of mTORC2 inhibition but dependent on inhibition of rapamycin-resistant 

functions of mTORC1 that were necessary for cap-dependent translation and suppression of 

autophagy.52 These effects were at least partly mediated by mTORC1-dependent and 

rapamycin-resistant phosphorylation of 4E-BP1.52 In our mouse model, we found that UNX 

induced significant increases in protein/DNA ratio, indicating a significantly greater increase 

in protein content than DNA content in the remaining kidney of rpS6P+/+ mice (Fig. 3b). We 

also observed that UNX induced increases in cyclin D1 and decreases in cyclin E1 (Fig. 3c), 

consistent with previously documented cell cycle-dependent kidney cell growth, with 

minimal cell cycle transition from G1 phase to DNA synthesis (S phase), during 

compensatory renal hypertrophy.35, 53 These UNX-induced alterations in the remaining 

kidney were significantly attenuated by deletion of rpS6 phosphorylation (Fig. 3b and c). 

Thus, our data support the notion that rpS6 phosphorylation mediates the well-recognized 

phenomenon that the increase in protein synthesis and thereby cell size, but not cell number, 

is the predominant factor causing compensatory renal hypertrophy.1-5 However, our data in 

the present study cannot completely rule out a potential requirement of 4E-BP1 in concert 

with S6K1-mediated rpS6 phosphorylation in the development of hypertrophic renal growth. 

Of interest, 4E-BP1 knockout mice are viable and fertile with normal life span.54 Since 

increment in 4E-BP1 phosphorylation following mTORC1 activation is linked to cell 

proliferation, at least in cultured cells such as HEK-293T cells and mouse embryonic 

fibroblasts (MEFs),40, 52 and cell proliferation is also a contributing factor, albeit very 

minor, in compensatory renal hypertrophy,1-5 future studies utilizing 4E-BP1 knockout 

mice, along with the rpS6P−/− knockin mice, should allow us to address the importance of 

4E-BP1 and the mechanism of the minor cell proliferation in compensatory renal 

hypertrophy.

Upon entry into mammalian cells, rapamycin forms a complex with the immunophilin 

FK506 binding protein 12 (FKBP12). This complex subsequently binds to the FKBP12-

rapamycin-binding (FRB) domain of mTOR within mTORC1 and inhibits the kinase 

activity of mTORC1; in contrast, the mTOR in mTORC2, which phosphorylates its 

downstream effector Akt on Ser473 and so activates Akt,11 does not bind rapamycin-

FKBP12 and has been demonstrated to be rapamycin-insensitive,10 thus rapamycin is 

commonly accepted as a specific inhibitor for mTORC1. However, there is evidence that 

prolonged rapamycin treatment inhibits mTORC2 assembly and Akt in a cell type-specific 

manner,12 and a more recent study showed that chronic treatment with rapamycin at 2 

mg/kg/day by intraperitoneal injection for 14-28 days disrupted the association of mTOR 

with both Raptor (a core component of mTORC1) and Rictor (rapamycin-insensitive 

companion of mTOR), a key component that distinguishes mTORC2 from mTORC1, and 

impaired insulin-mediated suppression of hepatic gluconeogenesis.55 Of note, a high dosage 

of mTOR inhibitors had been reported to induce focal segmental glomerulosclerosis and 

proteinuria in renal transplant patients,56, 57 and knocking out both alleles of the Mtor gene 

in mouse renal glomerular podocytes had been shown to cause massive proteinuria and renal 

failure.58 The majority of compensatory renal hypertrophy occurs within 7 days after 

removal of contralateral kidney.15 Accordingly, we chose to give a low dosage of rapamycin 

(1 mg/kg once every 2 days for 7 days by intraperitoneal injection, with the first injection 

Xu et al. Page 10

Kidney Int. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



being 2 h before the surgery) to the mice used in the present study that were all on FVB/NJ 

background (this genetic background makes the mice more susceptible to kidney 

phenotype28-30). Our results revealed that such a low dosage and short-term rapamycin 

treatment was sufficient to completely block UNX-induced increases in Ser65-

phosphorylated 4E-BP1 and Ser235/236/240/244-phosphorylated rpS6, which are the 

downstream targets of mTORC1 and S6K1 kinase activities, respectively.6 However, such a 

treatment had no effect on Akt phosphorylation at Ser473, which is the phosphorylation site 

of mTORC2 kinase activity,11 in the kidneys of rpS6P−/− and rpS6P+/+ mice subjected to 

either sham surgery or UNX. Importantly, the rapamycin treatment significantly inhibited 

UNX-induced renal hypertrophy in rpS6P+/+ mice but did not block the residual renal 

hypertrophy induced by UNX in rpS6P−/− mice. Moreover, neither sham-surgery nor UNX 

altered Ser473-phosphorylated Akt levels. Thus, our results indicate that the low dosage and 

short-term rapamycin treatment used in current study inhibited UNX-induced renal 

hypertrophy by blocking mTORC1 signaling to rpS6 phosphorylation; this is consistent with 

the conclusion that UNX-induced renal hypertrophy is mediated by activation of mTORC1, 

but not mTORC2. Noteworthy, a very recent study revealed that even long-term rapamycin 

treatment (from ages 4 through 12 weeks) but at 1 mg/kg per day (administered 

intragastrically) significantly inhibited rpS6 phosphorylation but did not alter the level of 

Ser473-phosphorylated Akt in the kidney.59 Thus, it appears that the effect of rapamycin on 

mTORC2 may vary considerably, depending on the duration of rapamycin treatment,12 but 

probably even more on the dosage of rapamycin used and the cell types and perhaps the 

genetic background of mouse strains studied.12, 55, 59 Therefore, in relation to the clinical 

practice our findings prompt us to highly recommend the lowest possible dosage of 

rapamycin treatment for renal transplant patients.

In the present study, we also observed that deletion of rpS6 phosphorylation partially 

inhibited UNX-induced increases in cyclin D1 and decreases in cyclin E1 in the remaining 

kidney, revealing a key role for rpS6 phosphorylation in regulation of cell cycle-associated 

kidney growth. How can rpS6 phosphorylation regulate the expression of cyclin D1 and 

cyclin E1? In this regard, there is evidence that cyclin D1 is a key mediator of increased 

protein synthesis and cell growth downstream of rapamycin-sensitive mTORC1 activation,60 

and activated mTORC1 is known to directly phosphorylate S6K1 at the rapamycin-sensitive 

Thr389 to activate S6K1,9, 10, 61 which is the major kinase responsible for rapamycin-

sensitive rpS6 phosphorylation.62 Furthermore, a recent study demonstrated that S6K1 and 

S6K2 double knockout (S6K1−/−;S6K2−/−) inhibits feeding-induced gene transcription for 

over 75% of ribosome biogenesis factors and more importantly, the reduced transcriptional 

promoter activity of ribosome biogenesis genes in S6K1−/−;S6K2−/− cells is also observed in 

rpS6P−/− cells.63 Moreover, the cellular abundance of proteins (including specific proteins, 

groups of proteins with shared characteristic translation regulatory motifs, and overall 

protein abundance) in mammalian cells is also controlled at the level of translation.64 

Therefore, in light of the observations in current study, it would be of prime importance to 

explore the involvement of rpS6 phosphorylation in regulation of the expression of specific 

genes, such as those encoding cyclin D1 and cyclin E1, at both translational and 

transcriptional levels. For the present time, we cannot rule out a direct effect of rpS6 

phosphorylation on the regulation of cyclin D1 and cyclin E1, although reduced expression 
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of cyclin D1 might be induced by rpS6 phosphorylation-associated defects in ribosome 

biogenesis while the slightly increased expression of cyclin E1 might result from ribosome 

biogenesis deficiency-induced activation of a cell cycle checkpoint mechanism.65 However, 

the precise mechanism underlying rpS6 regulation of cyclin D1 and cyclin E1 requires more 

focused further investigation in future studies. Of note, we found that the cyclin E1 level in 

the rpS6P−/− mice subjected to UNX was still relatively lower than that of sham-operated 

rpS6P−/− and rpS6P+/+ mice and was presumably still lower than the threshold required for 

the cells to transit from G1 phase into S phase. These findings are consistent with previous 

studies demonstrating that renal hypertrophy is regulated by a cell cycle-dependent 

mechanism in which cyclin-dependent kinase (CDK)4/cyclin D is activated without a 

subsequent engagement of CDK2/cyclin E.35, 53 In addition, the activity of CDK/cyclin 

complexes is modulated by CDK inhibitors (such as p21Cip1 and p27Kip166-68) and TGF-

β.69-71 Thus, the cell cycle is arrested in late G1 without progression into S phase, 

consequently resulting in hypertrophy rather than hyperplasia.35, 53, 70, 71 These studies of 

cell cycle-dependent mechanisms are complementary to our finding of a role for rpS6 

phosphorylation in compensatory renal hypertrophy in the present study and our findings of 

a role for S6K1, but not S6K2, in mediating mTORC1-dependent hypertrophic renal growth 

in our previous studies,15, 16 because the studies of CDK/cyclins and CDK inhibitors explain 

why cells undergo hypertrophy rather than hyperplasia, while our studies delineate the 

mTORC1-S6K1-rpS6 signaling pathway that mediates the increased protein synthesis and 

drives the cell to grow in size and mass for the development of renal hypertrophy.

In summary, our current study provides the first definitive genetic evidence and 

pharmacological data demonstrating that phosphorylated rpS6 is a major downstream 

effector of the mTORC1-S6K1 pathway that mediates the major fraction of compensatory 

renal hypertrophy. Our study also uncovered that rpS6 phosphorylation mediates the 

increased cyclin D1 and decreased cyclin E1 levels that underlie the hypertrophic nature of 

nephron loss-induced compensatory renal growth. Moreover, rapamycin prevented 

mTORC1 activation and blocked UNX-induced 4E-BP1 phosphorylation but failed to 

inhibit the residual renal hypertrophy seen in the rpS6P−/− knockin mice in response to 

contralateral nephrectomy. Future studies are required to determine the mechanism 

underlying this residual portion of compensatory renal hypertrophy that is independent of 

rpS6 phosphorylation.

MATERIALS AND METHODS

Chemicals and antibodies

Antibodies against total rpS6, phospho-rpS6, Cyclin D1, Cyclin E1, and phospho-4E-BP1 

were from Cell Signaling Technology (Beverly, MA). Fluorescein Lotus-tetragonolobus 

Lectin (LTL) was purchased from Vector Laboratories Inc, (Burlingame, CA). Anti-

synaptopodin antibody was from Acris Antibodies GmbH (San Diego, CA). Anti-rabbit 

HRP and anti-mouse HRP secondary antibodies, anti-rabbit dyLight 488 were from Vector 

laboratories (Burlingame, CA). Anti-mouse Alexa 594 was from Invitrogen Life 

Technologies (Carlsbad, CA). Rapamycin was purchased from LC Laboratories (Woburn, 
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MA). Antibodies to β-actin and other chemical reagents were purchased from Sigma-Aldrich 

(St. Louis, MO).

Generation of congenic S6P−/− knockin mice to delete S6 phosphorylation

Animals were housed at the Georgia Regent University veterinary facility. Animal care and 

all experimental procedures were approved by Georgia Regent University Animal Care and 

Usage Committee and complied with the guidelines of National Institutes of Health. 

rpS6P−/− knockin mice were generated by homologous recombination in 129Sv/J ES cells to 

knock in an exon 5-mutant allele of S6 gene, in which the codons for all phosphorylatable 

serines (Ser235, Ser236, Ser240, Ser244, and Ser247) were mutated to code for alanines, 

with an insertion of an EcoRV site immediately downstream of the coding sequence to 

facilitate subsequent genotyping. Male chimera derived from correctly targeted ES clones 

were crossed with ICR females to produce heterozygous S6 knockin mice, which were 

intercrossed to produce homozygous S6 knockin mice on 129Sv/J x ICR mixed background, 

as described previously.24 These mice were backcrossed onto the inbred FVB/NJ strain for 

10 generations. The resultant rpS6P+/− offspring were intercrossed to generate homozygous 

congenic S6 knockin mice expressing unphosphorylatable ribosomal protein rpS6 (rpS6P−/−) 

on FVB/NJ background and rpS6P+/+ wild type littermates (for control). Genotyping was 

accomplished by PCR using primer pairs spanning the mutated region: 5’-

GTCATCCAGCATGGGTGCTG-3’ and 5’-GGCTGATACCTTTTGGGACAG-3’. PCR 

were performed at 95°C for 5 min followed by 95°C for 30 s, 60°C for 30 s, and 72°C for 60 

s for 30 cycles, with an additional 7-min extension at 72°C. The PCR product was digested 

with EcoRV to identify those carrying the mutant allele.

Surgical procedures

Compensatory renal hypertrophy was induced by right nephrectomy (UNX) as we have 

previously described.15 rpS6P−/− and rpS6P+/+ mice at 8 weeks of age were utilized. Briefly, 

under aseptic conditions, UNX was performed through a right flank incision, sparing the 

adrenal gland, under anesthesia using pentobarbital sodium (50 mg/kg intraperitoneal 

injection). Left kidneys of right sham-nephrectomized (Sham) mice were used as controls 

for UNX mice. Sham consisted of anesthesia, flank incision, delivery of the right kidney 

through the incision, and return to the retroperitoneum. The hypertrophy was evaluated after 

completely removing the fibrous renal capsule along with the surrounding fatty tissues and 

renal pedicle from left kidney and mTORC1 signaling activity determined 7 days after the 

surgery.

Immunoblotting analysis

Immunoblotting procedures were performed as we described previously.72 Briefly, left 

kidneys were decapsulated, and cortices were isolated, cut into pieces, and washed twice 

with ice-cold PBS, followed by homogenization in the lysis buffer described previously.72 

Renal cortical lysates were clarified at 10,000 g for 15 min at 4°C, and protein 

concentrations were determined by the Bradford protein assay (Bio-Rad Laboratories, 

Hercules, CA). Equal amounts of protein were loaded onto 7 to 15% SDS-PAGE, 

transferred onto polyvinylidene difluoride membranes, probed with the indicated primary 
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antibody and the appropriate secondary antibody conjugated with HRP, and the immune 

complexes were detected by a peroxidase- catalyzed enhanced chemiluminescence detection 

system (Clarity™ Western ECL Substrate, Bio-Rad Laboratory Inc.), and visualized with 

Bio-Rad image system (ChemiDoc™ MP Imaging system).

Immunofluorescence staining

Immunofluorescence staining was performed as we previously described.32 Briefly, kidneys 

were dissected and fixed in 4% paraformaldehyde. The fixed kidneys were dehydrated 

through a graded series of ethanol, embedded in paraffin, sectioned (5 μm), and mounted on 

glass slides. The kidney sections were subjected to antigen retrieval followed by blocking 

with 2.5% BSA in PBS; the sections were incubated with primary antibodies specifically 

against Ser235/236-phosphorylated rpS6 (1:200), Ser240/244-phosphorylated rpS6 (1:200), 

synaptopodin (1:200), overnight at 4°C, and then incubated with Alexa Fluor 594 or dyLight 

488-conjugated secondary antibodies or the fluorescein-labeled proximal tubule marker, 

Lotus-tetragonolobus Lectin (LTL) for 1 hour. Nuclei were counterstained with DAPI. 

Images were captured by using an Olympus D73 fluorescence microscope and Exi-blue 

digital camera (made in Canada).

Measurement of blood urea nitrogen

Blood urea nitrogen (BUN) levels were measured as previously described.16 Briefly, seven 

days after UNX when the mice were euthanized to determine renal hypertrophy and 

mTORC1 signaling activity, blood samples were collected and blood urea nitrogen (BUN) 

levels were immediately measured according to the instruction of the commercially 

available kit, Liquid Urea Nitrogen Reagent Set (Pointe Scientific, Lincoln Park, MI).

Measurement of urinary albumin and creatinine

Urine samples from rpS6P−/− mice and rpS6P+/+ mice were collected for the measurement of 

urinary albumin-to-creatinine ratio, with urine samples from podocyte-specific mVps34 

knockout mice at 2-3 weeks of age as positive control (our recent study revealed that these 

knockout mice develop proteinuria after 2 weeks of age32). Urine albumin concentration 

was determined by competitive enzyme-linked immunosorbent assay using an Albuwell M 

kit (Exocell, Philadelphia, PA). Urine creatinine concentration was measured by Jaffe’s 

reaction of alkaline picrate with creatinine using a Creatinine Companion kit (Exocell, 

Philadelphia, PA). All measurements were performed in triplicate, and the ratio of urinary 

albumin to creatinine (micrograms per milligram) was calculated. Results are expressed as 

the means ± SEM (n=5).

Measurement of protein/DNA ratios

Renal cortex (0.08 g per sample) was homogenized in a 1.5-ml lysis buffer that contained 

0.02% SDS, 150 mM NaCl, and 15 mM Na citrate, followed by a 10-fold dilution. DNA 

determination was performed in triplicate as described previously.15, 73 Briefly, aliquots of 

each homogenate were incubated in a 96-well plate at 37°C for 1 h. After addition of 100 μl 

of 1.0 μg/ml bisbenzimidazole fluorescent dye Hoechst 33258 (Sigma), the samples were 

read at excitation λ360 nm, emission λ460 nm using a multi-mode microplate reader-
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Fluostar Omega (BMG Labtech Inc, Cary NC). Aliquots of the same homogenates were 

used to determine protein concentration by the Bradford protein assay (Bio-Rad 

Laboratories). The protein/DNA ratios were calculated, and data were presented as 

percentage increases compared with sham-operated or vehicle-injected control mice.

Morphometric analysis of renal proximal tubular and glomerular size

Seven days after rpS6P−/− mice and their rpS6P+/+ littermates were subjected to right UNX 

or Sham surgery, left kidneys were removed and fixed in 4% paraformaldehyde for paraffin-

embedded kidney sections at a thickness of 5 microns (5 μm). The kidney sections used for 

double immunofluorescence staining with fluorescein-labeled Lotus tetragonolobus Lectin 

(LTL, a specific marker for renal proximal tubules) and synaptopodin (specific for 

podocytes to visualize glomeruli as podocytes are highly specialized visceral epithelial cells 

that intricately wrap around the outer aspect of the glomerular basement membrane on the 

surface of glomerular capillary tuft). It would be too tedious and unnecessary to measure 

each and every tubular compartment in the stained kidney sections; therefore, we randomly 

captured 5 images at the original magnification of 100× from the LTL-positive region 

(including the renal cortex containing the S1 and S2 segments of the proximal tubules and 

the outer stripe of outer medulla containing the S3 segment of the proximal tubules) for each 

kidney section using the OLYMPUS IX73 inverted 2-deck platform IX73 microscope 

system running on the CellSens Standard software. Thus, totally 25 microscopic images 

were collected for each group (5 images/mouse with 5 mice/group).

From each image, we selected the renal proximal tubules in three different ways to measure 

their size: 1) we visually selected the largest 15 proximal tubules, measured their areas as 

shown in Supplementary Fig. S1, and selected the top 10 largest proximal tubules (based on 

the sorted values of the measured 15 tubules) for comparison among 4 different groups (the 

mean proximal tubular area compared were from the measures of totally 250 proximal 

tubules per group: the top 10 largest LTL-positive tubules per image × 25 images per group) 

as shown in Fig. 4c; 2) we randomly measured 10 LTL-positive renal proximal tubules for 

each image and thus also entered the area values of 250 proximal tubules per group for 

calculation and comparison of the mean proximal tubular area (Supplementary Fig. S2); and 

3) we measured the diameters of randomly selected 10 circular (transversely cut) proximal 

tubules per image and entered the diameter values of 250 circular proximal tubules from 

each group for comparison (Supplementary Fig. S3).

For morphometric comparison of glomerular size, we first measured the areas of all 

glomeruli highlighted by positive synaptopodin staining in each microscopic image using 

Olympus cellSens Entry software as shown in Supplementary Fig. S4a, and compared the 

mean areas of all glomeruli from totally 25 images for each group (Fig. 4d). Then 

considering that comparing the areas of the 2 dimensional glomeruli that we were able to 

measure in kidney sections could underestimate the size difference of actual glomeruli, 

because glomeruli are generally considered a 3 dimensional sphere, which should have a 

volume of 4/3πr3 (where the radius r is cubed and the product multiplied by 4/3, rather than 

the radius r only squared when a glomerular area is calculated, presumably using the 

formula of a circular glomerular area is only πr2); therefore, we solved for the radius from 
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the area value of each measured glomerulus and calculated and compared their mean 

volumes (Supplementary Fig. S4b).

Statistics

Data are presented as means ± SE for at least three separate experiments (each in triplicate 

or duplicate). An unpaired t-test was used for statistical analysis, and ANOVA and 

Bonferroni t-test were used for multiple-group comparisons using Prism 6 (GraphPad 

Software, http://www.graphpad.com/scientific-software/prism/). P < 0.05 was considered 

statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generation of congenic rpS6P−/− knock-in mice
(a) Strategy for making rpS6P−/− knockin mice expressing unphosphorylatable 40S 

ribosomal protein rpS6, in which all five phosphorylatable serines (S235, S236, S240, S244, 

and S247) were replaced with alanines by site-directed mutagenesis. (b) A schematic 

depicting the generation of congenic rpS6P−/− knockin mice on FVB/NJ background.28 

Briefly, rpS6P−/− mice initially made on129Sv/J x ICR mixed genetic background were 

back-crossed onto the inbred FVB/NJ strain for 10 generations before intercrossing the 

resultant heterozygous offsprint (rpS6P+/−) to produce homozygous congenic rpS6P−/− mice 

and rpS6P+/+ littermates, used as control. (c) PCR genotyping detected only the 339-bp 

mutant allele in homozygous knockin mice (rpS6P−/−), detected only the 639-bp wild type 

allele in their wild type littermates (rpS6P+/+) but detected both the 339-bp and 639-bp bands 

in the heterozygous mice (rpS6P+/−). (d) Immunoblotting and (e) Immunofluorescence 

staining with the indicated antibodies confirmed complete deletion of S6 phosphorylation in 

the kidney sections. Equal loading was confirmed by immunoblotting with a β-actin 

antibody (d). Synaptopodin, a marker for podocytes, was used for co-immunofluorescence 

staining to visualize the locations of glomeruli relative to phospho-rpS6-positive renal 

tubules (e). Shown are representative blots and images from one of three separate 

experiments with similar results.

Xu et al. Page 20

Kidney Int. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Deletion of rpS6 phosphorylation had no effect on the body weight, renal histology, and 
kidney function
8-week-old rpS6P−/− mice were used for comparison with their rpS6P+/+ littermates. (a) 

rpS6P−/− mice had a mean body weight similar to that of their rpS6P+/+ littermates. (b) H&E 

staining showed comparable renal histology in rpS6P−/− and rpS6P+/+ littermates. (c) Both 

rpS6P−/− mice and their rpS6P+/+ littermate had normal blood urea nitrogen (BUN) levels. 

(d) SDS-PAGE assay of the urine samples showed no proteinuria in rpS6p−/− and rpS6P+/+ 

mice, although it clearly visualized proteinuria in 2~3-week-old podocyte-specific mVps34 

knockout mice, used as a positive control32. 1 and 5 μg bovine serum albumin (BSA) were 

used as additional controls to show the location of albumin if there were any albuminuria 

(upper panel). Even after a long time exposure of the same gel (lower panel, uncropped gel 

showing the full spectrum of urinary protein profiles), there were only minimal amounts of 

different proteins in the urines of rpS6P−/−as well as their rpS6P+/+ littermates that were 

indistinquishable from those seen in the urines of mVps34 wild type mice (negative 

controls). Note that one protein at the size of 1~8 KD appeared to be the most abundant 
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urinary protein but it existed with equivalent abundance in the urined of all mice examined 

(lower panel). Shown are representative images and a gel from one of three separate 

experiments with similar results. (e) No difference in urinary albumin/creatinine ratio (ACR) 

between rpS6P−/− and rpS6P+/+ mice subjected to either UNX or sham operation, although 

the urinary ACR of podocyte-specific mVps34 knockout mice at 2-3 weeks of age, used as a 

positive control,32 was significantly increased.
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Figure 3. Deletion of rpS6 phosphorylation inhibited cyclin D1 increase, cyclin E1 decrease, and 
compensatory renal hypertrophy induced by UNX
rpS6P−/− and rpS6P+/+ littermates at 8 weeks of age were subjected to right UNX or Sham 

surgery. UNX-induced renal hypertrophy 7 days after surgery was assessed by increases in 

left kidney/body weight ratio (a) and increases in protein/DNA ratio in the kidney (b), 

normalized by their sham-operated mice, respectively. Values are means ± SE (n = 6-8) for 

each group. ***P < 0.0001 indicates comparisons between rpS6P+/+ mice ant rpS6P−/− 

littermates. Homogenates of left kidneys were subjected to immunoblotting with the 

antibodies specifically recognizing cyclin E1 and cyclin D1, respectively (c). Shown is a 

representative blot from one of three separate experiments with similar results.
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Figure 4. Deletion of rpS6 phosphorylation inhibited the enlargement of proximal tubules but 
not the enlargement of glomeruli induced by UNX
rpS6P−/− and rpS6P+/+ littermates at 8 weeks of age were subjected to right UNX or Sham 

surgery. 7 days after surgery, UNX-induced histological changes in the left kidney were 

assessed by H&E staining (a) and double immunofluorescence staining (b). The area of 

proximal tubules (c) and the area of glomeruli (d) were measured as detailed in the Methods. 

Values are means ± SE (all glomeruli and 10 largest proximal tubules from 5 images per 

kidney section so 250 largest proximal tubules from n of 5 mice per group were measured 

for comparison).
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Figure 5. Deletion of rpS6 phosphorylation had no effect on mTORC1 activation in the 
remaining kidney in response to UNX
rpS6P−/− and rpS6P+/+ littermates at 8 weeks of age were subjected to right UNX or Sham 

surgery. The mice were euthanized 7 days after the surgery, and left kidney homogenates 

were subjected to immunoblotting analysis with the indicated antibodies. All of the blots 

shown are representative blots of 3 separate experiments with similar results.
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Figure 6. Rapamycin inhibited phosphorylation of both 4E-BP1 and rpS6 but had no effect on 
the phosphorylation of Akt
Eight-week-old rpS6P−/− mice and their rpS6P+/+ littermates were pretreated with rapamycin 

(1 mg/kg body wt. intraperitoneally) or vehicle alone 2 h before right UNX or Sham surgery, 

followed by administration of rapamycin or vehicle once every two days. Seven days after 

the surgery, the mice were euthanized, and left kidney homogenates were subjected to 

immunoblotting analysis with the indicated antibodies. Shown are representative blots from 

one of three separate experiments with similar results.
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Figure 7. Inhibition of rapamycin on UNX-induced compensatory renal hypertrophy in rpS6P+/+ 

mice but not in rpS6P−/− knockin littermates
Eight-week-old rpS6P−/− mice and their rpS6P+/+ littermates were pretreated with rapamycin 

(1 mg/kg body wt. by intraperitoneal injection) or vehicle alone for 2 h before right UNX or 

Sham surgery, followed by administration of rapamycin or vehicle once every two days. The 

mice were euthanized 7 days after the surgery, UNX-induced compensatory renal 

hypertrophy was assessed by increases in kidney/body weight ratios (a) as well as increases 

in protein/DNA ratios (b). Values are means ± SE (n = 5-6 for each group); ***P < 0.0001 

indicates comparisons between vehicle-treated rpS6P+/+ mice and rapamycin-treated 

rpS6P+/+ mice as well as vehicle- or rapamycin-treated rpS6P−/− littermates. The increases in 

kidney/body weight ratios and protein/DNA ratios did not show significant statistical 

difference among rapamycin-treated rpS6P+/+ mice, vehicle-treated rpS6P−/− mice, and 

rapamycin-treated rpSe−/− mice.
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Table 1

Body weight, left kidney weight, and left kidney/body weight ratio in rpS6P+/+ and rpS6P−/− mice 7 days after 

Sham or UNX surgery.

Mouse Genotype/Surgery Body weight, g Left kidney weight, g Left kidney/Body Wt. Ratio, %

S6p+/+/Sham 26.43 ± 0.56 0.185 ± 0.006 0.701 ± 0.024

S6 p+/+/UNX 26.10 ± 0.71 0.258 ± 0.005 a 0.987 ± 0.018 c

S6p-/-/Sham 27.11 ± 0.40 0.181 ± 0.003 0.668 ± 0.010

S6p-/-/UNX 26.95 ± 0.57 0.220 ± 0.004 b 0.815 ± 0.015 d

Values are expressed as means ± SE (n = 6-8 for each group). There was no statistical difference in the body weight among the 4 experimental 
groups.

a
P < 0.0001 rpS6P+/+/UNX vs. rpS6P+/+/Sham;

b
P < 0.0001 rpS6P−/−/UNX vs. rpS6P−/−/Sham and rpS6P−/−/UNX vs. rpS6P+/+/UNX;

c
P < 0.0001 rpS6P+/+/UNX vs. rpS6P+/+/Sham;

d
P <0.0001 rpS6P−/−/UNX vs. rpS6P−/−/Sham and rpS6P−/−/UNX vs. rpS6P+/+/UNX.
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Table 2

Rapamycin inhibited UNX-induced compensatory renal hypertrophy in rpS6P+/+ mice but not in rpS6P−/− 

knockin mice.

Mouse Genotype/Surgery Body weight, g Left kidney weight, g Left kidney/Body Wt. Ratio, %

rpS6p+/+/Sham/Veh 26.84 ± 0.38 0.184 ± 0.005 0.686 ± 0.018

rpS6p+/+/UNX/Veh 26.60 ± 0.53 0.253 ± 0.004 a 0.957 ± 0.016 d

rpS6p+/+/UNX/Rapa 26.76 ± 0.58 0.221 ± 0.004 b 0.827 ± 0.014 e

rpS6p-/-/Sham/Veh 27.15 ± 0.39 0.181 ± 0.006 0.665 ± 0.007

rpS6p-/-/UNX/Veh 26.90 ± 0.38 0.220 ± 0.003 c 0.817 ± 0.010 f

rpS6p-/-/UNX/Rapa 26.74 ± 0.44 0.213 ± 0.002 0.797 ± 0.009

Values are expressed as means ± SE (n = 5-12 for each group). There was no statistical difference in the body weight among the 6 experimental 
groups (P = N.S.).

a
P < 0.0001 rpS6P+/+/UNX/Veh vs. rpS6P+/+/Sham/Veh;

b
P < 0.0001 rpS6P+/+/UNX/Rapa vs. rpS6P+/+/UNX/Veh and rpS6P+/+/UNX/Rapa vs. rpS6P+/+/Sham/Veh;

c
P < 0.0001 rpS6P−/−/UNX/Veh vs. rpS6P−/−Sham/Veh and rpS6P−/−/UNX/Veh vs. rpS6P+/+/UNX/Veh;

d
P < 0.0001 rpS6P+/+/UNX /Veh vs. rpS6P+/+/Sham/Veh;

e
P < 0.0001 rpS6P+/+/UNX/Rapa vs. rpS6P+/+/UNX/Veh and rpS6P+/+/UNX/Rapa vs. rpS6P+/+/Sham/Veh;

f
P < 0.0001 rpS6P−/−/UNX/Veh vs. vS6P−/−/Sham/Ven and vS6P−/−/UNX/Veh vs. rpS6P+/+/UNX/Veh.
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