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Abstract

Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular
basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria
syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively
established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the
development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed
a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary
membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained
constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into
the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of
expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-
induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden
but not CM susceptibility. Cd362/2 mice, which have decreased parasite lung sequestration, were relatively protected from
ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in
experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM
suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated
morbidity and mortality.
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Introduction

Pulmonary complications have been reported in malaria caused

by infection with Plasmodium falciparum, Plasmodium vivax and

Plasmodium ovale [1,2]. Pulmonary edema, with features of acute

lung injury (ALI) and the acute respiratory distress syndrome

(ARDS), occurs in approximately 20% of severe malaria patients

[3], often in association with cerebral malaria (CM), acute renal

failure and high parasitemia [3,4,5,6,7,8]. ARDS in adults is an

important predictor of mortality in malaria, and is associated with

a greater than 70% case fatality rate [3]. Although ALI and ARDS

are rare in the pediatric population [9], respiratory distress

accompanying severe metabolic acidosis is common in children

and predicts poor outcome [10]. While pulmonary involvement is

a recognized complication of malaria infection, little is currently

known about its pathogenesis [11].

A spectrum of severity exists with respiratory involvement in

malaria infection. Cough is a common presentation in uncompli-

cated malaria due to P. falciparum, P. vivax and P. ovale infections

[1,2]. Reduced gas transfer and impaired alveolar-capillary

membrane function have been correlated with severe disease [2].

Patients can rapidly progress to respiratory failure, either in

association with severe disease or shortly after treatment [9].

Studies suggest that this post-treatment lung injury may be

associated with prolonged alveolar-capillary inflammation [1,12].

Lung ultrastructural studies from individuals with fatal P.

falciparum-induced lung injury indicate endothelial cell cytoplasmic

swelling and edema in the lung interstitium, with monocytes and
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parasitized erythrocytes (PE) adherent within the capillaries

[13,14]. Additionally, septal or interstitial edema occurs in regions

of PE adherence [15]. Lung endothelium likely plays an important

role in malaria lung injury, in response to PE adhesion, parasite-

induced inflammation (for example, by malaria GPI) and

leukocyte adhesion. In vitro, P. falciparum PEs have been shown to

promote oxidative stress [16], and activate caspases leading to

apoptosis in human primary lung endothelial cells [16]. Both P.

falciparum PEs and GPI induce up-regulation of endothelial

inflammatory markers, including intracellular cell adhesion

molecule-1 (ICAM-1; NP_000192) and interleukin-6 (IL-6;

NP_000591) [17,18,19]. An increase in cell adhesion molecules

may further enhance leukocyte and PE adhesion, contributing to

localized endothelial damage.

Although the murine malaria model of P. berghei ANKA (PbA)

has primarily been used to study CM [20], pulmonary pathology

has also been described in some previously published studies that

employed this model of severe malaria [20,21,22,23,24,25,26].

Lung histopathology of PbA-infected mice has been reported to

show endothelial adhesion of pigment-containing monocytes and

neutrophils, and a ‘‘septal pneumonitis’’ [24]. Immunoglobulins,

complement 3, complement 4 and parasite antigens in the lung

interstitium and alveoli were detected by immunohistochemistry

one to three hours prior to death in CM-susceptible mice [22].

Studies have also demonstrated increased pulmonary vascular

permeability in PbA infection [20,23,25], which may be influenced

by CD11a-positive neutrophil and monocyte sequestration [23].

Additionally, PbA parasites sequester in lung tissue in a CD36-

dependent manner [27], and the lung may be a preferential site of

PbA biosynthesis and/or proliferation [28]. Collectively, these

data suggest that significant lung pathology occurs in PbA

infection and contributes to malaria-associated morbidity and

mortality.

Since relatively little is known about lung injury in malarial

disease, a mouse model could lead to pathophysiological insights

with potential relevance to human disease. We hypothesized that

ALI would occur in the PbA mouse model and would be mediated

by parasite sequestration in the lung. Similar to severe malarial

syndromes in human disease, we show that ALI develops in PbA

infection, and is influenced by both parasite burden and local

sequestration.

Results

PbA-infected mice develop ALI characterized by alveolar-
capillary membrane barrier disruption

In order to characterize PbA infection as a model of malaria lung

injury, bronchoalveolar lavage (BAL) was performed on C57Bl/6

mice 1–2 days prior to the development of CM symptoms and death

and the BAL fluid (BALF) was examined for protein content.

Increased levels of total protein, and more specifically IgM, in the

BALF are indicative of alveolar-capillary membrane barrier

disruption and are hallmarks of ALI [29,30,31]. Levels of total

protein were significantly elevated at day 7 post-infection (Figure 1A,

one-way ANOVA with Bonferoni’s multiple comparison correction,

Day 7 vs. Day 0: p,0.01). Furthermore, IgM was increased at both

Day 6 and Day 7 compared to baseline (Figure 1B, p,0.001). These

data showed that a disruption of the alveolar-capillary membrane

barrier and ALI occur as a result of PbA infection.

ALI caused by PbA infection is associated with increased
production of pro-inflammatory cytokines in peripheral
blood but not in alveolar spaces

To examine pulmonary inflammation induced during PbA

infection, a panel of cytokines and chemokines were examined in

B

A

Day 0 Day 6 Day 7
0

250

500

750

1000
**

B
A

LF
 P

ro
te

in
 (m

cg
/m

l)
Day 0 Day 6 Day 7

0

250

500

750

1000

***

***

B
A

LF
 Ig

M
 (n

g/
m

l)

Figure 1. C57BL/6 Mice infected with PbA develop ALI. C57BL/6
mice infected with 16106 PbA parasites were examined for lung
damage once they exhibited marked parasitemia (day 6 and 7) but
before they showed cerebral symptoms (n = 6/group/experiment,
representative of two independent experiments). A. Total protein
concentration is significantly elevated in the BAL of PbA infected mice
at Day 7 post infection (one-way ANOVA with Bonferroni’s multiple
comparison correction, **p,0.01). B. IgM concentrations are signif-
icantly elevated over baseline levels in the BAL fluid at both Day 6 and 7
of PbA infection (***p,0.001). Increased levels of BALF total protein
and IgM are consistent with the development of pulmonary vascular
leak and a disruption of the alveolar-capillary membrane that occur
during ALI.
doi:10.1371/journal.ppat.1000068.g001

Author Summary

Acute lung injury (ALI) and acute respiratory distress
syndrome (ARDS) can occur in adult malaria infections with
a case fatality rate of 70%–100%. ALI and ARDS are
characterized by protein-rich fluid in the lungs, with
reduced gas exchange, and in malaria, often accompany
high parasite levels and severe or cerebral disease. In this
work we have examined lung physiology, pathology and
genomics in mouse malaria—Plasmodium berghei ANKA—
to show that mice develop malaria-induced ALI. Infected
mice have proteinaceous fluid in their lungs, have a
migration of inflammatory cells from the blood into the
lung walls, and express immune response–related genes.
We also found that severity of ALI depended on high
parasite levels, both overall and specifically in the lung
tissue, but was not consistent with whether the mice
developed cerebral malaria. ALI due to Plasmodium berghei
ANKA infection models prominent characteristics of
human malaria-associated ALI, and we have better defined
this model of malaria ALI so it may be used to further
explore disease mechanisms and eventual treatment.
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plasma, lung tissue homogenate and BALF. PbA failed to induce

proinflammatory cytokine production in the alveoli of infected

mice, as measured in the BALF (Figure 2). In contrast,

proinflammatory cytokine production was increased both locally

(in lung tissue) and peripherally (in plasma) during the course of

PbA infection. Tumor necrosis factor (TNF; NP_038721, Fig. 2A),

macrophage inflammatory protein-2 (MIP-2; NP_033166, Fig. 2B),

interleukin-10 (IL-10; NP_034678, Fig. 2C), IL-6 (NP_112445,

Fig. 2D), keratinocyte-derived cytokine (KC or murine IL-8;

NP_032202, Fig. 2E) and interferon-c (IFN-c; NP_032363,

Fig. 2F) levels were all significantly increased in plasma at day 6

compared to baseline (Kruskal-Wallis test with Dunn’s multiple

comparison test; p,0.05: TNF, IFN-c; p,0.01: IL-10, KC;

p,0.001: MIP-2, IL-6). Lung homogenate levels of IL-6 and KC

were significantly increased at Day 6 (p,0.01 and p,0.05,

respectively) and tissue levels of MIP-2 and IFN-c were
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Figure 2. Cytokines and chemokines are not present in the BALF of PbA-infected C57BL/6 mice. A panel of cytokines and chemokines
was examined in the plasma, lung homogenate and BALF of uninfected and PbA infected C57BL/6 mice (n = 6/group/experiment, representative of
two independent experiments, expressed as mean +/2 SEM). All cytokines/chemokines examined were elevated at D6 compared to baseline
(Kruskal-Wallis test with Dunn’s multiple comparison test; * p,0.05, **p,0.01, and ***p,0.001; TNF (A), MIP2 (B), IL-10 (C), IL-6 (D), KC (E) and IFN-c
(F)). IL-6 and KC were elevated in lung homogenates at day 6 versus day 0, and MIP-2 and IFN-c levels were increased at both days 6 and 7 post-
infection (Kruskal-Wallis test with Dunn’s multiple comparison test; * p,0.05, **p,0.01, and ***p,0.001). TNF and IL-10 levels in lung homogenate
fell below the detection range of the assay. Notably, none of the cytokines were detectable in the BALF, indicating that inflammation occurs
peripherally and in the lung tissue, but not in the alveolar spaces.
doi:10.1371/journal.ppat.1000068.g002
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significantly elevated at both days 6 and 7 compared to day 0 (D6

vs. D0: p,0.01; D7 vs. D0: p,0.05). Overall, both systemic and

local tissue inflammation occur as a result of PbA infection,

however, cytokine and chemokines are produced in the plasma

and lung interstitium rather than in the alveolar spaces.

Lung tissue of PbA-infected mice shows interstitial
inflammation but no cellular infiltrates in the alveoli

To further characterize PbA-induced ALI, both alveolar cell

counts and lung histology were examined for pathological changes.

No cellular infiltration into the alveoli occurred over the course of

PbA infection, but rather BALF cell counts were decreased at day

7 compared to day 6 (Figure 3A, Kruskal-Wallis test with Dunn’s

multiple comparison test: p,0.05). Histopathological analysis

revealed interstitial pulmonary inflammation at day 6 post-

infection, with increased numbers of inflammatory cells in the

alveolar septae (Figure 3B, upper panel). However, consistent with

the BALF cell count data, the alveolar spaces were free of

inflammatory cells. By day 7 post-infection the lungs remained

inflamed, with no alveolar cellular infiltration. However, lung

architecture was lost in some areas and interstitial hemorrhages

were seen in individual animals (Figure 3B, upper panel).

Additionally, microscopic analysis of BAL cells showed few

changes in cell type (Figure 3B, lower panel). Interestingly,

erythrocytes, and rarely PEs, could be found in the alveoli of PbA-

infected mice. To summarize, these data indicate that ALI occurs

in the PbA model of severe malaria, characterized by pulmonary

edema and interstitial inflammation initiated via an ‘‘inside-out’’

mechanism that fails to induce transmigration of inflammatory

cells to the alveolar spaces.

Genes associated with defense and immune response
gene ontology (GO) categories are up-regulated in PbA-
induced ALI

To examine mechanisms underlying the pathophysiology of

PbA-induced ALI, expression microarray analysis of mouse lung

tissue was performed. Three hundred and eighty differentially

expressed genes were identified in the lungs of PbA infected

C57BL/6 mice at day 6, compared to uninfected controls, at a

false discovery rate of 1% using Exploratory Differential Gene

Expression (EDGE) analysis [32]. Functional analysis of the

differentially up-regulated genes revealed significant enrichment in

the gene ontology (GO) categories of host defense and immune

response, response to stress, and ribosomal activity, whereas down-

regulated genes were enriched in metabolism pathways and

ATPase activity (Table 1).

Because defense and immune response GO categories were

highly enriched in the PbA model of ALI, differentially expressed

genes within this functional category were further explored using

network analysis. In addition to the differentially expressed genes

identified using the EDGE analysis, cytokines significantly

Figure 3. Cellular content of BALF and histopathological analysis of lung tissue from PbA-infected C57BL/6 mice. To further
characterize lung injury in this model, both lung histopathology and BAL cell counts were examined during PbA infection. A. Alveolar cell counts
(derived from BAL, n = 6 per group/experiment) do not differ significantly from baseline, and no neutrophil infiltration was observed. However, there
is a significant decrease in BALF cellular content at Day 7 compared to Day 6 (Kruskal-Wallis test with Dunn’s multiple comparison test; * p,0.05). B.
H&E stained sections of lung tissue show increased inflammatory cells in the lungs of PbA infected mice, although cells appear to accumulate in the
interstitium and do not accumulate in the alveolar spaces (top panel: lung). Giemsa-stained cytospin preparations of BALF cells (bottom panel: BAL)
show few differences in alveolar cell types overall. Individual animals showed increased red blood cell numbers in the BALF at day 6 and 7 (blue
arrows), some of which were parasitized erythrocytes (red arrow). Therefore, interstitial inflammation, without transmigration of inflammatory cells
into the alveolar spaces, occurs in PbA-induced ALI.
doi:10.1371/journal.ppat.1000068.g003

Table 1. GO categories over-represented in the differentially
expressed genes from the PbA model of ALI

Enriched GO categories in up-regulated genes (FDR,0.001)

Response to biotic stimulus

Defense response

Immune response

Ribosome

Response to stress

Regulation of translation

Ribonucleoprotein complex

Enriched GO categories in down-regulated genes (FDR,0.001)

Metabolism

ATPase activity

doi:10.1371/journal.ppat.1000068.t001
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increased in lung homogenate (MIP2, IL-6, KC, and IFN-c;

Figure 2) were included in the analysis, for a total of 27 gene

products. The resultant gene-gene interaction network (or

interactome), created from previously identified gene product

interactions, consisted of 21 genes (Figure 4). Many of these genes

were up-regulated cytokines and chemokines. Additionally, the

structure of this interactome was dependent upon three hubs, or

nodes of high interconnectivity: namely, IFN-c (NM_008337),

TNF (NM_013693) and IL-6 (NM_031168).

Susceptibility to ALI in PbA infection does not correlate
with cerebral malaria susceptibility

To investigate whether genetic determinants regulating

susceptibility to CM in the PbA model correlate with ALI, the

responses of two pairs of CM-resistant and CM-susceptible in-

bred mouse strains infected with PbA were compared. At day 6

post-infection, despite their divergent outcome, C57BL/6 (CM-

susceptible) and BALB/c (CM-resistant mice) have equivalently

elevated BALF IgM concentrations (Figure 5A) and parasitemia

(Figure 5B), although this study is limited by its small sample size

(N = 6). However, CM-hyper-susceptible 129SV/J mice devel-

oped significantly higher BALF IgM levels than CM-resistant

AKRJ mice (Figure 5C, Mann-Whitney test: p = 0.0012). This

coincided with the 129SV/J developing significantly higher

parasitemia than the AKRJ mice (Figure 5D, Mann-Whitney U

test p = 0.0022). Therefore, in this model, genetic resistance to

CM for example in BALB/c mice does not necessarily confer

resistance to ALI.

Figure 4. Gene network analysis identifies putative mediators of
PbA-induced ALI. A gene-gene interaction network of differentially
expressed lung homogenate cytokines and defense/immune response
genes in the PbA infection model was created from known gene
product interaction databases (Ingenuity, Adriadne and Human Protein
Reference Database). Red circles denote upregulated genes and green
downregulated genes. Nodes with high interconnectivity, including
IFN-c, TNF and IL-6, may be important mediators of PbA-induced ALI.
doi:10.1371/journal.ppat.1000068.g004
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Figure 5. PbA-induced ALI does not correlate with CM susceptibility in in-bred mouse strains. Two pairs of CM-resistant and CM-
susceptible mouse strains were infected with PbA to examine whether genetic susceptibility to CM in the PbA model parallels susceptibility to ALI. A.
Despite different infection outcome, C57BL/6 (CM-susceptible, n = 6) and BALB/c (CM-resistant, n = 6) mice have equivalent BALF IgM day 6
(horizontal lines represent mean), increased over uninfected controls, and also have equivalent parasitemia (B; geometric means C57BL/6 = 4.78 and
BALBc = 4.21). C. Conversely, 129SV/J (CM-susceptible, n = 7) mice develop significantly higher levels of BALF IgM (horizontal line represents mean, 2-
tailed t-test, p = 0.0104) and also show significantly higher parasitemia than AKR/J (CM-resistant, n = 8) mice (D; horizontal line represents geometric
mean, Mann-Whitney U test p = 0.0022). Both data sets are representative of two independent experiments. These results indicate that genetic
susceptibility to CM does not correspond to ALI.
doi:10.1371/journal.ppat.1000068.g005
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ALI in PbA infection is correlated with peripheral parasite
burden

Since no association was found between the development of

CM and ALI, the effect of parasite burden on the development of

ALI was examined. Mice with higher parasitemias were more

likely to show correspondingly high levels of IgM and total protein

in the BALF (Table 2). This observation led to the hypothesis that

the extent of lung injury may be influenced by peripheral

parasitemia, which likely reflects local parasite burden in the

lung. Because diverse genetic factors influence infection in the

different in-bred strains, this question was addressed using

escalating parasite inocula in order to induce a spectrum of

parasitemia in ALI-susceptible C57BL/6. Consistent with this

hypothesis, mice that received a higher inoculum of PbA had

increased concentrations of BALF IgM at day 6 post-infection

(Figure 6A; Kruskal-Wallis test with Dunn’s multiple comparison

test, 16106 vs. 16105 PE: p,0.05) corresponding with elevated

circulating parasitemias (Figure 6B; Kruskal-Wallis test with

Dunn’s multiple comparison test, 16106 vs. 16105 PE: p,0.05).

Parasitemia was positively correlated with BALF IgM log

concentration (Figure 6C; r2 = 0.73). These findings suggest that

ALI is influenced by parasite burden and that increasing levels of

circulating infected erythrocytes result in increasing levels of ALI.

ALI induced by PbA infection is attenuated in Cd362/2

mice
A high peripheral parasite burden may not only stimulate

proinflammatory processes but also increase the number of
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Figure 6. Parasite burden affects the development of ALI in PbA infection. To explore whether ALI was related to parasite burden, groups
of C57BL/6 mice were inoculated with different doses of PbA, inducing a gradient of parasitemias within the same genetic background (n = 6 mice/
dose (group)/experiment, representative of two independent experiments). A. BALF IgM was significantly increased at day 6 post-infection in C57BL/
6 mice that received an inoculum of 16106 PE compared to those receiving a dose of 16105 (Kruskal-Wallis test with Dunn’s multiple comparison
test, *16106 vs. 16105 PE: p,0.05). B. An increased inoculum also corresponded with increased peripheral parasitemia at day 6 (Kruskal-Wallis test
with Dunn’s multiple comparison test, *16106 vs. 16105 PE: p,0.05). C. Parasitemia was positively correlated with log values of BALF IgM
concentration (r2 = 0.73). These findings indicate that parasite burden influences the development of ALI.
doi:10.1371/journal.ppat.1000068.g006

Table 2. Summary of the correlation between peripheral parasitemia and BAL IgM or total protein levels in all in-bred strains
tested at Day 6 post-infection (*p,0.05)

Strain (Sex) ALI Susceptible CM Susceptible
%Parasitemia
(Mean6SD)

Correlation
%Parasitemia vs. [IgM]

Correlation
%Parasitemia vs. [Protein]

C57Bl/6 (F) Yes Yes 3.0060.67 0.41 0.75*

C57Bl/6 (M) Yes Yes 4.9361.22 0.42 0.66

BALB/c (M) Yes No 6.0065.29 0.60 0.88*

129SV/J (M) Yes Yes 9.4462.37 0.90* 0.86*

AKR/J (M) No No 3.0462.09 20.01 20.45

doi:10.1371/journal.ppat.1000068.t002
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parasites available for sequestration in vital organs, including the

lung. P. berghei parasites preferentially bind in the lungs of

infected mice in a CD36-dependent manner (CD36;

NP_031669) [27]. Given their reduced lung parasite burden,

we hypothesized that Cd362/2 (Cd36; NM_007643) mice would

be expected to be protected from ALI caused by P. berghei

infection.

Additionally, CD36 is a receptor for thrombospondin-1 (Thbs-

1; NP_035710), which was identified in the defense response

interactome (Figure 4). Thbs-1 (NM_011580) was up-regulated in

the lungs of mice at day 6 post infection, compared to uninfected

animals. This observation was confirmed using quantitative real-

time RT-PCR analysis of an independent PbA infection (mean

normalized copy number6standard deviation: Day 6

1193.36199.2, Day 0 545.6611.9, 2-tailed t-test with welch’s

correction p,0.03).

Similar to previously published work, PbA-infected Cd362/2

mice were not protected from death secondary to CM (data not

shown). However, Cd362/2 mice developed significantly less ALI

during PbA infection compared to their wild type counterparts, as

measured by BALF IgM concentration (Figure 7A, 2-tailed t-test,

p,0.0001), despite having an equivalent parasitemia (Figure 7B).

In summary, ALI induced by experimental murine malaria was

CD36-dependent.

Discussion

This study provides a detailed analysis of ALI that occurs in

experimental murine malaria, which may provide an informative

tool to study ALI and ARDS associated with human malaria

infection. Mice infected with PbA develop septal inflammation and

disruption of the alveolar-capillary membrane barrier, leading to a

proteinaceous non-cardiogenic pulmonary edema, dependent on

parasite burden and CD36. Interestingly, susceptibility to ALI

does not necessarily correlate with CM development in genetically

in-bred mouse strains. While all CM-susceptible strains tested

developed ALI, there was differential susceptibility of CM-resistant

strains to ALI, for example BALB/c develop ALI whereas others

did not (AKR/J). These data suggest that ALI occurs via a

mechanism distinct from the pathogenesis of CM in the PbA

model.

ALI in experimental murine PbA malaria may, at least partially,

represent a clinically relevant model of ALI seen in individuals

with severe human malaria, since both share similar histopathol-

ogy features, parasite sequestration in the lung capillaries and

alveolar-capillary membrane barrier disruption leading to pulmo-

nary edema. Lung histology from both PbA and P. falciparum

infections shows an edematous interstitium with leukocyte

infiltration [13]. PEs and leukocytes sequester in the pulmonary

microvasculature in human malaria infections, as demonstrated by

both ultrastructural studies [13,14,15] and a reduced pulmonary

capillary vascular component volume [2,12]. Additionally, hem-

orrhage is a classic feature of non-malarial human ALI/ARDS

[29,33] and histopathological reports on malaria-induced ALI

indicate that focal alveolar hemorrhages occur in humans [34,35],

similar to those observed in the PbA model. Progressive alveolar-

capillary dysfunction has been reported in individuals with malaria

immediately following appropriate antimicrobial therapy [2,12].

This post-treatment lung damage has been attributed to the host

inflammatory response, and it appears that pulmonary complica-

tions in human malaria result from a combination of PE

sequestration, and the corresponding host inflammatory response

to parasite burden. As in human malaria, ALI in the PbA model is

partially mediated by parasite burden and sequestration (Figures 5

& 6), but also likely occurs as a response to parasite-driven

inflammatory responses. Indeed, work using an anti-P. falciparum

GPI vaccine in the PbA model showed markedly reduced

pulmonary edema in immunized versus sham-immunized animals

[26].

As with any animal model of disease, there are limitations to the

correlations that can be drawn to human disease, especially since

limited studies have examined ALI in human malaria infection. It

is not possible to comment on how the BAL findings from this

model relate to human malaria, because these studies have not

been performed and obtaining BAL samples from severe malaria

patients, especially in a field setting, may present challenges.

Additionally, while certain in-bred mouse strains show differential

susceptibility to PbA-induced ALI and CM–BALB/c mice develop

ALI but are resistant to CM–this may not necessarily reflect what

occurs in human malaria. Although case reports and other studies

have demonstrated that respiratory involvement and ALI can

occur in non-cerebral malaria [1,2,4,12], other studies have shown

that lung parasite burden parallels that in the brain [34] and that

ALI commonly occurs in conjunction with CM [3,8,34,35].

This study examined transcriptional profiles from the lungs of

PbA infected mice. The defense/immune response interactome

(Figure 4) is structured around three hubs of high interconnec-

tivity–TNF, IFN-c and IL-6, all of which play significant roles in

host pro-inflammatory responses to malaria [36,37,38]. The
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Figure 7. Cd362/2 mice develop significantly less ALI than wild-
type mice. Previous studies have demonstrated that P. berghei binds in
a CD36-dependent manner and sequesters preferentially in the lungs of
infected mice. Hypothetically, mice with reduced lung parasite burden
would be protected from the development of ALI. A. Infected Cd362/2

mice showed decreased BALF IgM concentration at Day 7 post infection
compared to wildtype controls (2-tailed t-test, ***p,0.0001); however,
B. Cd36+/+ and Cd362/2mice developed equivalent peripheral parasit-
emias and died from CM during the same time frame (data not shown).
Nine CD362/2 mice and 10 Cd36+/+ mice were used per group, and the
data are representative of two independent experiments. Therefore, ALI
in this model is CD36-dependent.
doi:10.1371/journal.ppat.1000068.g007
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functional stability of genetic networks is highly dependent on

nodes of high interactivity [39], indicating they may play a

pivotal role in the transcriptional response to PbA-induced ALI

and thus may be promising therapeutic targets. TNF has been

well-established as a key mediator of ALI [40,41,42], which is

also likely the case in PbA, since TNF levels were significantly

increased in the lung tissue of infected mice. However, since

IFN-c, TNF and IL-6 are involved in multiple biological

processes in PbA infection, it may be possible to more effectively

modulate these key hubs by targeting a molecule or pathway

shared by them, such as THBS-1 (Figure 4). THBS-1 was of

particular interest among the interactome because it binds and

signals primarily via CD36 (NP_000063) [43,44]. THBS-1

(NP_003237) has also been identified as an cellular receptor

for PE adhesion [45], and additionally, soluble THBS-1 binds to

PEs, augmenting adhesion to endothelial cells via CD36 under

physiological flow conditions [46,47]. The upregulation of thbs-1

expression could play an important role in PbA-induced ALI by

increasing CD36-mediated cytoadherance in the lung, especially

since CD36 is a primary receptor for PEs in the pulmonary

vascular endothelium [27]. Although CD36 deficiency does not

affect CM development and survival in the PbA model [27], our

work demonstrates that Cd362/2 mice develop significantly less

ALI compared to wild-type controls. This finding suggests that

malaria-induced ALI occurs via a CD36-dependent pathogenic

mechanism.

These findings may appear to conflict with previous work by our

group, which has argued that CD36 may be beneficial in the

immune response to malaria via its role as a receptor for non-

opsonic phagocytosis of PEs by macrophages [48,49,50,51].

Recent studies, using chimeric mice expressing CD36 only on

hematopoietic cells, showed that CD36 on myeloid cells (i.e. the

hematopoeitic compartment) but not on endothelial cells (the non-

hematopoeitic compartment) conferred protection to CM in the

PbA model [52]. However, there is conflicting evidence that PEs

that bind CD36 are associated with severe disease. Parasites

isolated from severe malaria patients in Thailand were shown to

preferentially bind ICAM-1 on lung endothelium in vitro compared

to those from uncomplicated patients [53]. Similarly among

children with severe malaria in Africa, parasite binding to CD36

was inversely related to disease severity [54], but another study

found that CD36 binding was equivalent between parasitized

erythrocytes derived from CM patients or community controls

[55]. However none of these studies specifically examined parasite

isolates from patients displaying symptoms of ALI.

Additionally, polymorphisms in CD36, and CD36 deficiency,

exist as natural variants in malaria endemic regions, including Asia

[56] and Africa [57]. CD36 polymorphisms have been associated

with both increased [58] and decreased susceptibility to CM [59].

Moreover, a specific non-sense mutation in CD36 was shown to be

significantly associated with protection from respiratory distress in

African children [60]. These studies examined different polymor-

phisms, which may reflect differential protein function or

expression in different cell types. If CD36 mutations do confer

susceptibility to cerebral malaria [53], these mutations may be

maintained in human populations through selection pressure of

another prevalent infection other than malaria, or perhaps even by

resistance to malaria-associated ALI. Additional studies are

required to clarify the association between CD36 polymorphisms

and severe malaria including ALI. Taken together, the available

data suggest a dual role for CD36 in malaria infection.

Specifically, as a pattern recognition receptor on myeloid cell

lineages, CD36 may contribute to innate immune response and

parasite clearance but at high parasite density, endothelial cell

CD36 may also play a role, at least in the mouse model, in the

development of tissue injury at sites such as the lung.

Methods

Mice and parasites
Animal use protocols were reviewed and approved by the

Faculty of Medicine Advisory Committee on Animal Services at

the University of Toronto and all experiments were conducted

according to the animal ethics guidelines of the University of

Toronto. C57Bl/6 and BALB/c mice were obtained from Charles

River Laboratories (Senneville QC), and 129SV/J and AKR/J

were purchased from Jackson Laboratories (Bar Harbor ME).

CD362/2 mice (on a C57Bl/6 background, a gift from Maria

Febbraio (New York NY)) were bred and maintained at the

University of Toronto animal facility. Mice were 8–12 weeks of

age and groups were matched by sex. Each experiment was

performed twice, with 6–10 mice per group, as outlined in

individual figure legends.

Cryopreserved PbA (MR4, Vannassas MA) was thawed and

passaged through naı̈ve C57Bl/6 donor mice until parasitemia in

the passage animals reached approximately 10%. On day 0,

experimental mice were infected by intraperitoneal injection with

freshly isolated PbA. Male mice were inoculated with 56105 PE

and females with 16106 PE, inocula that reproducibly show 100%

mortality in C57BL/6 mice. Parasitemia was monitored daily after

Day 3 using thin blood smears stained with modified Giemsa

(Protocol Hema 3 Stain Set; Sigma, Oakville ON).

Bronchoalveolar lavage fluid (BALF) analysis
At Day 6 or 7, infected mice and uninfected controls were

euthanized using isofluorane and BALF of both lungs was

obtained by instillation and aspiration of three 0.5 ml aliquots of

Dubecco’s Phosphate Buffered Saline (PBS; Gibco/Invitrogen,

Burlington ON) [33]. The BALF was spun at 8006g at 4uC for

5 min, and the supernatant was removed and stored at 280uC for

further protein analysis. The cell pellet was resuspended in 1 ml

ice-cold PBS. Total cell numbers were determined using a

hemocytometer and differential cell counts were determined by

cytocentrifugation and modified Giemsa staining. BALF concen-

trations of MIP-2, mouse keratinocyte-derived cytokine (KC or IL-

8), IL-1a (NP_034684), IL-6, IL-10, TNF-a , (that measures TNF

and LT-a) and IFN-c were determined by multiplex immunoassay

(Luminex 100) using cytokine-specific bead kits according to the

manufacturer’s protocols (R&D Systems, Minneapolis MN). TNF-

a levels in lung homogenates were confirmed using a standard

sandwich ELISA according to the manufacturer’s protocol

(eBioscience, San Diego CA). BALF total protein concentration

was measured using a BCA protein assay (Sigma), and BALF IgM

concentration was determined by ELISA (Bethyl Laboratories,

Montgomery TX).

Lung homogenate analysis
Lungs were excised, weighed and homogenized in 2ml PBS/

0.5g lung tissue for 30 sec. using a ULTRA -TURRAXH disperser

(IKA, Wilmington NC). Homogenates were stored at 280uC for

further cytokine analysis. Cytokine concentrations were measured

as described above.

Lung histology
Lungs were fixed for histology at 20cm H2O with 4%

paraformaldehyde buffered in PBS. After fixation, the lungs were

embedded in paraffin, cut into 4-mm sections, and stained with

hematoxylin and eosin (H&E).
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RNA isolation and microarray hybridization
Lungs were excised immediately following euthanasia, snap-

frozen in liquid nitrogen and stored at 280uC until use. Total

RNA was extracted using Trizol reagent (Invitrogen) according to

the manufacturer’s instructions, and mRNA was purified using an

Oligo-dT cellulose column (NEB, Mississauga, ON) as described

previously [61]. cDNA with incorporated 5-(3-aminoallyl)-29deox-

yuridine-59-triphosphate (AAdUTP; Sigma, Oakville ON) was

reverse-transcribed from 1–2 mg mRNA. Purified cDNA was

coupled with N-hydroxysuccinimide esters of Cy3 or Cy5 (GE

Lifesciences, Baie d’Urfe QC). Cy3 and Cy5-labeled cDNA pairs

and Agilent control spots were added to a final volume of 0.5ml

hybridization buffer (1 M NaCl, 0.5% sodium sarcosine, 50 mM

methyl ethane sulfonate (MES), pH 6.5, 33% formamide and

40 mg salmon sperm DNA (Invitrogen)). Hybridizations were

performed in Agilent hybridization (Agilent, Palo Alto CA)

chambers at 42uC with rotation for 18–24 hours. Slides were

washed in 66SSPE, 0.005% sarcosine, followed by 0.066SSPE,

allowed to dry and scanned with a 4000A microarray scanner

(Axon Instruments, Union City CA).

TIFF images were quantified with GenePix (Axon Instruments).

Variance stabilizing normalization [62] and loess smoothing were

applied in Bioconductor [63] and the data were transformed to

log2 scale.

Each array was hybridized with cDNA transcribed from an

RNA pool of 5 C57BL/6 mice per timepoint (Day 0 and 6) and

technical replicates (dye-swap) experiments were performed for

both time points.

Microarray Data Analysis
The PbA ALI dataset (GSE9497) and mouse/PbA microarray

platform (GPL4220) were deposited in the GEO database (www.

ncbi.nlm.nih.gov/projects/geo/) in accordance with MIAME

guidelines.

Probe mapping was performed as previously described [28] and

a total of 9724 unique mouse genes, annotated using the Entrez

Gene database, were included in the analysis. Since RNA was

pooled from whole lung homogenates and replication was limited

to dye-switching experiments, a statistical framework developed

for the analysis of single cDNA microarray experiments–

Exploratory Differential Gene Expression (EDGE)–was utilized

[32]. This program was implemented in the R software

environment (www.r-project.org) to determine statistical signifi-

cance in each microarray experiment. The problem of multiple

hypothesis testing was addressed using false discovery analysis

based on Q-values [64]. A gene was deemed significantly

differentially expressed if its Q-value was #0.01 in at least one of

the dye-switching experiments and the direction of change (i.e., up

or down-regulation relative to uninfected controls) was consistent

in both experiments.

Gene Ontology (GO) Analysis
Functional annotation of the genes was obtained from Gene

Ontology Consortium’s database [65], based on their respective

molecular function, biological process, or cellular component.

Enriched functional categories within differentially expressed

genes were determined using the Expression Analysis Systematic

Explorer (EASE) algorithm [66]. A variant of the one-tailed

Fisher exact probability test based on the hypergeometric

distribution was used to calculate P-values. Generated P-values

indicated whether a given GO process is over-represented

compared to what would be expected by random sampling.

Multiple hypothesis testing was addressed by performing

permutation analysis (n = 1000) and selecting a false discovery

rate cutoff of #0.001.

Gene Network Analysis
A gene-gene interaction network was created by mining gene

product interactions from the following databases: Ingenuity [67],

Adriadne [68], and Human Protein Reference Database [69].

These knowledge bases have been manually and computationally

compiled through extensive literature searches. Molecular rela-

tionships consisting of direct physical, transcriptional, and

enzymatic interactions among gene products serve as the basis

for creating genetic networks from gene or protein expression

data.

Quantitative real-time RT-PCR
cDNA was synthesized from 0.5 mg of mRNA using

Superscript II reverse transcriptase with Oligo (dT)12-18 primers

(Invitrogen). Serial dilutions of mouse genomic DNA were used

as standards [70]. gDNA standards or cDNA were added to the

qPCR reaction containing 16 Power Sybr Green Master Mix

(Applied Biosystems) and 0.5 mM primers in a final volume of

10 ml. qPCR was performed using the ABI PrismH 7900HT

Sequence Detection System (Applied Biosystems). Copy numbers

were normalized to 3 mouse housekeeping genes–Hprt, Sdha, and

Ywhaz [71]. Forward (fwd) and reverse (rvs) primer sequences are

as follows: Thbs1-fwd: TGT GGA CTT CAG CGG TAC CTT

CTT; Thbs1-rvs: GGA CTG GGT GAC TTG TTT CCA

CAT; Hprt-fwd: GGAGTCCTGTTGATGTTGCCAGTA,

Hprt-rvs: GGGACGCAGCAACTGACATTTCTA; Sdha-fwd:

TCACGTCTACCTGCAGTTGCATCA, Sdha-rvs: TGACAT-

CCACACCAGCGAAGATCA; Ywhaz-fwd: AGCAGGCAGA-

GCGATATGATGACA, Ywhaz-rvs: TCCCTGCTCAGTGA-

CAGACTTCAT.
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