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A B S T R A C T   

The Pharmaceuticals and Personal Care Products (PPCPs) presence at harmful levels has been 
identified in aquatic ecosystems all over the world. Currently, PPCPs are more common in aquatic 
regions and have been discovered to be extremely harmful to aquatic creatures. Waste-water 
treatment facilities are the primary cause of PPCPs pollution in aquatic systems due to their 
limited treatment as well as the following the release of PPCPs. The degree of PPCPs elimination 
is primarily determined by the method applied for the remediation. It must be addressed in an 
eco-friendly manner in order to significantly improve the environmental quality or, at the very 
least, to prevent the spread as well as effects of toxic pollutants. However, when compared to 
other methods, environmentally friendly strategies (biological methods) are less expensive and 
require less energy. Most biological methods under aerobic conditions have been shown to 
degrade PPCPs effectively. Furthermore, the scientific literature indicates that with the exception 
of a few extremely hydrophobic substances, biological degradation by microbes is the primary 
process for the majority of PPCPs compounds. Hence, this review discusses about the optimistic 
role of microbe concerned in the degradation or transformation of PPCPs into non/less toxic form 
in the polluted environment. Accordingly, more number of microbial strains has been implicated 
in the biodegradation/transformation of harmful PPCPs through a process termed as bioreme-
diation and their limitations.   

1. Introduction 

The surge in the global population, financial growth, and the industrial era, along with global warming has resulted in a boom in 
waste generation and also the implementation of particular groups of substances known as emerging contaminants in the aquatic 
environment [1]. The government agencies of various nations define emerging contaminants as any chemicals or microbes that are not 
typically explored in the natural setting but have the potential to determine their way toward the environment and lead to recognized 
or suspected detrimental ecological as well as human health impacts [2]. Thus, there exists a critical requirement to create methods for 
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removing emerging contaminants. Emerging pollutants such as PPCPs, perfluorinated compounds (PFCs), microplastics, and bromi-
nated flame retardants (BFRs), in the aquatic system, can cause severe detrimental effects on aquatic biology and ultimately affect 
human health [3]. Adsorption (e.g., activated carbon and graphene), membrane process, oxidation process (e.g., ozonation, Fenton 
oxidation, UV-oxidation, electrochemical), combined methods (physical and chemical), and other approaches are used to remove 
PPCPs from aquatic environments [4]. However, these approaches are expensive, may cause secondary pollution, and are ineffective. 
Few classes of PPCPs are: pharmaceuticals, heavy metals, hormones, analgesics, antibiotics, and antidepressants, among others, and 
personal hygiene products such as tooth-pastes, facial creams, and so on are frequently detected in the aquatic environment [5]. 

The PPCPs contaminants may thus be prioritized for oversight based on knowledge gathered from surveillance data about their 
presence, toxic effects, possible adverse health effects, as well as public perception. While the disintegration of PPCPs in aquatic 
systems varies, these substances are mainly water-soluble and possess traits that enable them to pass through cell membranes as well as 
remain in biological tissues [4]. Nevertheless, the basic characteristics of PPCPs raise concerns regarding their hazardous effects, 
accumulation perspective, as well as bioactivity in an aquatic ecosystem. The PPCPs, like administered quantities on targets, have the 
capability of changing biochemical as well as physiological processes in a wide range of non-target organisms [6]. Hence, they have the 
potential to have negative effects on native as well as peripatetic species of living things exposed to PPCPs contaminated environments. 

While the existence of PPCPs in the aquatic ecosystem has been observed for some time, the full extents of their existence as well as 
the potential hazards connected with their existence in the environment have yet to be determined [5]. Furthermore, the elimination of 
such pollutants in wastewater treatment facilities prior to release into the environment has been challenging owing to their minimal 
occurring levels and the difficulties associated with analyzing them [7]. Thus, existing treatments must be modified and upgraded in 
order to resolve as well as eliminate these PPCPs contaminants. Traditional wastewater treatment approaches consist of the following 
methods: adsorption by activated carbon (AC), filtration, ozonation, flocculation, photo-catalysis by ultraviolet irradiation, coagu-
lation process, nanotubes of carbon (CNTs), sedimentation, ultra-sonication, chlorination, membrane filtration, and biological 
methods [8]. However, these techniques are insufficient for removing organic contaminants from sewage. 

Besides being chemically as well as practically demanding, these procedures necessitate large systems, infrastructures as well as 
engineering skills, resulting in them being demanding, inefficient, lengthy, as well as expensive [9]. Additionally, the utilization of 
nano-adsorbents in the detoxification of PPCPs from water matrix structures has been accompanied by certain difficulties, including 
smaller particle sizes, secondary contaminants generation, failure for recycling or regenerating, and so on [10]. Furthermore, the 
application of semiconductors as enzymes in the decomposition of PPCPs possesses disadvantages as follows: they require higher UV 
radiation over their functions owing to their broad band gap power; several carcinogenic, such as TiO2; as well as there is a problem 
with recombination of electron-hole pairs upon usage. Hence, green, commercially effective, and cost-effective techniques for 

Fig. 1. Schematic diagram of PPCPs pollutants source and circulation in the environment [17].  
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Table 1 
Commonly reported PPCPs in different aquatic samples around the world.  

S.No Name of PPCPs Dosage: μg L-1 Reported source References 

1 Acetaminophen 0.35–1.52 Cilfynydd and Coslech effluent treatment influent South Wales, UK [8] 
0.56–211.38 Cilfynydd and Coslech effluent treatment effluent, South Wales, UK 
11.3 Effluent treatment plant, France 
5.76 Effluent treatment plant, South Africa [18] 
0.023–6.89 Effluent treatment plant (influent), Korea [19] 
5.68–74.552 Effluent treatment plant (effluent), Korea 

2 Aspirin 0.02–1.56 Cilfynydd and Coslech effluent treatment influent South Wales, UK [8] 
0.84–2.49 Cilfynydd and Coslech effluent treatment effluent, South Wales, UK 
0.012–1.43 Surface and waste water treatment plant inffluent, Catalonia, Spain 
0.098–2.566 Surface and waste water treatment plant effluent, Catalonia, Spain 
59.6–256 Effluent treatment plant influent, Canada 
47.52–874 Effluent treatment plant effluent, Canada 

3 Bisphenol A 0.0614–0.964 Municipal effluent, Harbian and Tianjin city, China [20] 
0.875–1.52 Municipal effluent, Harbian and Tianjin city, China 
0.002–0.047 Drinking water and sewage treatment plant, Germany [21] 
0.028 Drinking water, South Africa [22] 

4 Benzophenone 1.5–8.60 Sewage treatment plant, India [21] 
5 Carbamazepine 0.83–4.21 Cilfynydd and Coslech effluent treatment influent South Wales, UK [8] 

0.85–2.49 Cilfynydd and Coslech effluent treatment effluent, South Wales, UK 
1.9–2 Wastewater treatment plant influent, Canada 
2.0–2.3 Wastewater treatment plant effluent, Canada 
0.42 Effluent from WWTP, Taiwan 

6 Diclofenac 12.4–22.3 Effluent and influent from WWTP, South Africa [23] 
15.3–19.5 Effluent from WWTP, Germany [8] 
0.21–0.49 Effluent from WWTP, France 
0.119–0.285 Influent from WWTP, UK 
0.201–0.397 Effluent from WWTP, UK 
0.145–0.251 Effluent and influent from WWTP, Japan 
0.145–197 Influent from WWTP, Japan 

7 Estrone 0.054–0.351 Effluent from WWTP, South Africa [24] 
0.078–0.96 Influent from WWTP, Tianjin and Harbin city, China [20] 
0.92–0.158 Effluent from WWTP, Tianjin and Harbin city, China 

8 Estriol 0.042–0.162 Influent from WWTP, China 
9 17-beta-Estradiol 0.02–0.58 Influent from WWTP, South Africa [24] 

0.62–0.199 Effluent from WWTP, South Africa  
0.0087–0.090 Influent from WWTP, Tianjin and Harbin city, China [20] 
0.0091–0.093 Effluent from WWTP, Tianjin and Harbin city, China  
0.0041 Municipal influent & effluent, USA [8] 

10 Ibuprofen 0.015–4.582 Influent from WWTP, Korea [19] 
0.024–9.494 Effluent from WWTP, Korea  
5–8 Effluent from WWTP, Canada [8] 
58.711–35.62 Influent from WWTP, South Africa [18] 
59.61–62.82 Effluent from WWTP, South Africa 
0.14–2.1 Influent from WWTP, UK 
0.26–2.29 Effluent from WWTP, UK 

11 Nalidixic acid 1.73–25.11 Influent from WWTP, South Africa [23] 
1.98–30.84 Effluent from WWTP, South Africa  
0.20–0.55 Influent from WWTP, Australia [18] 
0.22–0.75 Effluent from WWTP, Australia  

12 Naproxen 0.17–0.85 Influent from WWTP, UK [8] 
0.25–1.173 Effluent from WWTP, UK  
0.120–3.24 Influent from WWTP, Korea [19] 
0.180–5.938 Effluent from WWTP, Korea 
13.50–36.52 Influent from WWTP, South Africa [25] 
15.68–55.00 Effluent from WWTP, South Africa 

13 Progesterone 0.025–0.562 Influent from WWTP, South Africa [24] 
0.036–0.904 Effluent from WWTP, South Africa 

14 Sulfamethoxazole 0.20–0.56 Surface water, Australia [18] 
0.26–1.24 WWTP effluent, Australia 
0.35–2.00 WWTP influent, Australia 
3.68–25.63 WWTP influent, South Africa 
3.86–34.50 WWTP effluent, South Africa 
0.023–0.032 WWTP effluent, UK 
0.025–0.049 WWTP influent, UK 

15 Tetracyclines 0.02–0.10 WWTP effluent and influent, Australia [25,26] 
0.02–0.06 WWTP influent, Australia 
0.6–5.7 Surface water, South Africa 

16 Triclosan 78.50–127.80 Wastewater treatment plant influent 

(continued on next page) 
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contamination management and avoidance are required for safeguarding the environment as well as discharges of effluent to have the 
smallest effect on the biosphere and ultimately human health [11]. Hence, microbes-based bioremediation is considered a more 
promising approach than the already existing alternative above-mentioned methods. 

2. Source of PPCPs and its presence in aquatic ecosystem 

Over the last 1.5 decades, the scientific, governing, along with commercial sectors have worked hard to understand the origin, 
effects, as well as hazards associated with PPCPs in the aquatic environment. The day-to-day life consumption/utilization of regular 
drugs used for some selective disorders (e.g. diabetics, antibiotics, and so on), and beauty products (shampoos, moisturizers, de-
odorants, hair colors, and so on) based PPCPs cause severe environmental pollution and unintentionally residing in aquatic ecosystems 
from the 1970s onwards [12]. In the past two decades, PPCPs residues were found in every kind of aquatic system. Because of their 
hydrophilic nature and the poor efficiency of treatment plants, such PPCPs directly reach different aquatic environments [13]. Fig. 1 
depicts a schematic illustration of possible PPCPs sources along with pathways. Pharmaceuticals as well as nutraceuticals are used for 
human and animal health issues as well as health supplement needs. Pharmaceuticals such as analgesics, antibiotics, various forms of 
hormones, anti-diabetics, antihypertensives, as well as a variety of other health-related substances are included [14]. These chemicals 
are constantly released into aquatic ecosystems from domestic as well as industrial processes. A worldwide investigation found 
multiple categories of PPCPs in the majority of aquatic locations. Inevitably, these statistics are based mainly on investigations carried 
out in various nations. The accessibility of this kind of information in those regions of the globe is due to a scarcity of studies on PPCPs 
along with other endocrine-disrupting pollutants in Asia and African countries [15]. Regardless of a shortage of data, the presence of 
certain PPCPs at concentrations that occasionally exceeded in WWTP water as well as aquatic waters has been reported [8]. Inves-
tigation on the treatment of PPCPs polluted aquatic environment, as well as the elimination of such pollutants in water treatment 
facilities as well as while effluent treatment prior to release into fresh water, remains substantially behind and could be lacking [16]. 
Table 1 shows the most typically found PPCPs in various aquatic environment as well as their prevalence levels in various countries. It 
is critical to remove PPCPs from aquatic environments in order to avoid the toxicity of PPCPs on aquatic organisms, which may enter 
the food chain and eventually reach humans. 

3. PPCPs classification 

Pharmaceuticals are divided into active organic classes of substances as follows [30]: (a) Antibiotics (b) Steroids hormones (c) 
Analgesic as well as nonsteroidal anti-inflammatory drugs (NSAIDS) (d) Antiepileptics (e) Blood lipid regulators (f) β-blockers and (g) 
Antineoplastic. Depending on the description of use, antimicrobial agents, fungicides, disinfectants, synthetic musks, some pre-
servatives, some sunscreen UV filters, and so on may also be referred to as drugs. Personal Care Products (PCPs) are categorized as 
follows: (a) Insect repellants, (b) facial ingredients, (c) soaps & detergents, (d) sunscreen UV filters, (e) triclosan, and (f) antiseptics. 

4. PPCPs toxicity 

The advantages of using medicines as well as numerous PPCPs as supposed are tremendous. Drug consumption causes unique 
biological reactions in the patient, following which 10–90% of excessive unused dosages along with certain conjugates metabolic 
products are eliminated and released into the surroundings [31]. In light of their poor persistence, degradation, as well as biological 
processes, their flow while existing in various environments may pose a threat to non-target lives found in aquatic as well as terrestrial 
environments. According to recent information, drinking water resources, particularly those obtaining supplies of water from PPCPs 
residues polluted sources as well as may require further processing to eliminate the contaminants prior to consumer’s availability [8]. 

Because PPCPs might have negative health as well as ecological impacts on aquatic ecosystems, there has been increasing concern 
regarding their effects on the environment [32]. Further, PPCPs may exist in the natural environment as blends of different con-
taminants, causing complementary negative impacts to both aquatic as well as terrestrial creatures regardless of low amounts. The 
main source to worry regarding the toxic effects of PPCPs lies in the fact that they have been developed to increase their biological 
function at low dosages along with targeting unique metabolic processes, and enzymatic, or cell-signalling mechanisms [8,33]. The 
ecological preservation of such targeted molecules in particular species might raise the likelihood that these medicinal products are 
pharmacologically influential in organisms that do not target [34]. The notion of mode of reaction can be employed for all aquatic 
organisms that are accidently in contact with PPCPs in their native setting, increasing the probability of ecotoxicological impacts [35]. 
Fluoxetine, a depressive drug that focuses on the serotonin signalling process, was used to investigate the mode of action of the 
theoretical framework and it showed negative effects on vital physiological processes in oysters, such as reproduction, metabolic 

Table 1 (continued ) 

S.No Name of PPCPs Dosage: μg L-1 Reported source References 

17 Testosterone 0.035–0.542 WWTP effluent, South Africa [24] 
0.026–0.635 Wastewater influent, South Africa 

18 Keroprofen and ibuprofen 7-57 and 5-11 Sediment, Msunduzi River, South Africa [27] 
19 Clofibric acid 1–9 Fresh water, Swiss lakes [28] 
20 Lumefantrineand artemether 3–32 Fresh water, Africa [29]  

M. Narayanan et al.                                                                                                                                                                                                  



Heliyon 9 (2023) e18426

5

processes, as well as movement, at quantities nearing or considerably beneath environmental extents [36]. The capacity of PPCPs to 
interact with the hormonal (endocrine) system and produce unwanted homeostasis disruption remains a major issue raised via their 
existence in aquatic ecosystems [5]. Moreover, the toxicity caused by complicated combinations of PPCPs at modest levels may result 
in synergistic connections. Therefore, even if individual PPCPs exist at minimal levels and do not cause essential toxic effects while 
acting alone, PPCP combinations can still cause significant ecological toxicity. The antiepileptic substance carbamazepine along with 
the lipid-lowering drug clofibric acid was shown to have significantly greater toxic effects on Daphnia magna compared to single 
substances at a similar concentration [37]. It was also discovered that the synergistic action of estradiol along with 4-tert-nonylphenol 
can induce vitellogenin synthesis in youth rainbow trout. The influence of diclofenac, a most common drug in surface water, was 
studied in an investigation on brown trout [38]. Diclofenac at quantities ranging from 5 to 50 μg L− 1 was found to have an effect on the 
kidney as well as gill integrity, as well as certain immune functions in fish (brown trout). Another investigation discovered that 
17-estradiol being subjected to Leuciscus cephalus fish, led to a substantial along with a swift boost in plasma vitellogenin (Vtg) among 
both males as well as female Leuciscus cephalus [39]. A research team additionally found that Carssius auratus experienced a 50% 
reduction in plasma testosterone upon 14 days of exposure [40]. PPCPs also triggered drug resistance genes to invade aquatic or-
ganisms, as well as toxic effects on development along with hepatotoxicity. A research team found that the considerable reduction in 
cholesterol levels and it influenced by changed mRNA expression of lipid-metabolizing genes in the zebrafish subjected to PPCPs [41]. 
Researchers recently reported that ecological oestrogens, specifically BPA along with 17-estradiol (E2), disrupted normal metabolic 
processes of lipids in the zebrafish and caused substantially elevated lipogenesis in female fish [42]. The male species also showed 
early-phase sexual feminism which was followed by decreased spermatids, deposits of fat, as well as lipogenic transcription trends 
similar to female fish. The antibiotics comes under the category of fluoroquinolone demonstrated toxic effects on algae, fish, and 
crustacean, such as Lemna minor, Pseudokirchneriella subcapitata, Pimephales promelas, Microcystis aeruginosa, and Daphnia magna [43, 
44]. 

5. Antibiotic resistance 

Antibiotics are commonly used in farm animals for defense, therapy, as well as growth, resulting from the selection of genes of more 
harmful microbes [45]. Constant antibiotic exposure has been identified as a possible cause of generated drug resistance among 
numerous pathogenic microbes. Steroid hormones, which are used as sex steroids, and hormonal contraceptives, can disrupt the 
hormonal system as well as serve as anti-androgenic ligands [46]. Endocrine disturbance has been scientifically linked to the steril-
ization, imposex, as well as gender equality of some vertebrates, including mollusks, fish, and numerous other aquatic creatures. 
Researchers reported that the occurrence of oestrogen as well as progestogens at quantities as tiny as 1.0 μg L− 1 induced endocrine 
disruption, resulting in fish femininity as well as decreased infertility [47]. 

Merely a minimal dosage of 5 μg L− 1 of diclofenac accumulation on tissues of rainbow trout was observed and experienced negative 
endocrine impacts. Conversely, zebrafish exposed to a combination of acetaminophen, venlafaxine, carbamazepine, and gemfibrozil at 
quantities ranging from 0.5 to 10 μg L− 1 experienced tissue deterioration, a decrease in embryo creation, as well as a rise in embryo 
death rates [48]. Being exposed to endocrine-disrupting substances (pollutants) in aquatic environments has also been linked to 
hypothalamic-pituitary-gonad (HPG), hypothalamic-pituitary-thyroid (HPT), and hypothalamic-pituitary-adrenal (HPA) modulation, 
leading to interfering with the functioning as well as functions of different physiological characteristics in certain non-target aquatic 
vertebrates [49]. Another report stated that the drinking water of certain regions of South Africa’s contains drugs like valproate, 
carbamazepine, lamotrigine, as well as levetiracetam, these are responsible for the disruption of endocrine systems in humans as well 
as in some fish species [50]. Furthermore, another report revealed that the NSAIDs such as Ibuprofen and Naproxen, which are 
frequently not removed by WWTPs, may have a negative effect on the non-target vertebrate creatures’ endocrine system [8]. For 
instance, Oryzias latipes subjected to 0.1 μg L− 1 quantity of Ibuprofen showed postponed hatching, whereas in humans 1 mg L− 1 

concentration of Ibuprofen can cause a rise in blood plasma extents [51]. 

6. Significance of reclamation of PPCPs from aquatic environment 

According to one report, over 4000 distinct categories of PPCPs along with related metabolic products have been discovered in 
different aquatic ecosystems around the world as they have been administered as therapies for different healthcare requirements in 
people, animals, as well as the aquaculture sector [52]. The direct release of waste products from pharmaceutical industries, hospital 
waste disposals, municipal sludge, WWTP water, and excrement from humans as well as animals can cause PPCPs contamination in 
various forms of water bodies [52]. Creatures such as leopard frog, rainbow trout, Cyanobacteria, benthic meiofauna, green algae, 
Mexican shrimp, duckweed, Japanese rice fish, chironomids, beneficial soil bacteria, vultures, zebrafish, and so on are all vulnerable to 
PPCPs pollution through the aquatic ecosystem [17]. For instance, diphenhydramine, thioridazine, and sertraline, can cause acute 
poisoning in certain algal species, as well as native fish species. Moreover, painkillers medications as well as their metabolites might be 
toxic to amphibian species, fish varieties, as well as beneficial microbial communities [53]. Notably, phytoplankton as well as in-
vertebrates plays a significant part in the ecosystem’s as well as food chain. Hence, it must be removed from contaminated water using 
recyclable potential microbes for PPCPs degradation [54]. Traditional methods such as activated sludge, coagulation, flocculation, 
membrane bioreactor, and sedimentation are used for PPCPs removal from the polluted water. Despite the fact that the naturally 
occurring transformation process such as physical, chemical, as well as biological processes can remove certain quantities of PPCPs 
pollutants from polluted water [55]. However, a considerable quantity of the parent forms of PPCPs and associated metabolites remain 
in the polluted water. While the complete elimination of PPCPs and associated metabolites from aquatic systems are not possible using 
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physical, chemical, and microbiological methods [56]. Several PPCPs and their metabolites persist in the wastewater treated by 
conventional treatment. For instance, so far reported microbial bioremediation processes unable to degrade or remove the carba-
mazepine from the polluted aquatic systems [57]. 

The insufficient ability of various methods to entirely eliminate the PPCPs from polluted water might be directly linked to their 
physicochemical attributes, parent compound-complex structure, as well as poor bioavailability [58]. It is essential to identify a 
successful replacement as well as a sustainable method that reduces the treatment time PPCPs pollutants. Investigators are engaging on 
removing the PPCPs and associated metabolites from environments using microorganisms alongside recoverable as well as reusable 
perspective [59]. Because microbes have more precise enzymes, they are more versatile in nature, and they are easier to manage. 
Selective microbes have the potential to degrade the PPCPs and their metabolites from polluted aquatic systems; however, these cannot 
completely degrade or eliminate the PPCPs [8]. 

Investigators are attempting to identify the competitive microbial strain for removing/degrading the PPCPs as well as associated 
metabolite products in the aquatic systems [60]. The competitive microbial strains can metabolize as well as convert the toxic form to a 
non-toxic form in the aquatic system. Several microbial strains and their enzymes have been used for various commercially valuable 
applications [61]. Among the microbes, bacteria have among the most abundant source of enzymes that are more active compared to 
any other creatures, including higher living things. Microbes and their active enzymes may break down both inorganic as well as 
inorganic blended contaminants from polluted water and yield CO2, water, CH3, biomass, and various other byproducts without 
disrupting the balance of the ecosystem [62]. This review provides extensive details on the different kinds of microorganisms engaged 
in the degradation of PPCPs from aquatic environments. 

7. Metabolism of PPCPS in humans and animals 

Many PPCPs are in soluble nature as well as their bioactive properties can promote biological transformation as well as depuration 
with their biological properties [56]. This doesn’t seem to be a problem with many PPCPs as well as associated metabolite products in 
the aquatic ecosystem, as they do not break down easily. Several pharmaceuticals are excreted from humans and animals as a blend of 
the parent drug as well as associated metabolite products. The degrees of metabolism, as well as pharmacokinetics index, are 
determined by the proportion of quantities of the un-metabolized drug to associated metabolites determined via urine or feces analysis 
[63]. Tracking the PPCPs metabolic products in the aquatic environment seems limited, since the absence of established guidelines for 
environment-bound PPCPs metabolites, results in insufficient data on the presence, levels, behavior, as well as half-life of drug me-
tabolites within aquatic environments. The research team reported that the carbamazepine epoxy ranged from 881 to 4025 ng L− 1 in 
influent effluent, whereas the corresponding parent drug (carbamazepine) dosage ranged from 1.6 to 112 ng L− 1 [64]. Hence, there’s 
an obligation to comprehend ecological biotransformation, microbial metabolism, drug metabolites, as well as PCPs metabolite 

Fig. 2. A diagram depicting the model biodegradation process by microbes and microbial enzymes on PPCPs [17].  
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evaluation. This process is necessary owing to the predictable time based degradation in the PPCPs parent drug quantity in the aquatic 
system and associated metabolites possess detrimental properties compared to parent compound in the aquatic environment. 

8. Microbial degradation of PPCPs 

8.1. Bacteria 

The biodegradability of PPCPs and associated metabolites through microbes, particularly bacteria, remains more difficult because 
the drugs have been engineered as well as synthesized that are harmful to bacteria [57]. Certain resident bacterial species are capable 
of decomposing pharmaceutical-specific blended pollutants by using them as C as well as N sources. Figs. 2 and 3 depicts the microbial 
degradation and microbial enzymes involved in the degradation and transformation process/mechanisms of PPCPs in the aquatic 
system. The following bacterial species such as Pseudomonas putida, Geobacillus thermocatenulatus, Bacillus badius, Escherichia coli, 
Bacillus cereus, Rhodococcus rhodochrous, Exiguobacterium sp. RD3, and Phanerochaete chrysosporium are capable of degrading or 
converting PPCPs and associated metabolites in the aquatic environment [56]. Notably, the research reports that heterotrophic 
bacteria possess the potential to degrade clofibric acid, 4-chlorophenol, as well as α-hydroxyisobutyric acid into lactic acid [65]. 
Selected bacterial species that possess PPCPs have fine degradation potential and convert them into non-toxic PPCPs and associated 
metabolites. Another study reported that the in vitro study using Pseudomonas putida effectively degraded about 100 mg L− 1 of salicylic 
acid (100%) in 8 h [66]. Interestingly, the bacterial species possess the potential to oxidize the bacteria group and can effectively 
degrade drugs through a co-metabolism process involving the major enzymes namely ammonia monooxygenase, during the NH3 
malnourishment situation [67]. Notably, Pseudomonas species enumerated from polluted areas deteriorate carbamazepine up to 47% 
through enzymatic (cytochrome) breakdown (Fig. 4), Achromobacter denitrificans PR1 successfully breakdown the sulfonamides 
grouping drugs including sulfamethoxypyridazine, sulfamethazine, sulfathiazole, sulfasalazine, sulfamethoxine, and sulfapyridine as 
98%, 100%, 47%, 98%, 48%, and 100% respectively in 56 h of remediation [17]. Despite this, strain is unable to degrade hypogly-
cemic, sulfacetamide, and sulfur-containing diuretics group drugs. Similarly, A. denitrificans PR1 effectively degraded aniline ring that 
yielded 3-amino-5-methylisoxazole as byproduct. Sulfamethoxazole is also degraded by Pseudomonas sp. and Proteobacteria sp. in 
aquatic environments [68]. Fig. 5 shows different types of microbial enzymes based metabolic reactions for PPCPs degradation. 
Table 2 shows possibilities for PPCP degradation/removal from aquatic systems using various known methods reported to date. 

Fig. 3. Microbial enzymes involved in pollutant degradation.  
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8.2. Fungi 

Fungi are among the most efficient as well as considerable agents for the biodegradation of PPCPs and associated metabolites across 
different aquatic environments [75]. White-rot fungi are capable of decomposing various types of PPCPs in different dosages [76]. 
Fungi can synthesize various beneficial enzymes, including enzymes such as cytochrome P450, laccases, peroxidases, and ligninolytic 
enzymes can induce deamination, hydroxylation, formylation, oxidation, and dehalogenation reactions on PPCPs such as norfloxacin, 
propranolol, clofibric acid, ciprofloxacin, atenolol, ibuprofen, carbamazepine, norfloxacin, and diclofenac [77]. Fortunately, Trametes 
versicolor can degrade about 80% of sulfonamide antibiotics into Sulfapyridine as well as Sulfathiazole up to 72 h of bioremediation 
process [78]. Moreover, T. versicolor effectively degrades the ofloxacin by up to 80% in an Erlenmeyer flask approach in a short period 
of time. Nonetheless, it metabolizes up to 98.5% of ofloxacin content in the hospital effluent in a fluidized batch bioreactor via 
oxidation, hydroxylation, as well as breaking down of the piperazine, yielding known as well as unidentified metabolites. T. versicolor 
proactively converts pharmaceuticals belonging to microbial antibiotics, psychiatric drugs, β-blockers, as well as NSAIDs in hospital 
effluent in eight weeks of treatment using a fluidized-bed system [79]. T. versicolor was also able to degrade up to 97% of clofibric acid 
from contaminated water within 1 week of the remediation process. Another study reported that the native Basidomycetes sp. me-
tabolizes the enrofloxacin and yielded known and unknown metabolites [56]. Phanerochaete chrysosporium degrade the Carbamaze-
pine up to 80% and also metabolize the ibuprofen, naproxen, diazepam, carbamazepine, and diclofenac up to 50–60% [80]. 
T. versicolor also degrades the Iopromide up to 65% from hospital effluents and produced various forms of metabolites [81]. 

These fungal species can secrete the most efficient enzymes laccase as well as cytochrome P450, helps in the degradation of PPCPs 
in polluted water. Some other fungal species namely Ganoderma lucidium, as well as Phanerochaete chrysoporium, effectively remediate 
the ibuprofen after 1 week of treatment [76]. Another report states that T. versicolor alone effectively degraded the clofibric acid and 
carbamazepine up to 91% and 58% respectively [82]. The G. lucidium metabolize about 47% of clofibric acid. Subsequently, the 
Trichoderma harzianum actively degrade the carbamazepine as well as clarithromycin via co-metabolic oxidation, removing up to 57% 
& 72% respectively in a week of treatment. Since, these mycoremediation by potential fungi are directly related to the extra and 
intracellular active enzymes namely manganese peroxidase, laccase, and lignin peroxidase [83]. Some redox mediators/co-factors can 
enhance the degradation as well as the transformation of PPCPs and associated metabolites. For instance, the manganese peroxidase 
effectively degrades (99%) the carbamazepine in the presence of glucose as well as peptone [84]. T. versicolor and Pleuro tusostreatus 
synthesized peroxidase as well as Cytochrome P450 enzymes successfully degrades the carbamazepine, and yielded 10,11-dihydro-10, 

Fig. 4. Microbial cytochrome enzymes degrade Carbamazepine.  
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11-dihydroxycarbamazepine, acridone, and 10,11-epoxy-carbamazepine [85]. 

8.3. Algae 

The algae-based remediation of PPCPs in an aquatic ecosystem is limited since only a few algal species have been identified and 
reported as having the ability to degrade/metabolize the PPCPs from the aquatic environment [86]. The algae species namely, 
Chlamydomonas mexicana and Scenedesmus obliquus, degraded about 35% and 28% of (1 mg L− 1) carbamazepine since algae growth 
was impeded beyond that doses [87]. The PPCPs deterioration of algae has been proposed to be two pathways namely epoxidation and 
oxidation processes through cytochrome P450 [88]. The biodegradation of PPCPs (e.g. carbamazepine) by algae is thought to occur 
through two mechanisms [89]. First one is a metabolism pathway may be started through the epoxidation process through the cy-
tochrome P450, yielding 10, 11-dihydro-10,11-epoxycarbamazepine as a last degraded residue. The oxidation is a second process by 
cytochrome P450, which results in N-hydroxycarbamazepine (N–OH-CBZ) [90]. In a comparable manner the Chlorella sorokiniana 
eliminated paracetamol as well as salicylic acid with 67% and 73% efficiency, correspondingly [91]. Furthermore, it may additionally 
degrade 60–100% of diclofenac, ibuprofen, paracetamol, and metoprolol. 

Fig. 5. Different types of microbial metabolic reactions in PPCPs degradation.  
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9. Microbe-based bioremediation of PPCPs constraints 

The enzymatic processes of microbial communities can immobilize, eliminate, deteriorate, change, as well as detoxify various 
chemical contaminants including PPCPs [92]. The microbial enzymes serve as agent, accelerating the progression of biochemical 
processes, which deteriorate the PPCPs pollutant across aquatic ecosystems [93]. The microbes needed several types of favorable 
factors for active bioremediation process towards contaminants, and their constraints are [94]: (i) The physical and chemical prop-
erties of the polluted environment (ii) the chemical composition as well as quantity of pollutants (iii) Pollutant availability to microbes. 
Biotic factors include (i) microbes’ rivals for constrained accessible carbon resources (ii) Antagonistic relationships among microbes 
(iii) Microbe killing through protozoans as well as bacteriophages (iv) An imbalance between concentrations of pollutants as well as 
microbial communities: to degrade the contaminants via the number of microbial enzyme (v) The microbial gene expression according 
to emphasized environmental factors in order to create the procedure of metabolism [95]. Environmental factors such as Temperature, 

Fig. 5. (continued). 
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nutrients, O2 content, redox potential, pH, and so on may all influence microbial development as well as activity (ii) Pollutant 
accessibility as well as their physical and chemical characteristics (iii) A balanced dietary supplementation for active development, 
digestion, and reproduction decides the progress and efficiency of bioremediation processes (iv) The ideal temperature necessary for 
the active decomposition of resistant contaminants (v) Aerobic as well as anaerobic conditions decide the growth (viii) Harmful 
pollutant quantification on contaminated regions is essential owing to increased quantity of hazardous metals interfere the metabo-
lisims of cells and are detrimental to them or slow down their decomposition process (ix) The majority of such constraints can be 
resolved by employing a microbial active enzyme to serve as a biocatalyst for decomposing recalcitrant contaminants in aquatic 
environments [96]. The metal tolerance mechanisms in bacteria facilitate the harmful recalcitrant pollutant degradation in polluted 

Fig. 5. (continued). 
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sites. Fig. 6 depicts the possible metal tolerance mechanism in bacteria with the example of Pb. 

10. PPCPs biological degradation is aided by genetically modified organisms (GMOs) 

Several environmental and nutritional demand factors restrict the bioremediation ability of wild microbes as well as their enzymes 
[97]. Thus microbial genes, particularly bacteria that are capable of encoding active catabolic digestive enzymes capable of degrading 
recalcitrant contaminants, are employed to create excellent microbial agents capable of degrading or transforming PPCPs [56]. So-
phisticated genetic engineering approaches enabled this genetic information exchange. A few important aspects must be regarded 
when employing the rDNA technology to ensure the successful creation of GMOs [98]: 1. the sensitivity and attraction associated with 
the bacterial enzymes need to be altered, 2. fully comprehending the creation as well as the biochemical transformation processes, 3. 
tracking, and oversight of bioprocess advancement, as well as 4. The generated microbial strain should serve as biosensors for pollutant 
sensing as well as deterioration possibility. 

The ability of microbes to degrade recalcitrant pollutants (PPCPs) is dependent upon the existence of plasmids [99]. Every plasmid 
can produce enzymes to break down a single pollutant, while certain plasmids break down only a few pollutants. For instance, a CAM 
plasmid is capable of degrading camphor, while the OCT plasmid can deteriorate hexane, decane, and octane a NAH plasmid can 
deteriorate naphthalene, as well as the XYL plasmid can breakdown toluene and xylene [100]. Those plasmid-based deteriorations 
have been used to remediate the most harmful contaminants in some real-world investigations. New plasmids are being discovered and 
created from different strains of bacteria that are capable of degrading a variety of recalcitrant contaminants [101]. Investigators are 
creating some well-known GMOs with multiple levels of remediation perspective on an extensive selection of recalcitrant contami-
nants. For instance, the Pseudomonas putida, deteriorates an extensive variety of recalcitrant contaminants including toluene, camphor, 
salicylate toluene, xylene 3-cne chlorobenxoate, and others [56]. Likewise, Alcaligenes eutrophus AE104 incorporates pEBZ141, which 
is used to eliminate PPCPs from wastewater from industries. The photosynthetic organism Rhodopseudomona palustris has been 
developed to eliminate the metal from effluent [102]. Under certain natural conditions, the transfer of genes may occur via the 
naturally occurring conjugation process, resulting in the development of substantial pollutant-degrading bacteria. For instance, the 
exceptionally recalcitrant pollutant-degrading bacterium R. eutropha CH3 was naturally conjugated with PCB gene sequences from 

Table 2 
Various methods reported for PPCPs degradation/removal potential-a comparison.  

Methods used PPCPs Source Analysis 
methods 

Mode of removal Degradation/ 
removal efficiency 

References 

Adsorption 
Processes 

TCS, CPM, NPX, and 
BPA 

Effluent UPLC/UV CNTs + Sonication, Multi-walled carbon 
nanotubes, Graphene oxide, and so on. 

245.47, 318, 156, 
and 97 mg g-1 

[69,70] 

Biological 
processes 

PAR, CAF, TCS, DEET, 
and IBP 

Effluent HPLC/DAD/ 
LC/MS-MS/ 
UV 

Hybrid CW 98, 98, 100, 43, 
15–85% 

[71,72] 

Advanced 
oxidation 
processes 

β-lactams antibiotics, 
DCF, OFX, ACE, MP, 
and CAF 

Effluent HPLC/UV, 
HPLC-DAD 

PAA/Persulfate activated by Cu cathode +
Vis irradiation/O3 + TiO2/ 
montmorillonite nanocomposite 

60-90, 86, 99, 89, 
95, 99, and 97% 

[73,74]  

Fig. 6. Heavy metal (Pd) tolerance and degradation process in microbes.  
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R. eutropha A5, Achromobacter sp. LBS1C1, and A. denitrificans JB1 [103]. 
GMO enzymes have received greater attention because they are effective when it comes to the bioremediation of a variety of 

recalcitrant contaminants [104]. For instance, pRSFDuet-1 Bacillus cereus along with aldehyde dehydrogenase enzymes are able to 
control as well as degrade hazardous metabolic middle aldehyde compounds [105]. pGEc47B from Mycobacterium sp. HXN-150 
generates CYP153A6 enzyme promoting the hydroxylation process on alkanes towards 1-alkanols. In a comparable manner, Myco-
bacterium sp. RP1 synthesizes the CYP151A2 enzymes, which demonstrated a remarkable capacity to break down additional amines via 
ring cutting [106]. As preferred expression hosts, different strains of Acinetobacter calcoaceticus, E. coli, and P. putida GPo12, are being 
implemented. 

11. Obstacles of GMOs in PPCPs bioremediation process 

Recent research reports states that the GMOs have been successful for the degradation of PPCPs merely at the in-vitro stage; though, 
in field trails, the degradation capability of multiple GMOs has not been as efficient [107]. Because of their lower genome stability as 
well as their inability to influence environmental factors, recombinant gene sequences in bacteria hosts have been much less notable in 
natural circumstances. Under regulated outdoor circumstances, P. fluorescens only slightly remediates the contaminants. Thus, the 
major challenge in creating GMOs for biological remediation remains connected with opposed field conditions. Additionally, GMOs 
with field-level genetic expression ability are commonly utilized by certain bacterial species such as B. subtilis, E. coli, A. calcoaceticus, 
and P. putida [108]. The recently created GMOs ought to possess numerous uses as well as have the capacity to thrive in an extensive 
variety of surroundings while expressing the gene that is needed [98]. Investigators must focus on tackling these problems in order to 
develop high-potential GMOs that can help solve environmental problems in an environmentally friendly manner. 

12. Conclusion 

This in-depth investigation described the potential scenarios of PPCPs in global aquatic environments. Numerous studies have been 
published concerning an extensive variety of PPCPs that are released into the aquatic systems as well as cause essential health effects 
and ecological systems destruction. Such substances have been around for centuries in the ecosystem, but their existences as well as 
detrimental impacts have only recently become apparent. Nevertheless, the acute as well as long-term effects of PPCPs pollutants in 
human beings, in addition to plants and animals, have not been extensively thoroughly studied. The investigation stated that water 
being released from WWTPs includes identifiable volume of PPCPs as well as the associated metabolites. Such PPCPs pollutants pollute 
the ecosystem severely as well as can cause both acute and long-term toxicity to non-targeted living things. With present methods, 
multiple parental types of PPCPs as well as associated metabolite products in different sort in waste water were discovered. As a result, 
creating suitable as well as feasible approaches to recognize contaminants as well as regularise the method of monitoring is significant. 

There is scarce information regarding the toxic effects, bio-chemical transformation process, as well as environmental effects of 
PPCPs in aquatic environments. To circumvent current constraints in PPCPs and associated metabolites remediation using microbial 
strain create degradation enzymes with perform multiple tasks potential as well as Advanced Oxidation Processes (AOPs) that remove 
the contaminants. Since the majority of research indicated that PPCPs and associated metabolites degraded through oxidoreductase 
category enzymes during the oxidation process. There are currently not any permitted maximum permissible levels of PPCPs as well as 
their byproducts in water as well as soil in multiple nations, such as nations that are both developing and developed. As a result, every 
nation should decide how for tracking such pollutants based upon it’s geographically well-being limitations. The subsequent process 
must be implemented. Generate sophisticated technologies, such as biosensors, which for detecting PPCPs and associated metabolites 
precisely and continuously. Special attention must be launched in developing nations to figure out the acceptable limit as well as 
evaluate the disinfected effluents released through industries, municipal wastewater, and so on. Remind the R&D wing by offering 
adequate funds for creating environmentally friendly technologies for monitoring and removing PPCPs pollutants. The bacteria and 
fungi screening for PPCPs removal from water should be non-pathogenic as well as should possess resistance to various PPCPs. 
Furthermore, depth research needs to perform to find the interaction possibilities of merging the photo-degradation as well as 
biodegradation with minimal costs. Establish highly effective as well as cost-effective methods for removing PPCPs and associated 
metabolites in the aquatic environments is required. 
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[53] M. Parra-Luna, L. Martín-Pozo, F. Hidalgo, A. Zafra-Gómez, Common sea urchin (Paracentrotus lividus) and sea cucumber of the genus Holothuria as 
bioindicators of pollution in the study of chemical contaminants in aquatic media. A revision, Ecol. Indicat. 113 (2020), 106185. 

[54] W. Xiong, X. Huang, Y. Chen, R. Fu, X. Du, X. Chen, A. Zhan, Zooplankton biodiversity monitoring in polluted freshwater ecosystems: a technical review, 
Environmental Science and Ecotechnology 1 (2020), 100008. 

[55] R. Kumar, M. Qureshi, D.K. Vishwakarma, N. Al-Ansari, A. Kuriqi, A. Elbeltagi, A. Saraswat, A review on emerging water contaminants and the application of 
sustainable removal technologies, Case Studies in Chemical and Environmental Engineering 6 (2022), 100219. 

[56] M. Narayanan, M. El-Sheekh, Y. Ma, A. Pugazhendhi, D. Natarajan, G. Kandasamy, R. Raja, R.S. Kumar, S. Kumarasamy, G. Sathiyan, Current Status of 
Microbes Involved in the Degradation of Pharmaceutical and Personal Care Products (PPCPs) Pollutants in the Aquatic Ecosystem, Environmental Pollution, 
2022, 118922. 

[57] P.M. Nguyen, M. Afzal, I. Ullah, N. Shahid, M. Baqar, M. Arslan, Removal of pharmaceuticals and personal care products using constructed wetlands: effective 
plant-bacteria synergism may enhance degradation efficiency, Environ. Sci. Pollut. Control Ser. 26 (2019) 21109–21126. 

[58] Y. Sun, G. Lu, J. Li, T. Dang, C. Xue, J. Liu, Z. Yan, Multimedia distribution and trophic transfer of PPCPs in the middle and lower reaches of the Yarlung 
Zangbo River, Environ. Pollut. 271 (2021), 116408. 

[59] I.A. Al-Baldawi, A.A. Mohammed, Z.H. Mutar, S.R.S. Abdullah, S.S. Jasim, A.F. Almansoory, Application of phytotechnology in alleviating pharmaceuticals 
and personal care products (PPCPs) in wastewater: source, impacts, treatment, mechanisms, fate, and SWOT analysis, J. Clean. Prod. 319 (2021), 128584. 

[60] I. Hassan, S.R. Chowdhury, P.K. Prihartato, S.A. Razzak, Wastewater treatment using constructed wetland: current trends and future potential, Processes 9 
(2021) 1917. 

[61] R.S. Singh, T. Singh, A. Pandey, Microbial enzymes—an overview, Advances in enzyme technology (2019) 1–40. 
[62] K.M. Moloantoa, Z.P. Khetsha, E. Van Heerden, J.C. Castillo, E.D. Cason, Nitrate water contamination from industrial activities and complete denitrification as 

a remediation option, Water 14 (2022) 799. 
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