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Quantum walks of interacting 
fermions on a cycle graph
Alexey A. Melnikov1,† & Leonid E. Fedichkin2

Quantum walks have been employed widely to develop new tools for quantum information processing 
recently. A natural quantum walk dynamics of interacting particles can be used to implement efficiently 
the universal quantum computation. In this work quantum walks of electrons on a graph are studied. 
The graph is composed of semiconductor quantum dots arranged in a circle. Electrons can tunnel 
between adjacent dots and interact via Coulomb repulsion, which leads to entanglement. Fermionic 
entanglement dynamics is obtained and evaluated.

Quantum walks are quantum counterparts of classical random walks1,2. Unlike the state of classical walker, 
quantum walker’s state can be a coherent superposition of several positions. Quantum walks found applications 
to various fields, for example, to the development of a new family of quantum algorithms3–6 or to the efficient 
energy transfer in proteins7. And recently, quantum walk dynamics is used as an underlying mechanism for 
quantum-enhanced decision-making process in reinforcement learning8,9, for which schemes of experimental 
realization in systems of trapped ions and superconducting transmon qubits were proposed10,11. There are plenty 
of theoretical and experimental results in the field of single-particle quantum walks12,13, but walks with multiple 
identical walkers, in both non-interacting and interacting cases, are less explored.

In this paper we study quantum walks of identical particles for quantum information processing purposes. 
It is known that entanglement creation plays a pivotal role in most of the branches of quantum information. 
Here we introduce a method for generating a two-qudit (two d-level systems) entangled state by implementing 
continuous-time quantum walks on a cycle graph. This technique allows us to observe diverse structures of entan-
gled subsystems of high dimensions, a preparation of which is of importance14,15.

To relate theoretical study with feasible experimental implementations we consider realistic models of quan-
tum walks16. The physical system we choose as a suitable candidate for quantum walks implementation is an array 
of tunnel-coupled semiconductor quantum dots. Quantum dots in semiconductors can be used as building blocks 
for a construction of a quantum computer, where quantum dots positions provide a spatial degree of freedom of 
a quantum particle17–20. It was shown that a spatial location of an electron in one of two semiconductor quantum 
dots can serve for encoding a qubit17,18 and errors that occur mostly because of the interaction with acoustic 
phonons can be corrected21,22. In this paper we study quantum dots arranged in a circle, where each quantum dot 
can be populated by no more than one electron. By placing two identical particles in this system, one can define 
higher dimensional quantum states, qudits. If electrons are close enough they can also influence each other via 
Coulomb interaction. First, we analyze dynamics of non-interacting particles, and then we proceed to the case of 
interacting electrons.

Results
The remainder of the paper has the following structure: first, we introduce the model of symmetrical two-electron 
quantum walk on a cycle graph of arbitrary size. After the introduction of the model we study the dynamics of 
electrons in the cases with and without an interaction between them. The case of interacting electrons is studied 
in details and the scheme for entangling gate between two qudits, represented by two electrons, is proposed. Then 
we summarize the results and discuss possible applications of the proposed scheme.

Framework. The system under consideration contains two electrons. Each electron can sit in one of N quan-
tum dots arranged in a circle23. Dots themselves can be formed from the two-dimensional electron gas by field of 
gates and the population of electrons in these dots can be controlled by potentials on gates. Each position in the 
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circle can be occupied by at most one electron. The position of an electron can be measured by quantum point 
contact detectors, which are placed near quantum dots such that an electron in a certain quantum dot decreases 
an electric current in the detector by increasing a potential barrier. Therefore a lower current detects an electron 
and a higher current indicates an absence of an electron (an empty quantum dot), correspondingly.

Experimentally, lateral structures of this geometry with different number of quantum dots were realized. 
Among them, a double quantum dot, which can be viewed as a circle with N =  2 sites, is the most studied con-
figuration and is used to create a solid state qubit24–27. Beyond this, triple quantum dots with circular and linear 
geometries were studied in detail both theoretically and experimentally28. A concept of a scalable architecture was 
demonstrated by fabricating quadruple29–31 and quintuple32 quantum dots. In all experiments, a high degree of 
control over the precise number of electrons in each quantum dot was demonstrated by measuring stability dia-
grams. Moreover, it was shown that it is possible to tune the tunnel coupling between neighbouring quantum dots 
by changing the voltage on the gate that spatially separates these dots, see e.g. ref. 26, where the tunnel coupling 
was shown to be an exponential function of the gate voltage. Similar techniques and technologies could be used 
for a fabrication of circles of larger sizes.

The described circle of semiconductor quantum dots is mathematically represented as a cycle graph with 
quantum dots being vertices of this graph. Edges of the cycle graph connect only nearest neighbours and repre-
sent possible tunnel transitions of electrons. We enumerate the vertices within the graph, from 0 to N −  1. The 
localization of an electron in the 0-th, 1-st, …  or (N −  1)-th quantum dot is described by corresponding quantum 
states |0〉 , |1〉 , …  or |N −  1〉 , as shown in Fig. 1 for N =  2K, ∈K . As a straightforward result, the states |0〉 , |1〉 , 
…  and |N −  1〉  can be viewed as the basis states of a qudit, whose amplitudes squared correspond to the probabil-
ities of detecting an electron. Note that because electrons cannot occupy the same energy level, i.e. the same vertex 
on a cycle graph, |ii〉  two-qudit basis states are impossible for all i ∈  [0, 2K −  1].

Electrons are initially placed in opposed vertices of the graph, as depicted in Fig. 1, but can later change their 
positions by hopping between neighbouring vertices. This process is a continuous-time quantum walk governed 
by the Hamiltonian, which we introduce below. Electrons walk and spread due to tunneling through the barrier of 
controlled height between the quantum dots. For the sake of simplicity we assume that electrons spins are always 
up (1/2), which can be the case, for example, in a strong magnetic field. Wave function of two indistinguishable 
fermions in form of |Ψ (t)〉  =  |ψ(t)〉 |↑ ↑ 〉 , an antisymmetric coordinate part of which is
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where |m, k〉  is the state with the first and second electron being in the m-th and k-th vertex, respectively; |ψ(m,k)〉  
is the state of electrons occupying vertices m and k, which corresponds to a product state of two uncorrelated sys-
tems. These electrons have to be treated as indistinguishable because their wave functions overlap spatially in the 
quantum dots. The state in Eq. (1) is a superposition of electrons being in different vertices with time-dependent 
amplitudes ωmk(t), which form a matrix ω(t)33. The matrix ω(t) is antisymmetric, i.e. ωT(t) =  − ω(t), and takes into 
account the antisymmetric nature of the fermionic wave function. The normalization of the |ψ(t)〉  state gives an 
additional condition on ω(t):

ω ω = .†t tTr( ( ) ( )) 1 (2)

The wave function specified by ω matrix fully characterizes a fermionic state, however a correct definition of 
its subsystems is required for studying properties of the system. The problem of reduced fermionic density oper-
ators was addressed recently in refs 34 and 35, where it is shown that parity superselection rule should be applied 

Figure 1. A cycle graph with N = 2K vertices, where each vertex is viewed as a level in the N-level quantum 
system. Two electrons are initially placed in the 0-th and K-th positions, i.e. to an initial Ψ = −K(0) ( 0

↑↑K0 ) / 2  state. This initial state is chosen in order to achieve a high symmetry in this system.
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to the fermionic state and the unique definitio of the reduced density operator is provided. In our case, the total 
number of fermions is constant, which leads to the standard procedure of obtaining the reduced state ρ1(t):
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This definition is used later to study the entanglement properties of the system.

Non-interacting indistinguishable electrons. The dynamics of the two-electron fermionic state 
depends on an arrangement of quantum dots: if quantum dots are close enough – electrons will interact through 
Coulomb repulsion, otherwise electrons do not interact. First, we consider the case without interaction and move 
to the case with interaction afterwards.

The evolution of an electron in an array of tunnel-coupled semiconductor quantum dots can be modelled by 
a continuous-time quantum walk, which is defined by a Hamiltonian with nearest-neighbour interactions23. By 
analogy, the evolution of two electrons can be modelled by a continuous-time quantum walk of two particles that 
is governed by the Hamiltonian

 ∑= Ω + + + + . .
=

−
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where Ω is the tunneling frequency, which corresponds to the potential barrier height between neighbouring 
quantum dots. This Hamiltonian is defined for N >  2 (K >  1), for the smallest graph (K =  1) the Hamiltonian is 
equal to the half of the one in Eq. 4, i.e. HO/2, since in the circle of two dots clockwise and counterclockwise jumps 
correspond to the same transition. One can see, that the Hamiltonian HO only changes the spatial part of the total 
fermionic wave function |Ψ (t)〉 , leaving the spin part unchanged. In other words, the walk is performed in the 
space of coordinates of quantum dots, and the spins remain parallel as they were initially prepared. Therefore, the 
spin part of the wave function factors out from the evolution and will not be taken into account below. The 
remaining part of the total wave function, the antisymmetric spatial part, evolves according to the Schrödinger 
equation ψ ψ= −t e( ) (0)iH t/O , where the unitary operator −e iH t/O  can be shown to map any antisymmetric 
fermionic wave function to antisymmetric one. An exact matrix representation of this unitary operator can be 
obtained analytically for small K, but in general can only be computed numerically.

In Methods we provide exact solutions of the Schrödinger equation for K =  2, 3, 4. Exact solutions let us 
observe the periodic dynamics for K =  2 and 3 with periods T =  π/2Ω and 2π/3Ω, respectively, and aperiodic 
dynamics for K =  4 (see Methods for details). From these results we conclude that in general the dynamics is 
aperiodic, as it was also shown in the case of discrete-time quantum walks on cycles36,37. Although the dynamics 
is aperiodic, it is known that by waiting enough time, an arbitrary precision of returning to the initial state can be 
achieved, as shown in Methods for K =  4. The possibility to achieve an arbitrary precision of the state revival holds 
for all K and is known from the Poincaré recurrence theorem38,39, although in general for different K it might take 
different time to achieve the same level of precision.

In experiment, the wave function |ψ(t)〉  cannot be directly observed, the measured data corresponds to a 
population in each quantum dot, i.e an average number of electrons in each dot. For this reason our function of 
interest is the population λi in the vertex i of the cycle graph. The population λi is equal to the probability to detect 
an electron in the vertex i and is related to the amplitudes ωmk of the wave function |ψ(t)〉 :
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Figure 2 shows population dynamics λi(t) for the smallest K =  2, 3, 4 and 5. The solution in the case of K =  1 is 
trivial |ψ(t)〉  =  |ψ(0)〉  and is not shown. From Fig. 2(a,b) one can immediately deduce that the charge dynamics 
is periodic, confirming the analytical results for the periods of quantum walks T =  π/2Ω and 2π/3Ω in the case of 
K =  2 (a) and K =  3 (b), respectively. The dynamics in the case of K =  4 (c) is, however, aperiodic, which is proven 
in Methods. But as we discussed before, a nearly full state revival can be observed in this system, in particular in 
the case of K =  4 (c) and K =  5 (d).

A population distribution dynamics λ λ′ =t t( ) ( )/2i i , similar to the one shown in Fig. 2, can be obtained by 
having only one electron initially prepared in a superposition of |0〉  and |K〉  coordinate states, where the scaling 
factor of 1/2 comes from the reduction of the total charge in the system. This can be seen from the right part of 
Eq. 5 – the position of the second particle k is irrelevant, the distribution λi only depends on the position of the 
first particle. The probability to find this single electron in a certain node is half of the probability of finding one of 
two non-interacting electrons, which is also a consequence of Eq. 5. Hence a quantum walk of two non-interacting 
particles can be simulated by a one-particle walk, whose dynamics was studied in refs 23, 40 and 41. But because 
it is not straightforward to initialize an electron in a superposition of being in different nodes, two-particle walk 
can be used for studying one-particle walks with arbitrary initial conditions.

Interacting indistinguishable electrons. Here we consider the case of two identical electrons that inter-
act through Coulomb repulsion. The mutual repulsion between electrons becomes apparent when the distance 
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between the quantum dots is such that the emerged Coulomb energy induced by one of the electrons prevents the 
second electron to tunnel to the adjacent dot. In order to model a fermionic quantum walk we approximate the 
Coulomb interaction by restricting the positions of electrons: electrons cannot be in the same or neighbouring 
vertices of the graph, and the effect of repulsion is negligible in all other situations, i.e. an electron does not “feel” 
an electric field of the distant electrons, if the distance between them is more than one empty quantum dot. This 
approximation is reasonable because neigbour dots are generally closer to each other than to metallic gates form-
ing them so interaction can be strong, while interaction of electrons at distant dots is substantially suppressed not 
only by larger distance of interaction but also by screening due to presence of metallic gates between and nearby 
them. The Hamiltonian with the restriction of not being in the same and neighbouring vertices of the cycle graph is
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Similar to the case of non-interacting electrons, we obtain analytical solutions of the Schrödinger equation 
ψ ψ= −t e( ) (0)iH t/C  for small dimensions of the cycle graph K =  2, 3 and 4 (the case of K =  1 is unfeasible, 

because it is impossible to place two strongly repelling electrons in two quantum dots). The results, provided in 
Methods, demonstrate that there exists a period of quantum walks for K =  3, but not for K =  4. Hence, in general, 
the quantum walk of interacting particle on a cycle aperiodic. This fact can be seen in the population dynamics 
λi(t) plotted in Fig. 3 for K =  3, 4, 5 and 6.

Fermionic entanglement by means of a quantum walk. It is known that interactions between 
particles create quantum entanglement between these particles42,43. The qualification and quantification of an 
entanglement between several subsystems is one of the most important issues in quantum information theory. 
However, by describing an entanglement of two fermions we cannot use the standard definition of entanglement 
of distinguishable particles, because for identical particles the Hilbert space has no longer a tensor product struc-
ture. More specifically, the Hilbert space of two electrons is an antisymmetric product, not a direct product44,45.

To define entanglement of indistinguishable fermions one can use the Slater rank33,46,47. The Slater rank is the 
minimum number of Slater determinants, and this number is an analogue of the Schmidt rank for the distin-
guishable case. Fermions are called separable iff the Slater rank is equal to one. That is quantum entanglement 
arise in a pure state if there is no single-particle basis such that a given state of electrons can be represented as a 
single Slater determinant

ψ = ⊗ − ⊗ .m k k m1
2

( )
(7)

m k( , )

Fermionic quantum correlations defined above are the analogue of quantum entanglement between distin-
guishable systems and are essential for quantum information processing with indistinguishable systems. However 
these correlations should be quantified differently from the case of distinguishable systems by taking into account 
the definition of fermionic entanglement. Defining good measures of fermionic entanglement remains a field 
of active research48,49. In this paper we use three fermionic entanglement measures: von Neumann entropy50,51, 
linear entropy50,51 and fermionic concurrence49.

Von Neumann entropy of the pure state ρ =  |ψ〉 〈 ψ| is

Figure 2. The average number of electrons λi in a vertex vs. time. The initial state is Ψ = − ↑↑K K(0) ( 0 0 ) / 2 . 
(a) Quantum walk dynamics for K =  2, initial state is fully recovered after the time π/2Ω. (b) Quantum walk 
dynamics for K =  3, initial state is fully recovered after the time 2π/3Ω. (c) Quantum walk dynamics for K =  4, 
initial state is partially recovered after the time π πΩ = ≈ .t 3 / 2 2 12 , π π≈ .7 / 2 4 95  and π π≈ .10 / 2 7 07 . 
(d) Quantum walk dynamics for K =  5, initial state is partially recovered after the time Ωt ≈  2.8π, 4.4π and 7.2π.
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∑ρ ρ ρ ξ ξ= − − = − −S ( ) Tr( ln ) ln 2 ln ln 2,
(8)j

j jvN 1 1

where ρ1 is the single-particle reduced density matrix defined in Eq. 3, and ξj are the nonzero eigenvalues of the 
ρ1 matrix. It was shown, that a pure state ρ has the Slater rank equal to one iff SvN(ρ) =  0 33,52,53. An entanglement 
criterion for states of two fermions can also be formulated in terms of the linear entropy

ρ ρ= −S ( ) 1
2

Tr , (9)L 1
2

which is the approximation of the von Neumann entropy. A pure state ρ has the Slater rank equal to one iff SL(ρ) =  0.  
We also use the fermionic concurrence49
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which by analogy with the linear entropy gives 0 for separable states and nonzero values for entangled fermionic 
states. In addition, the fermionic concurrence in Eq. 10 is normalized between 0 and 1.

We calculate SvN(ρ(t)), SL(ρ(t)) and Cf(ρ(t)) functions using Eqs 8–10, respectively, for K =  3, 4, 5 and 6. These 
entanglement measures are shown in Fig. 4. It can be seen that two electrons are initially separable, but after a 
time, which increases with K, they become entangled. In the case of K =  3, shown in Fig. 4(a), the entanglement 
dynamics is periodic, as expected due to the periodicity of the wave function. The maximum entanglement is 
achieved at times π= + Ωt n(1 2 )/ 6 , ∈n , for the state

ψ ψ ψ ψ= − + + .
1
3

(2 2 ) (11)3
(1,4) (5,2) (0,3)

The minimum entanglement corresponds to the separable state |ψ(0,3)〉 , which is present at times π= Ωt n2 / 6 , 
∈n .

The evolution of entanglement for K =  4 (N =  8 vertices) is shown in Fig. 4(b). One can see that the particles 
entangle slower (initial slope in Fig. 4) than in case of K =  3, because electrons are initially further away from each 
other and it takes more time for particles to meet each other. The evolution is aperiodic and the entanglement 
never disappears, but because of a partial revival of the initial separable state, the entanglement of electrons drops 
suddenly at times of the largest overlap with the initial state Ωt ≈  3.1π and Ωt ≈  7.5π (see also Fig. 3). The maxi-
mum entanglement is achieved for multiple states. For instance, at times π πΩ = + ≈ .t 7 / 6 3 2 2 2 , 

π πΩ = + ≈ .t 17 / 6 3 2 5 3  and π πΩ = + ≈ .t 27 / 6 3 2 8 4  the following fermionic state is generated

ψ ψ ψ ψ= − + − .
1
3

(2 2 ) (12)4
(1,3) (7,5) (0,4)

Figure 4(c,d) show the entanglement dynamics for higher cycle graph dimensions K =  5 and 6, respectively. 
Similar to the case of K =  4, the dynamics is aperiodic and maximal entanglement is achieved for many states. 
There are also occasional drops of entanglement caused by a partial return to the initial state |ψ(0,K)〉 .

Figure 3. The average number of electrons λi in a vertex vs. time. Mutual repulsion between electrons is taken 
into account. The initial state is Ψ = − ↑↑K K(0) ( 0 0 ) / 2 . (a) Quantum walk dynamics for K =  3, initial 
state is fully recovered after the time π Ω2 / 6 . (b) Quantum walk dynamics for K =  4, initial state is partially 
recovered after the time π πΩ = + ≈ .t 10 / 6 3 2 3 1  and π πΩ = + ≈ .t 24 / 6 3 2 7 5 . (c) Quantum walk 
dynamics for K =  5, initial state is partially recovered after the time Ωt ≈  4.6π, 8.5π. (d) Quantum walk dynamics 
for K =  6, initial state is partially recovered after the time Ωt ≈  3.9π, 6.0π.
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The fermionic entanglement initiation described here is due to the Coulomb interaction. This repulsive 
interaction can be interpreted as a condition that restricts the positions of electrons – a quantum walk of one 
electron is conditioned on the state of the second electron and vice versa. In contrast to the interacting case, 
non-interacting electrons do not have this conditioned dynamics; dynamics of electrons is independent from 
each other. It can easily be shown that in absence of this Coulomb repulsion condition, entanglement is not initi-
ated and all mentioned fermionic entanglement measures are equal to zero throughout the entire quantum walk 
evolution. Indeed, the Hamiltonian in Eq. 4 that governs the evolution of non-interacting electrons, leads to an 
independent unitary dynamics of two electrons
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where by UO(t) we denote a time-dependent unitary matrix that acts locally on a subspace of one particle. Because 
the initial state of two electrons is separable, local operations clearly cannot create an entangled state. To verify 
this we compute the reduced density state from Eq. 3:

ρ = −

−

+ = + .

† † †

† †

† †

t U t U t U t K U t K U t U t

U t K U t U t U t K
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1 O O O O O O
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Figure 4. Entanglement measures: fermionic concurrence Cf (solid black), von Neumann (dotted red) and 
linear (dashed blue) entropy. (a) K =  3. Entanglement exhibits periodic dynamics with the period π= ΩT 2 / 6 . 
(b) K =  4. Entanglement dynamics is aperiodic. At time Ωt ≈  7π there is a sudden drop of entanglement with the 
local minimum of entanglement at time Ωt ≈  7.5π. (c) K =  5. At time Ωt ≈  8.5π there is a drop of entanglement 
because of the partial revival of the initial state. (d) K =  6. At time Ωt ≈  6.0π there is a drop of entanglement 
because of the partial revival of the initial state.
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Using the explicit form of the reduced density matrix ρ1(t) that we obtained, we compute ρ =tTr ( ) 1/21
2  and 

ρ ρ = −t tTr( ( )ln ( )) ln 21 1 , which leads us to the observation that all entanglement measures, SvN(ρ, t), SL(ρ, t) and 
Cf(ρ, t) are equal to zero for all times t. Because these measures are zero iff the fermionic state ρ is separable, we 
conclude that, as expected, only by allowing electrons to interact, one can introduce fermionic entanglement in 
the system of coupled quantum dots that we consider.

Electrons for quantum information processing. We showed that a variety of entangled fermionic states 
can be created by means of quantum walks. However, it is not apparent how useful are these fermionic states for 
quantum information processing, because of inconsistency between fermions and qubits34. Here we show how 
one can define qudits by using the freedom of dividing the graph into two subgraphs. We divide the cycle graph 
into two equal parts: the first subgraph contains the vertices … + + … −⌊ ⌋ ⌊ ⌋K K K K{0, , /2 , /2 1, ,2 1}, the sec-
ond subgraph contains the vertices + … +⌊ ⌋ ⌊ ⌋K K K{ /2 1, , /2 }. Experimentally, this division can be realized by 
raising a potential barrier between the two pairs of quantum dots, ⌊ ⌋K/2  and +⌊ ⌋K/2 1 dots, and between 

+⌊ ⌋K K/2  and + +⌊ ⌋K K/2 1 dots. As we demonstrate below, in our framework, due to the symmetry of the 
initial state, it is possible to see that electrons are confined in different subgraphs with the unit probability. In this 
case, we say that an electron in the upper subgraph (vertices … + + … −⌊ ⌋ ⌊ ⌋K K K K0, , /2 , /2 1, ,2 1) and an 
electron in the lower subgraph (vertices + … +⌊ ⌋ ⌊ ⌋K K K/2 1, , /2 ) represent two distinguishable qudits. Below 
we show that this definition of two qudits in terms of the upper and the lower subspaces allows obtaining highly 
entangled states of two qudits.

The described “cuts” of the circle are depicted in Fig. 5(a–d) for K =  3 (a), K =  4 (b), K =  5 (c) and K =  6 (d). 
Figure 5(a) schematically shows two qutrits (three-level systems with basis states |0〉 , |1〉  and |2〉 ) defined on a 
cycle graph. At time π= Ωt / 6 , as we have shown before, the quantum dynamics on a cycle graph with 6 vertices 
leads to the state in Eq. 11 with two-particle correlation matrix shown in the right part of Fig. 5(a). One can see, 
that if one raises a potential barrier between quantum dots 1 and 2, 4 and 5, as shown in the left part of Fig. 5(a), 
one traps electrons in separate subgraphs, because at this time the particles can only be detected in the strictly 
opposite sites at the circle. After defining qudits at this time step we obtain an entangled state

ψ = − + + .
1
3

(2 00 11 2 22 ) (15)3

Figure 5. The left part of each figure (a–d) shows a scheme of the cycle graph with 2K vertices divided into two 
subgraphs, each of which represents a state space of a qudit. The subspace of the first qudit is shown in blue (vertices 0, 
… , ⌊ ⌋K/2 , + +⌊ ⌋K K/2 1, … , 2K −  1), the subspace of the second qubit is shown in violet (vertices +⌊ ⌋K/2 1, … , 

+⌊ ⌋K K/2 ). Dashed black arrows show the possible transitions between the vertices in the redefined graph. Brown 
curves represent the type of entanglement (see text for details). The right part of each figure (a–d) shows a matrix of 
two-particle correlations of quantum walkers in position space. The element (j, i) of the correlations matrix 
corresponds to a probability of detecting two electrons in quantum dots j ∈  {0, … , N −  1} and i ∈  {0, … , N −  1}.  
(a) K =  3. The entangled two-qutrit state corresponds to a fermionic state obtained at times π= + Ωt n(1 2 )/ 6 , ∈n . 
(b) K =  4. The entangled two-ququart state corresponds to a fermionic state obtained at time π= + Ωt 17 / 6 3 2 . 
(c) K =  5. The entangled two-qudit state corresponds to a fermionic state obtained at time t =  24.3/Ω. (d) K =  6. The 
entangled two-qudit state corresponds to a fermionic state obtained at time t =  25.7/Ω.
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The brown curves in Fig. 5(a) represent the type of a superposition in Eq. 15, which corresponds to the 
Bell-type entanglement.

Figure 5(b) depicts a larger cycle graph with 6 vertices. Similar to the case of K =  3, two qudits are defined on 
the circle at a certain time π= + Ωt 17 / 6 3 2 . At this time one can separate two halves of the circle and obtain 
the following state of two ququarts

ψ = − + − .
1
3

(2 02 2 20 11 ) (16)4

Although this state is similar to the one in Eq. 15 up to a local phase, the type of entanglement in space of 
the graph is different and shown in the left part of Fig. 5(b). From the right part of the Fig. 5(b) one can see that 
electrons are distributed in different subgraphs. The cases of K =  5 and K =  6 are shown in Fig. 5(c,d), respectively. 
As one can see from correlation matrices, the same types of quantum correlations can be achieved with high 
probability.

The fermionic entanglement dynamics studied in this paper is obtained for a pure state of a quantum system. 
However, in experiment the quantum state is subjected to decoherence. In particular, a change in the state of the 
qudits can be caused by the white noise from the quantum point contact detectors, which was shown to be one 
of the major concerns facing experimental realization of quantum walks in quantum dots structures23. This noise 
can be modelled by a depolarizing channel that acts on a density matrix of two fermions ρ as follows

ρ ρ ρ= + −−Γ −Γt e e( ) (0) (1 ) , (17)
t t

M

which is the solution of the differential equation dρ(t)/dt =  − Γ (ρ(t) −  ρM) with the initial state ρ(0) =  |ψ(0,K)〉   
〈 ψ(0,K)|, where Γ  is the relaxation rate that corresponds to the coupling between the quantum dot and the quan-
tum point contact. The density matrix ρM is the maximally mixed state of the coordinate part of two electrons. 
Because of the antisymmetric fermionic state the maximally mixed state is not the normalized identity matrix, 
but is defined as follows

∑ ∑ρ ψ ψ=
−

.
=

−

= +

+ −

N N
1

( 3) (18)M
k

N

m k

N k
m N k m N k

0

1

2

2
( mod , ) ( mod , )

Combining the dissipative dynamics from Eq. 17 with the coherent evolution with Hamiltonian HC from Eq. 6 
we write the general expression for the fermionic density matrix

 

 

ρ ρ ρ

ρ ρ

= + −

= + − .

− −Γ −Γ

−Γ − −Γ

t e e e e

e e e e

( ) ( (0) (1 ) )

(0) (1 ) (19)

iH t t t
M

iH t

t iH t iH t t
M

/ /

/ /

C C

C C

We are able to analyze the combination of the two different processes and to do the simplification of the 
expression due to the relation [HC, ρM] =  0, which implies that the operator −e iH t/C  commutes with ρM.

The decoherence described by Eq. (17) leads to errors in quantum information stored in the system of elec-
trons. In order to quantify this error we use the measure of decoherence22,54

ρ ρ ρ ρ= − = − −−Γ −D e e e(1 ) (0) (20)
t iH t iH t

Mreal ideal
/ /C C 

to quantify the amount of errors, where the operator norm of the matrix X is given by = ∈X xmaxx Xspec( )  with 
spec(X) being the spectrum of the operator X. The measure of decoherence D can be thought of as a probability 
of obtaining an error. In our scenario getting an error would correspond to getting a completely classical state of 
two particles, which are uniformly distributed over the circle, instead of getting entangled states shown in Fig. 5. 
As shown in Fig. 6, where we plot an error for each state in the set from Fig. 5 (entangled states with K =  3, 4, 5 
and 6), this error can become large for large circles and strong couplings Γ  between the quantum dot and the 
quantum point contact.

In addition to the described noise, the system of electrons is subjected to the inevitable phase noise caused by 
the deformation interaction of electrons with acoustic phonons18. As a result, the energy levels in quantum dots 
where electrons reside become not fully determined, which effectively distorts the nondiagonal elements of the 
density matrix ρ


 as follows

∑ ∑ρ ψ ψ= ⊗





⊗ ⊗






⊗

= =


E I I E I E E I,
(21)i

K

i
j

K

j K K j i
0 0

where I is the identity matrix, = − γ−E e i i1i  for i <  K and EK =  e−γ/2I with γ =  Ξ 2/2ħπ2ρs3a2. Note that the 
|ψK〉  state is written in the basis of separated electrons, which corresponds to the states in Eqs 15 and 16. The fol-
lowing parameters are taken for electrons in silicon: effective deformation potential Ξ  =  3.3 eV, speed of sound 
s =  9.0 ×  103 m/s, density ρ =  2.33 g/cm3, and quantum dot size a =  10 nm18. For this set of parameters and K =  4 
the obtained phase error is D ≈  1.4 ×  10−5, which suggests that this additional phase error is negligible and the 
error is mostly determined by the depolarizing noise in the range of relaxation rates we consider in Fig. 6.
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Discussion
In the paper we considered the dynamics of two-particle fermionic system. We analyzed quantum walks in two 
possible setups, which lead to a walk with and without interaction between electrons. We preferred quantum 
walks approach to quantum information processing for a number of reasons. Quantum walks dynamics is a 
natural process for many quantum systems compared to more artificial gate implementation. It is therefore eas-
ier to build and implement in experiment. One may also hope that relatively complex gates sequences could be 
replaced by simpler quantum walks processes. It was shown before that one can do arbitrary quantum operations 
using only particles free propagation12. One way to realize quantum walks algorithms is to use silicon quantum 
dots that form a cycle graph. We showed the electrons entanglement dynamics in this structure. The value of 
fermionic entanglement was calculated using measures in Eqs (8)–(10), which were proven to correctly quantify 
entanglement49,50,51. We showed that fermionic entanglement can be used to prepare quantum states for quantum 
information processing. These highly entangled states of qudits can be obtained by only using the free quantum 
evolution of identical particles, without relying on any additional manipulations with electrons. In addition, we 
supplemented our protocol of obtaining entangled states with analytical solutions for certain sizes of a graph and 
proved a general aperiodic nature of the continuous-time quantum walk of identical particles on a cycle graph.

Methods
In this section we explain the fermionic quantum walks dynamics in details by obtaining explicit analytical solu-
tions of the Schrödinger equation. Throughout the section we use the series expansion of the quantum walk 
unitary operator

 ∑ψ ψ ψ ψ= = +
−−

=

∞
t e it

l
H( ) (0) (0) ( / )

!
(0) ,

(22)
iHt

l

l
l/

1

where H is HO in case of non-interacting electrons and HC in case of interacting electrons. This expansion is useful 
in the case of a continuous-time quantum walk on a circle, because due to the cyclic conditions the number of 
fermionic states that can be observed is bounded.

Period of quantum walks of non-interacting particles. We first start our analysis with the case of 
quantum walks of non-interacting indistinguishable electrons, whose dynamics is described by the Hamiltonian 
HO in Eq. 4. We first consider the smallest sizes of the cycle graph with K =  1 (2 vertices), K =  2 (4 vertices), K =  3 
(6 vertices) and show the periodicity of the underlying dynamics. Next we show that, in general, the dynamics is 
aperiodic, i.e. there is no time T ≠  0 s.t. |ψ(T)〉  =  |ψ(0)〉 , by obtaining the solution for K =  4 (8 vertices).

A cycle graph with 2 vertices. For K =  1 the evolution of the state is trivial: ψ ψ ψ= =−t e( ) (0) (0)iH t/O  , 
because the initial state is the eigenstate of the Hamiltonian HO. This is expected due to the fact that the system of 
two quantum dots has only two energy levels both occupied by electrons, and because of the Pauli exclusion prin-
ciple these electrons cannot change their positions.

A cycle graph with 4 vertices. By computing the lower powers of HO for K =  2 we observe that 
ψ ψ= ΩH 4O

2 (0,2) 2 2 (0,2) . Hence, using the observation we reduce Eq. 22 for this size of the graph to

   



∑ ∑ψ ψ ψ

ψ ψ

ψ ψ ψ ψ ψ
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−
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Ω

= Ω −
Ω

Ω

= Ω − Ω + + + .

=

∞

=

∞ +
t it

l
it
l

H

t i t H

t i t

( ) ( / )
(2 )!

(2 ) ( / )
(2 1)!

(2 )

cos(2 )
2

sin(2 )

cos(2 )
2

sin(2 )[ ]
(23)

l

l
l

l

l
l

0

2
2 (0,2)

0

2 1
2

O
(0,2)

(0,2)
O

(0,2)

(0,2) (0,1) (0,3) (1,2) (3,2)

Figure 6. The dependance of an error per state preparation on the relaxation rate is depicted. Four curves 
correspond to the states shown in Fig. 5(a–d).
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An overlap of the state |ψ(t)〉  with the initial state is equal to ψ ψ = Ωt t(0) ( ) cos(2 ) , therefore the 
dynamics of the wave function (as well as the population λi and the fermionic entanglement functions) is peri-
odic. The period of the dynamics is T =  π/2Ω, after this time the initial state is fully revived (we neglect a global 
phase). It is worth noting, that at time t =  π/Ω the unitary matrix −e iH t/O  is equal to the identity matrix I, so any 
initial state is recovered after this time. The specific choice of the symmetric initial state we use recovers twice 
more frequent.

A cycle graph with 6 vertices. Similarly to the case of K =  2, we compute the lower powers of HO and obtain the 
relation ψ ψ= ΩH H(0) 9 (0)O

3
3

2 2
O 3 , which leads us to the state

 

 





∑

∑
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(cos(3 ) 1) (0)
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sin(3 ) (0) 1
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(cos (3 ) 1)
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3
sin(3 )[ ]

(24)

l

l
l

l

l
l

1

2
2 2

O
2

0

2 1
2

O

2 2 O
2

O
(0,3)

(0,1) (0,5) (2,3) (4,3) (0,3)

(1,2) (1,4) (5,2) (5,4)

(0,2) (0,4) (1,3) (5,3)

An overlap of the state |ψ(t)〉  with the initial state is equal to ψ ψ = + Ωt t(0) ( ) 5 4 cos (3 ) /9, therefore 
the dynamics is periodic with the period T =  2π/3Ω. It is worth noting, that at time t =  2π/Ω unitary matrix 

−e iH t/O  is equal to identity matrix I, so any initial state is recovered after this time. The specific choice of the sym-
metric initial state we use recovers 3 times more frequent.

A cycle graph with 8 vertices. The case of K =  4 is already more involved. We first divide the sum from Eq. 22 in 
two sums with even and odd powers of HO, respectively:

 ∑ ∑ψ ψ ψ=
−

+
−
+=

∞

=

∞ +
+t it

l
H it

l
H( ) ( / )

(2 )!
( / )
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l
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0

2
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2 (0,4)

0

2 1

O
2 1 (0,4)

where

 ψ α ψ ψ ψ ψ

α ψ ψ ψ ψ α ψ

Ω = + + +

+ + + + +

H( / ) ( )

( ) (26)

l l

l l
O

2 (0,4)
1
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2
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3
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and

 ψ β ψ ψ ψ ψ

β ψ ψ ψ

ψ ψ ψ ψ

ψ β ψ ψ ψ ψ
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l l
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3
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An application of the H l
O
2  to the unnormalized states in Eqs 26 and 27 preserves their structure, and only 

changes the coefficients αi
l( ) and βi

l( ), respectively:
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By using the relations from Eqs 26–28 we compute the sum in Eq. 25 and obtain the solution of the 
Schrödinger equation
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An overlap of the state |ψ(t)〉  with the initial state is ψ ψ = Ω + Ωt t t(0) ( ) cos( 2 ) (1 cos(2 ))1
2

. This 
overlap is unit only when t =  0, therefore there is no period of quantum walks for K =  4. However, by choosing the 
time t s.t. Ω ≈ ±tcos( 2 ) 1 and Ω ≈ ±tcos( ) 1, i.e. πΩ =t n2 , ≈n k2  with ∈n k, , the overlap  
|〈 ψ(0)|ψ(t)〉 | is close to unity. By waiting enough, an arbitrary precision can be achieved.

Period of quantum walks of interacting particles. We next move to the case of interacting particles, which 
quantum dynamics is described by Eq. 22 with the Hamiltonian HC. The minimal graph size in the case of repulsive 
electrons is K =  2, for which the dynamics is trivial with stationary solution ψ ψ ψ= =−t e( ) (0) (0)iH t/C .

A cycle graph with 6 vertices. By computing the lower powers of the HC for K =  3, we see that 
ψ ψ= ΩH H(0) 6 (0)C

3 2 2
C , hence
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An overlap of the obtained solution with the initial state is ψ ψ = + Ωt t(0) ( ) cos( 6 )1
3

2
3

. Therefore 
the dynamics of the wave function is periodic with the period π= ΩT 2 / 6 , which means that after the time T 
the initial state is fully revived.

A cycle graph with 8 vertices. Similar to the case of non-interacting electrons, the dynamics for the size K =  4 is 
more involved. We first decompose the sum from Eq. 22 in the following way:
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An application of the H l
C
2  to the unnormalized states in Eq. 32 and 33 preserves their structure, and only 

changes the coefficients αi
l( ) and βi

l( ), respectively:
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By using the relations from Eqs 32–34 we compute the sum in Eq. 31 and obtain the solution of the 
Schrödinger equation
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(0,2) (0,6) (2,4) (6,4)

(1,5) (7,3)

(1,3) (7,5) (0,4)

(0,4) (1,3) (7,5)

(1,6) (2,5) (6,3) (7,2)

(0,3) (0,5) (1,4) (7,4)

where ω = + Ω+ 6 3 2  and ω = − Ω− 6 3 2 . An overlap of the obtained solution with the initial state is 
ψ ψ ω ω= + ++ −t t t(0) ( ) 1 cos( ) cos( )1

3
. This overlap is unit only when t =  0, therefore there is no period 

of quantum walks for K =  4. However an arbitrary precision of state revival can be achieved by choosing the time 
t s.t. ω ω≈ ≈+ −t tcos( ) cos( ) 1, i.e. t =  2πn/ω+, ω ω≈ = −− +k n n/ ( 2 1)  with ∈n k, . This happens approx-
imately, e.g. for Ωt =  10πΩ/ω+ ≈  3.1π (n =  5, k ≈  2) and Ωt =  24πΩ/ω+ ≈  7.5π (n =  12, k ≈  5).

References
1. Aharonov, Y., Davidovich, L. & Zagury, N. Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993).
2. Aharonov, D., Ambainis, A., Kempe, J. & Vazirani, U. Quantum walks on graphs. In Proceedings of the 33rd Annual ACM Symp. 

Theor. Comput. STOC’01, 50–59 (2001).
3. Shenvi, N., Kempe, J. & Whaley, K. B. Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003).
4. Szegedy, M. Quantum speed-up of Markov chain based algorithms. In Proceedings of the 45th Annual IEEE Symp. Found. Comput. 

Sc. 32–41 (2004).
5. Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007).
6. Krovi, H., Magniez, F., Ozols, M. & Roland, J. Quantum walks can find a marked element on any graph. Algorithmica 74, 851–907 

(2015).
7. Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. 

J. Chem. Phys. 129, 174106 (2008).
8. Briegel, H. J. & De las Cuevas, G. Projective simulation for artificial intelligence. Sci. Rep. 2, 400 (2012).
9. Paparo, G. D., Dunjko, V., Makmal, A., Martin-Delgado, M. A. & Briegel, H. J. Quantum speed-up for active learning agents. Phys. 

Rev. X 4, 031002 (2014).
10. Dunjko, V., Friis, N. & Briegel, H. J. Quantum-enhanced deliberation of learning agents using trapped ions. New J. Phys. 17, 023006 

(2015).
11. Friis, N., Melnikov, A. A., Kirchmair, G. & Briegel, H. J. Coherent controlization using superconducting qubits. Sci. Rep. 5, 18036 

(2015).
12. Venegas-Andraca, S. E. Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012).
13. Zähringer, F. et al. Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010).
14. Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R. & Zeilinger, A. Automated search for new quantum experiments. Phys. Rev. Lett. 

116, 090405 (2016).
15. Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photonics 10, 248–252 (2016).
16. Wang, J. & Manouchehri, K. Physical Implementation of Quantum Walks (Springer, 2014).
17. Fedichkin, L., Yanchenko, M. & Valiev, K. Coherent charge qubits based on GaAs quantum dots with a built-in barrier. 

Nanotechnology 11, 387 (2000).
18. Fedichkin, L. & Fedorov, A. Error rate of a charge qubit coupled to an acoustic phonon reservoir. Phys. Rev. A 69, 032311 (2004).
19. Openov, L. & Tsukanov, A. Selective electron transfer between quantum dots induced by a resonance pulse. Semiconductors 39, 

235–242 (2005).
20. Tsukanov, A. V. Entanglement and quantum-state engineering in the optically driven two-electron double-dot structure. Phys. Rev. 

A 72, 022344 (2005).
21. Melnikov, A. A. & Fedichkin, L. E. Quantum error correction in silicon charge qubits. Russ. Microelectron. 42, 148–154 (2013).
22. Melnikov, A. A. & Fedichkin, L. E. Measure of decoherence in quantum error correction for solid-state quantum computing. In 

Proceedings of SPIE. vol. 8700, 87001H (2013).
23. Solenov, D. & Fedichkin, L. Continuous-time quantum walks on a cycle graph. Phys. Rev. A 73, 012313 (2006).
24. van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).
25. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. 

Phys. 79, 1217–1265 (2007).
26. Simmons, C. B. et al. Charge sensing and controllable tunnel coupling in a Si/SiGe double quantum dot. Nano Lett. 9, 3234–3238 (2009).
27. Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).
28. Hsieh, C. Y., Shim, Y. P., Korkusinski, M. & Hawrylak, P. Physics of lateral triple quantum-dot molecules with controlled electron 

numbers. Rep. Prog. Phys. 75, 114501 (2012).
29. Thalineau, R. et al. A few-electron quadruple quantum dot in a closed loop. Appl. Phys. Lett. 101, 103102 (2012).



www.nature.com/scientificreports/

13Scientific RepoRts | 6:34226 | DOI: 10.1038/srep34226

30. Takakura, T. et al. Single to quadruple quantum dots with tunable tunnel couplings. Appl. Phys. Lett. 104, 113109 (2014).
31. Delbecq, M. R. et al. Full control of quadruple quantum dot circuit charge states in the single electron regime. Appl. Phys. Lett. 104, 

183111 (2014).
32. Ito, T. et al. Detection and control of charge states in a quintuple quantum dot. arXiv, 1604.04426 (2016).
33. Eckert, K., Schliemann, J., Bruss, D. & Lewenstein, M. Quantum correlations in systems of indistinguishable particles. Ann. Phys. 

299, 88–127 (2002).
34. Friis, N. Reasonable fermionic quantum information theories require relativity. New J. Phys. 18, 033014 (2016).
35. Amosov, G. G. & Filippov, S. N. Spectral properties of reduced fermionic density operators and parity superselection rule. arXiv, 

1512.01828 (2015).
36. Dukes, P. R. Quantum state revivals in quantum walks on cycles. Results Phys. 4, 189–197 (2014).
37. Konno, N., Shimizu, Y. & Takei, M. Periodicity for the Hadamard walk on cycles. arXiv, 1504.06396 (2015).
38. Bocchieri, P. & Loinger, A. Quantum recurrence theorem. Phys. Rev. 107, 337 (1957).
39. Wallace, D. Recurrence theorems: a unified account. J. Math. Phys. 56, 022105 (2015).
40. Fedichkin, L., Solenov, D. & Tamon, C. Mixing and decoherence in continuous-time quantum walks on cycles. Quant. Inf. Comp. 6, 

263–276 (2006).
41. Solenov, D. & Fedichkin, L. Nonunitary quantum walks on hypercycles. Phys. Rev. A 73, 012308 (2006).
42. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).
43. Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 

82, 1975–1978 (1999).
44. Gittings, J. & Fisher, A. Describing mixed spin-space entanglement of pure states of indistinguishable particles using an occupation-

number basis. Phys. Rev. A 66, 032305 (2002).
45. Zanardi, P. Quantum entanglement in fermionic lattices. Phys. Rev. A 65, 042101 (2002).
46. Schliemann, J., Cirac, J. I., Kuś, M., Lewenstein, M. & Loss, D. Quantum correlations in two-fermion systems. Phys. Rev. A 64, 

022303 (2001).
47. Chernyavskiy, A. Y. Entanglement measure for multipartite pure states and its numerical calculation. arXiv, 0905.0201 (2009).
48. Gigena, N. & Rossignoli, R. Entanglement in fermion systems. Phys. Rev. A 92, 042326 (2015).
49. Majtey, A. P., Bouvrie, P. A., Valdés-Hernández, A. & Plastino, A. R. Multipartite concurrence for identical-fermion systems. Phys. 

Rev. A 93, 032335 (2016).
50. Plastino, A., Manzano, D. & Dehesa, J. Separability criteria and entanglement measures for pure states of n identical fermions. 

Europhys. Lett. 86, 20005 (2009).
51. Zander, C., Plastino, A. R., Casas, M. & Plastino, A. Entropic entanglement criteria for fermion systems. Eur. Phys. J. D 66, 1–13 (2012).
52. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008).
53. Buscemi, F., Bordone, P. & Bertoni, A. Linear entropy as an entanglement measure in two-fermion systems. Phys. Rev. A 75, 032301 

(2007).
54. Fedichkin, L., Fedorov, A. & Privman, V. Additivity of decoherence measures for multiqubit quantum systems. Phys. Lett. A 328, 

87–93 (2004).

Acknowledgements
We wish to thank Sergey N. Filippov for helpful discussions. The work of L. E. F. is supported by Russian Science 
Foundation under grant No. 16-01-00084 and performed in Moscow Institute of Physics and Technology.

Author Contributions
Both authors (A.A.M. and L.E.F.) contributed to this work. L.E.F. initiated and supervised the investigation. 
A.A.M. obtained the results, performed the simulations and wrote the initial manuscript. Both authors discussed 
the results and contributed to the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Melnikov, A. A. and Fedichkin, L. E. Quantum walks of interacting fermions on a cycle 
graph. Sci. Rep. 6, 34226; doi: 10.1038/srep34226 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Quantum walks of interacting fermions on a cycle graph
	Results
	Framework. 
	Non-interacting indistinguishable electrons. 
	Interacting indistinguishable electrons. 
	Fermionic entanglement by means of a quantum walk. 
	Electrons for quantum information processing. 

	Discussion
	Methods
	Period of quantum walks of non-interacting particles. 
	A cycle graph with 2 vertices. 
	A cycle graph with 4 vertices. 
	A cycle graph with 6 vertices. 
	A cycle graph with 8 vertices. 

	Period of quantum walks of interacting particles. 
	A cycle graph with 6 vertices. 
	A cycle graph with 8 vertices. 

	Acknowledgements
	Author Contributions
	Figure 1.  A cycle graph with N = 2K vertices, where each vertex is viewed as a level in the N-level quantum system.
	Figure 2.  The average number of electrons λi in a vertex vs.
	Figure 3.  The average number of electrons λi in a vertex vs.
	Figure 4.  Entanglement measures: fermionic concurrence Cf (solid black), von Neumann (dotted red) and linear (dashed blue) entropy.
	Figure 5.  The left part of each figure (a–d) shows a scheme of the cycle graph with 2K vertices divided into two subgraphs, each of which represents a state space of a qudit.
	Figure 6.  The dependance of an error per state preparation on the relaxation rate is depicted.



 
    
       
          application/pdf
          
             
                Quantum walks of interacting fermions on a cycle graph
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34226
            
         
          
             
                Alexey A. Melnikov
                Leonid E. Fedichkin
            
         
          doi:10.1038/srep34226
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep34226
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep34226
            
         
      
       
          
          
          
             
                doi:10.1038/srep34226
            
         
          
             
                srep ,  (2016). doi:10.1038/srep34226
            
         
          
          
      
       
       
          True
      
   




