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While much progress has been made
in recent years toward elucidating

the transcription factor codes controlling
how neural progenitor cells generate the
various glial and neuronal cell types in a
particular spatial domain, much less is
known about how these progenitors alter
their output over time. In the past years,
work in the developing mouse retina has
provided evidence that a transcriptional
cascade similar to the one used in Dro-
sophila neuroblasts might control pro-
genitor temporal identity in vertebrates.
The zinc finger transcription factor Ikzf1
(Ikaros), an ortholog of Drosophila
hunchback, was reported to confer early
temporal identity in retinal progenitors
and, more recently, the ortholog of Dro-
sophila castor, Casz1, was found to func-
tion as a mid/late temporal identity
factor that is negatively regulated by
Ikzf1. The molecular mechanisms by
which these temporal identity factors
function in retinal progenitors, however,
remain unknown. Here we briefly review
previous work on the vertebrate temporal
identity factors in the retina, and propose
a model by which they might operate.

A prevailing model explaining cell fate
specification during central nervous sys-
tem (CNS) development is the
‘combinatorial code’, in which cell iden-
tity is determined by the expression of spe-
cific combinations of transcription factors
(TFs). TF codes controlling cell fate
during neurogenesis are indeed well
established in many CNS regions, such as
the Drosophila ventral nerve cord or verte-
brate spinal cord. In these systems, neural
progenitors interpret morphogen gra-
dients to acquire distinct TF signatures

based on their position in space.1,2 These
TF combinations act as a code to endow
progenitors with the potential to give rise
to the appropriate neuronal subtypes. A
wide variety of TFs participate in these
codes. Particularly prominent are homeo-
domain TFs from the Hox and extended
Hox families, as well as bHLH TFs of the
proneural Hes and Olig families.

While TF combinations represent a
powerful and elegant framework for
explaining cell fate decisions during CNS
development, it has proven to be difficult
to ‘decode’ the most complicated neural
lineages. In regions such as the vertebrate
neocortex and retina, multipotent progen-
itors of a given spatial domain alter their
output over time to generate sequences of
different types of neuronal and glial cells.
In the retina, this sequence begins with
the production of retinal ganglion cells,
followed closely by the overlapping gener-
ation of cone photoreceptors, horizontal,
and amacrine neurons. As the generation
of these cell types peaks, rod photorecep-
tors begin to be produced. At birth, pro-
duction of most of the early-born
neuronal subtypes ceases, rod production
continues, and bipolar neurons and latest-
born M€uller glia begin to be generated in
an overlapping fashion.3–7

In the neocortex and hindbrain,
evidence suggests that both extrinsic
factors,8–14 and cell-intrinsic processes15,16

are important to control the temporal
identity of progenitors. In the developing
retina, however, even though extrinsic sig-
naling has been shown to alter progenitor
output,17–19 these factors are thought to
mostly control proliferation and act as
negative feedback inhibition signals to
refine the size of a specific neuronal
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population, rather than regulate temporal
identity in retinal progenitors.20,21

Instead, cell-intrinsic processes appear to
play a dominant role to control progenitor
fate output, both when retinal progenitors
were cultured in heterochronic transplants
or cell pellets,22–25 or when cultured
individually.4,26

Retinal progenitors cannot maintain
the same combinatorial TF code during
retinogenesis, or their output would be
static. Yet, identification of the key TFs
that define the competence state of retinal
progenitors at specific phases of develop-
ment has remained largely elusive. While
a great deal of progress has been made in
identifying TFs that contribute to the gen-
eration of particular cell fates during
retinal development, many of these fac-
tors, such as Lhx2, Pax6, Rx, and Vsx2 are
expressed in retinal progenitors through-
out development and therefore cannot
explain on their own the sequential order
of cell birth.27–33 Conversely, fate deter-
minants such as Ascl1, Atoh7, Olig2,
Onecut1/2, Otx2, Prdm1 (Blimp-1), and
Sox4/11 exhibit dynamic patterns tempo-
rally, but in each case, data suggests that
these factors act at the last or penultimate
cell division rather than in bona fide mul-
tipotent progenitors.32,34-43 Thus,
although the collective efforts of a large
number of laboratories have identified
many TFs that contribute to the combina-
torial coding of each retinal cell type, we
have little understanding of how multipo-
tent vertebrate retinal progenitors select
between them to generate lineages of the
appropriate size and complexity.

In contrast, in Drosophila, the mecha-
nism controlling temporal competence
during development has been well charac-
terized. In neuroblasts of the ventral nerve
cord or medulla, additional TF cascades
operate in time, acting to diversify the TF
code established spatially by the actions of
morphogens.44,45 In the fly ventral nerve
cord, landmark work had shown that
most neuroblasts express a sequence of
TFs as development proceeds: hunchback,
Kr€uppel, nub/pdm2 (collectively pdm),
and castor46,47 (Fig. 1A). These TFs are
necessary and sufficient to confer temporal
identity to neuroblasts, such that they pro-
duce daughter cell types in the correct
sequence.

Previously, we had shown that the zinc
finger TF Ikzf1 (Ikaros), an ortholog of
Drosophila hunchback, was sufficient to
impart late retinal progenitors with the
competence to generate early-born neuro-
nal subtypes, as well as being required for
the generation of normal numbers of
early-born fates during development.48

Because Ikzf1 had no effect on retinal pro-
genitor proliferation, these results indi-
cated that Ikzf1 does not control the
timing of cell cycle exit, but instead
directly confers early temporal identity in
retinal progenitors, which are biased to
give rise to early-born neurons when they
express Ikzf1 (Fig. 1B). Interestingly,
recent work showed that Ikzf1 misexpres-
sion in cortical progenitors resulted in
prolonged period of production of early-
born neurons well into the late temporal
identity window.49 Although Ikzf1 was
not absolutely required for early-born
neuronal cell type production in the devel-
oping cortex, these results suggest that
Ikzf1 could be a general factor regulating
early temporal identity in vertebrates,
much like hunchback is essential to con-
trol early temporal identity in multiple fly
neuroblast lineages. While Ikzf1 and
hunchback appear to function analo-
gously, it remained unclear how Ikzf1
achieved these effects in the retina.
Whereas Drosophila hunchback operates
within the context of a TF cascade that
changes over time, no such cascade had
been described in the mouse. Yet other
members of the Drosophila TF sequence
are conserved and expressed during mouse
retinogenesis. Indeed, a single homolog of
the Drosophila zinc finger TF castor, called
Casz1, was previously shown to be
expressed in later phases of retinogenesis,
as well as in differentiated photorecep-
tors.50,51 We therefore hypothesized that
an Ikzf1 ! Casz1 sequence might repre-
sent conservation of the Drosophila tem-
poral code.

To test this hypothesis, we recently
used mouse genetics and retroviral lineage
tracing to study Casz1 function during
retinogenesis.52 We showed that Casz1 is
not expressed at significant levels at early
stages, but is upregulated in retinal pro-
genitors during mid/late stages of retinal
development, suggesting a role in control-
ling temporal identity at these later stages

(Fig. 1B). Consistently, we found that
precocious misexpression of Casz1 in reti-
nal progenitors was sufficient to increase
the production of mid/late fates like bipo-
lar cells and rod photoreceptors, at the
expense of early fates such as cone photo-
receptors, horizontal cells, and amacrine
cells. Conversely, analysis of retinal pro-
genitor cell lineages in conditional Casz1
knockout retinas showed increased pro-
duction of early-born fates at the expense
of rod photoreceptors within a lineage.
Importantly, similar to what was observed
with Ikzf1, the cell fate changes observed
following Casz1 manipulations were inde-
pendent of an effect on proliferation or
cell death, indicating that Casz1 directly
controls temporal identity in retinal pro-
genitors and not cell cycle exit. Interest-
ingly, we also found that Ikzf1 normally
represses Casz1 expression in retinal pro-
genitors, and identified the cis-regulatory
modules in Casz1 that can mediate the
transcriptional effects of Ikzf1. Together
these results suggest that, much like in
Drosophila neuroblasts, a cross-regulatory
mechanism of TF expression operate to
control temporal identity progression in
mouse retinal progenitor cells.

Although the biochemical activities
underlying Casz1 function have been
studied to some extent in the develop-
ing heart, muscle and vascular systems,
where Casz1 is thought to control pro-
genitor proliferation and differentia-
tion,53–57 the mechanism by which
Casz1 confers temporal identity in neu-
ral progenitors remains unknown. In
Drosophila neuroblasts, cas was initially
suggested to function as a transcrip-
tional repressor,47 but a mechanistic
understanding of its activities remains
incomplete. In an effort to provide
some clues about Casz1 mechanism of
action, we recently carried out a gene
expression profiling experiment using
RNA-Seq on Casz1 knockout retinal
progenitors. However, this approach
failed to identify strong effects on cell
fate determinants that could explain
Casz1 function (Mattar and Cayouette,
unpublished data). Although changes
were observed in the levels of transcripts
for genes that are known to control the
production of cell types affected by
Casz1 conditional deletion, the changes
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Figure 1. Control of temporal competence in neural progenitors. (A) Roles of the temporal TFs hunchback (hb) and castor (cas) in the sequential genera-
tion of cell fates during development of the Drosophila neuroblast NB7–1 motoneuron lineage. (B) Analogous roles of the murine hb and cas orthologues
Ikzf1 and Casz1 in regulating the temporal competence of retinal progenitors. (C) Proposed model for the molecular mechanism underlying Casz1 func-
tions. Casz1 might function by suppressing the competence of genes to be expressed rather than by directly controlling target gene levels. Elucidation
of the co-factor complexes utilized by Casz1 should allow this hypothesis to be addressed. Possible complexes include Mi-2/Nurd and polycomb repres-
sive complexes. This model is not meant to be exclusive, and alternative factors not shown here could be involved.
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observed were no larger than »5-fold
for any of them. These results suggest
that Casz1 might not directly modify
the combinatorial TF code, but instead
could function by mediating more sub-
tle epigenetic changes. Indeed, castor
proteins have recently been shown to
associate with a variety of transcrip-
tional regulators, including the Mi-2/
Nurd and polycomb repressor com-
plexes.58–61 Intriguingly, previous work
has shown that Mi-2/Nurd is required
for Ikzf1-mediated fate determination
functions in lymphocytic develop-
ment.28,62 Similarly, in fly neuroblasts
and mouse cortical or retinal progeni-
tors, polycomb repressive complexes
have been shown to regulate temporal
identity,63–68 suggesting that temporal
TFs might regulate competence via
common epigenetic pathways. In such a
model, Casz1 could act by altering the
probability and/or competence of spe-
cific fate determination genes to be
transcribed, rather than acting as a
straightforward modifier of TF expres-
sion levels (Fig. 1C). Consistent with
this hypothesis, changes in the temporal
competence of Drosophila neuroblasts
are controlled by alterations in the com-
petence of fate determinant genes to be
expressed.27 Whether Casz1 could func-
tion together with Mi-2/Nurd and/or
polycomb to provide target gene speci-
ficity for chromatin modifications
remains unknown, but this is certainly
an interesting possibility.

Other potential explanations for the
effects of Ikzf1/Casz1 on progenitor
competence are of course possible, based
on the identification of factors that have
also been shown to regulate progenitor
temporal identity or progression. In Xen-
opus laevis, dicer, a key determinant of
microRNA biosynthesis and function,
was shown to control the correct onset
of markers of late-born cell types, and
several microRNAs were implicated in
this effect.69,70 Subsequently, a role for
dicer and the microRNAs let7, mir9,
and mir125 in the progression of retinal
progenitor temporal identity from early-
to late-phase was uncovered.71,72 These
effects may be mediated in part by pro-
togenin and lin28, which were shown to
be targets of the microRNAs. Thus,

dicer/microRNAs apparently also partic-
ipate in several aspects of temporal iden-
tity. Moreover, the requirement for
dicer/microRNAs in the progression of
temporal competence states is very simi-
lar to that of Lhx2, which when
mutated, stalls retinal progenitors in the
earliest phase of neurogenesis.29

Whether there are mechanistic connec-
tions between Ikzf1/Casz1, dicer/micro-
RNAs, and Lhx2 remains unclear, but in
C. elegans, the hunchback ortholog hbl-1
and the let-7 microRNA cross-regulate
each other, with hbl-1 repressing let-7
expression, and let-7 binding and inhib-
iting the hbl-1 3’ UTR.73–75 If conserva-
tion of this negative feedback loop is
maintained in the retina, this might sug-
gest a possible point of convergence for
these pathways. Alternatively, these
pathways might act independently, pro-
viding redundancy and robustness to the
system.

Elucidating how temporal identity
factors function in vertebrate neural
progenitors to control the production
of specific cell types associated with a
given developmental window will be
important, as this knowledge could pro-
vide novel ways of manipulating stem
cell differentiation for cell replacement
therapies. A recent study, for example,
reported that Tgfß functions as a regu-
lator of temporal identity in hindbrain
progenitors and provided proof of con-
cept that manipulating Tgfß can be
applied to control temporal specifica-
tion of specific neuronal types from
stem cells.9
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