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Abstract

A new method is described that accurately estimates kinetic constants, conductance and number of ion channels from
macroscopic currents. The method uses both the time course and the strength of correlations between different time points
of macroscopic currents and utilizes the property of semiseparability of covariance matrix for computationally efficient
estimation of current likelihood and its gradient. The number of calculation steps scales linearly with the number of channel
states as opposed to the cubic dependence in a previously described method. Together with the likelihood gradient
evaluation, which is almost independent of the number of model parameters, the new approach allows evaluation of kinetic
models with very complex topologies. We demonstrate applicability of the method to analysis of synaptic currents by
estimating accurately rate constants of a 7-state model used to simulate GABAergic macroscopic currents.
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Introduction

Markov models are a powerful tool for a statistical description of

voltage- and ligand-gated ion channels [1,2]. Operating with a

transition matrix, they represent the whole available information

about the kinetic properties of a channel in a compact form,

allowing simulation of ion channel behavior [3,4], comparison of

different channel subtypes [5,6], investigation of its modulated states

[7,8] and its interactions with pharmacological agents [9,10]. States

and transitions of kinetic model map onto conformational states and

transitions of ion channel proteins [11,12]. Thus, ion channel

kinetic models can be useful tools for investigating ion channel

structure and function at the molecular level [11,13].

The standard methods of estimation of kinetic rates are based

on the statistical analysis of single-channel patch-clamp recordings

[1,14–19]. But it is also possible to use for this purpose the

macroscopic currents, i.e. currents generated by an ensemble of

identical ion channels [20–22]. Not only has this approach an

advantage of more simple and fast recording procedure, but it also

makes possible to maintain the natural biochemical environment

of ion channels during the recordings. Besides, the macroscopic

current approach becomes especially useful and, in most cases the

only applicable approach, when synaptic channel properties are

evaluated.

Several methods of statistical estimation of kinetic rates from

macroscopic currents have been recently described for kinetic

models with a known topology [20–23]. However, methods, which

utilize Hidden Markov Models [17,22,24] are computationally

expensive. The number of operations necessary to estimate model

parameters increases exponentially with a model complexity and

the number of channels contributing to the macroscopic currents

[22]. So these methods are hardly applicable to the majority of

experimental data.

Other methods are based on the approximation of the

macroscopic current by a Gaussian process. Some of them do

not make use of the local time correlations, which is contained in

the macroscopic current fluctuations [21]. It substantially reduces

the number of necessary operations, although the accuracy of

these methods is compromised as a result [22]. On the other hand,

regarding the local time correlations using covariance fitting scales

the amount of calculations as the square of the number of points in

the macroscopic current, making this method limited with regards

to the number of points it can use [20]. The problems mentioned

above are overcome in a recursive algorithm, which utilizes

Kalman filter for the maximum likelihood estimation of kinetic

parameters [22]. However, the number of operations required in

this method increases as the third power of the number of states in

a model that can substantially slow down the calculation in the

case of complex channel models.

In this work we have developed an alternative approach to the

maximum likelihood estimation (MLE) of the channel kinetic

model parameters. We have started from the expression of the

macroscopic current likelihood as a function of kinetic model

[18,20]. Then we have noticed that the covariance matrix of

macroscopic currents is quasiseparable. Efficient linear algebra

algorithms for such matrices [25–27] provided a method for the

exact likelihood logarithm (log-likelihood) calculation that takes

into account statistics of local time correlations and scales

approximately linearly with the number of states in a kinetic

model. Moreover, using semiseparable representation of covari-

ance we have substantially accelerated the log-likelihood gradient

calculation due to a new approach having a weak dependence of
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the amount of required operations on the number of model

parameters.

Materials and Methods

The Model of a Macroscopic Current
In this work we consider an ensemble of independent and

identical ion channels. Behavior of each channel is described by

the Markov process and pij is a probability of the channel

transition from the state j to the state i during the time interval Dt.

Then, lim
Dt?0

pij

Dt
gives a rate constant of the transition j?i. A

macroscopic current elicited in response to an external stimulation

of the channels is assumed to be a sum of single-channel currents

and noise. The external stimulation is modeled as an instantaneous

change in those transition probabilities, which depend on the

neurotransmitter concentration (if ligand-gated channels are under

study) or on the membrane potential (in the case of voltage-gated

channels).

In this study we consider two types of stimulation protocols. In

the first type, an external stimulation is a single step change of the

concentration or the voltage and there is no additional

stimulations during the current recording. This is referred to as

a simple protocol. The second type of stimulation protocols,

referred to as a complex protocol, includes series of steps of various

amplitudes and durations during the current recording.

The macroscopic current is sampled at discrete time intervals.

The model parameters are: rate constants, kij~ lim
Dt?0

pij

Dt
,i=j,

currents, io, flowing through the channel being in each of its

conducting states o, and the number of channels in the ensemble,

Nch. These parameters form the parameter vector, h~ k, i, Nch½ �,
where k is the set of unknown rate constants. The kinetic model

topology, i.e. the number of conformational states of the channel,

the set of allowed transitions between them and the set of

conducting (open) states are assumed to be known.

Asymptotic Log-likelihood
To describe a state of a given ion channel at each time point, let

us introduce a random vector xo
j , so that xo

jt~1 if the channel j is

in a conducting state o at time t, and xo
jt~0 otherwise. Since the

macroscopic current is assumed to be the sum of single-channel

currents, it is described by the sum of such vectors,

I~
PNO

o~1

PNch

j~1

xo
j io. Vectors xo

j are statistically independent and

identically distributed. In the limiting case of large number of

channels, Nch, according to the multidimensional central limit

theorem, the distribution of the sum of vectors xo
j converges to the

multivariate Gaussian distribution. Then the likelihood of

macroscopic currents, i.e. the probability density of a particular

set of N macroscopic current traces, I1:N
1:NT

, each consisting of NT

points, is given by [18,20,21]

Lh:P(I1:N
1:NT
jh) �?�

Nch�??

1

(2p)NNT =2 cmj jN=2

exp {
1

2

XN

i~1

I i
1:NT

{m
� �T

c{1
m I i

1:NT
{m

� �( ) ð1Þ

Here I1:N
1:NT

is NT|N matrix composed of the macroscopic

current traces, N is the number of traces and NT is the number of

points in each macroscopic current, I i
1:NT

; m, a vector of NT

dimension with elements mt and cm, an NT|NT matrix with

elements cmf gt,t0 denote mean and covariance of the current,

respectively, and they both are the functions of h.

The mean and covariance of macroscopic current in the case of

simple stimulation protocol follow equations [18] (see A0 in Text

S1 for derivation):

mt~NchiT eQtp(0)

cmf gt,t0~Nch iT eQtp(0)eQ t0{tð Þi{ iT eQt0p(0)
� �

iT eQtp(0)
� �� �ð2Þ

Here Q is a rate matrix [18,20] and p 0ð Þ is an initial state vector.

This vector can be expressed as a function of kinetic model

provided that the concentration/voltage stimulation applied to the

channels is known during sufficiently long time T preceding

current registration:

p(0)~P
j

e
QjDtj p({T) ð3Þ

In general, likelihood Lh tends to Gaussian function of model

parameters provided the number of traces is large enough and

they are statistically independent.

The estimate of the most likely parameter set of the model, hML,

is now given by

hML~ arg max
h

log Lhð Þ ð4Þ

The diagonal elements of the inverse Hessian matrix of log Lh,

taken at the point hML, approximate the variance of parameter

estimates [22]

Hf gij~
L2 log Lh

LhiLhj

s2(hi)~ H{1
� �

ii

ð5Þ

One can see that, in general case, the calculation of the log-

likelihood (Eq. 1) requires *(N3
TzN2

T N) elementary operations

(i.e. operations of the form a+b:c [27]). However, the log-

likelihood can be estimated more efficiently using the fact that cm

has specific semiseparable structure expressed by Eq. 2.

Fast Calculation of Log-likelihood
To approach the problem of the computationally efficient

estimation of the kinetic model, let initially consider a linear

dynamical system of the form:

yt~H txtznt

xt~Atxt{1zvt

ð6Þ

Where yt is observable variable, H t - 1|NS vector, nt is a

stationary Gaussian noise variable with a known autocorrelation

function, xt is a hidden NS|1 variable, vt,N(0,Rt) is a random

NS|1 variable.

Then it is easy to show that the covariance of the observable

variable has the form:

ct,t{l~cov yt,yt{lð Þ~Ht P
t

j~t{lz1
Aj

� 	
cov xt{l,xt{lð ÞHT

t{lzcov nt,nt{lð Þð7Þ

The likelihood of the set of model parameters, h, is a probability to

Fast Estimation of Kinetics from Macroscopic Data
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obtain the vector of observable variable, y1:T , given this set of

parameters. In the case of the model expressed by Eq. 6, this

probability has Gaussian distribution and the log-likelihood of y1:T

is:

log L(y1:T )~{
NT

2
log (2p){

1

2
log det cð Þð Þ{ 1

2
y1:T{�yy1:Tð ÞT c{1 y1:T{�yy1:Tð Þ

ð8Þ

Efficient estimation of the log-likelihood function can be done

using Cholesky factorization of c.

c~GGT ð9Þ

where G is a lower triangular matrix: Gij~0, ivj. It is well known

that matrix c is quasiseparable [28,29]. This remarkable property

of covariance is clearly seen from the Eq.7. For quasiseparable

matrices there are several fast algorithms for computing Cholesky

factorization ([25–27] and A1 in Text S1).

The use of factorization allows us to rewrite the log-likelihood

(Eq. 2) in the form:

log Lh~{
T

2
log (2p){

XT

j~1

log G jj{
1

2
(h1:T )T h1:T ð10Þ

The matrix G is also quasiseparable (see A1 in Text S1), and

vector h1:T is the solution of the system of equations (A1 in Text

S1).

G :h1:T~ y1:T{�xx1:Tð Þ ð11Þ

One iteration of the algorithm can be now summarized as follows

(see A1 and A3 in Text S1 for details):

For jw1:

Update statistics of unconditioned process (follows from Eq. 6):

�xxj~Aj �xxj{1

cov xj ,xj

� �
~Ajcov xj{1,xj{1

� �
AT

j zRj ð12Þ

�yyj~H j�xxj

Update components of quasiseparable representation of c (Eq.

7):

pj~ H jp
noise



 



qj~ cov xj ,xj

� �
HT

j ; qnoise



 




dj~pjqj ð13Þ

aj~
Aj 0

0 diag lnoiseDtj

� �










Update Cholesky decomposition of covariance (Eq.9):

f j~aj{1f j{1aT
j{1zq1j{1q1T

j{1gj{1

gj~dj{pjf jp
T
j ð14Þ

q1j~
qj{ajf jp

T
j

gj

Measurement (Eq. 11):

zj~aj{1zj{1zq1jhj

hj~yj{�yyj{pjzj{1

ð15Þ

Update of the likelihood (Eq. 12):

{log L y1:j

� �
~{log L y1:j{1

� �
z

N

2
log(2p)zN log(gj)z

1

2

hjh
T
j

gj

ð16Þ

For j~1:

�xxj~Aj�xx0

cov xj ,xj

� �
~Ajcov x0,x0ð ÞAT

j zRj

f j~0

gj~dj ð17Þ

q1j~
qj

gj

zj~0

{log L yj

� �
~

N

2
log(2p)zN log (dj)z

1

2

yj{H j �xxj

� �
yj{H j�xxj

� �T

dj

This recursive implementation of the algorithm can be computa-

tionally more efficient than Kalman filter when y1:T contains

NwwNSzNnoise independent threads of data, since all calcula-

tions described in Eqs. 15–16 require an order of

2 NSzNnoiseð Þ2N elementary operations and no other calculation
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depends on N . Additional improvement in performance can be

achieved if the matrix Aj does not change every time step when

the data is sampled. In this case using eigendecomposition it can

be represented in the form: Aj~U jdiag exp ljDtj

� �� �
U{1

j , where

Uj is a matrix composed of eigenvectors and lj is a vector of

eigenvalues of the matrix Qj such that Aj~ exp QjDtj

� �
.

Then Eq. 13 should be transformed as follows:

pj~ H jU jdiag exp lj tj{tS

� �� �� �
pnoise



 



qj~ diag exp lj tSz1{tj

� �� �� �
U{1

j cov xj ,xj

� �
HT

j ; qnoise



 


 ð18Þ

dj~pjqj

aj~
~AAj 0

0 diag lnoiseDtj

� �













where ~AAj~e

Qj tj{tS

� �
if Qj=Qj{1 and ~AAj~diag lDtj

� �
other-

wise; tS is the time moment when Q was changed last time. After

this transformation one iteration of the algorithm requires

approximately 3 NSzNnoiseð ÞN operations if Aj was not changed

during this iteration.

In a context of macroscopic currents, At~ exp QtDttð Þ, where

Qt is a rate matrix, H t~iT , �xx0~Nchp 0ð Þ and Rt~

diag At�xxt{1ð Þ{Atdiag �xxt{1ð ÞAT
t (see, for example, Eq. 53 in

[20]).

Using Eqs.12 it can be shown that for the macroscopic currents

cov xj ,xj

� �
~diag �xxj

� �
{

�xxj�xx
T
j

Nch

If the rate matrix changes several times during the time interval

tj{1,tj

� �
, then ~AAj~ P

tj{1vtSz1ƒtj

eQS tSz1{tSð Þ.

Efficient Estimation of the Log-likelihood Gradient
To search for the maximum of log Lh using a convex

optimization it is necessary to estimate its gradient, + log Lh:

+ log Lhf gi~
L log Lh

Lhi

.

The gradient can be numerically estimated using finite

difference method:

+ log Lhf gi,diff ~
log L hizDhið Þ{ log L hið Þ

Dhi

ð19Þ

The calculation of the gradient using this direct approach requires

Nh times more elementary operations then required for the

calculation of the log-likelihood itself, where Nh denotes the size of

the parameter vector h. The more efficient approach is based on

the fact that matrices required for the calculation of the log-

likelihood gradient in the case of the simple protocol are

semiseparable or quasiseparable. Indeed, differentiating log-

likelihood (Eq. 1) with respect to h and using Eq.18, we have:

+ log Lh~{
1

2

XN

i~1

{2 +mð ÞT c{1
m Ii

1:Nt
{m

� ��

{ I i
1:Nt

{m
� �T

(c{1
m )T+cmc{1

m Ii
1:Nt

{m
� �	

{
N

2
+ log det cmð Þð Þ

ð20Þ

where

+cmf gij~pi+qjz+piqj , i§j

+cmf gji~ +cmf gij , i§j
ð21Þ

Therefore, the matrix +cm is symmetric semiseparable. As it is

shown in Text S1, A2, in order to compute + log L using Eq. 20,

in addition to Cholesky factorization of matrices +cm and cm and

solving the system of equations with coefficient matrices being

lower and upper triangular, the following operations are necessary:

multiplication of semiseparable matrix by vector, semiseparable

matrix inversion and two operations of the form Tr F:+cmð Þ. Here

F is either an NT|NT semiseparable matrix with component

matrices of the size NS|NT and NT|NS (similar to that from

Eqs. 18) or F~c{1
m is a quasiseparable matrix (see A2 in Text S1).

The detailed algorithm of the gradient estimation is described in

Text S1, A2.

It appears that the complexity of calculation of + log Lh is

independent of the length of the vector h. For NSvvN the

calculation of gradient requires *4NNT NSzNnoiseð Þ operations

compared to 2NNT NSzNnoiseð Þ operations for log-likelihood

computation (see A2 in Text S1).

Noise Model
Noise observed in the patch-clamp recordings can be considered

as the sum of two uncorrelated processes: background noise and

open-channel excess noise [30].

The background noise can be well approximated by a stationary

Gaussian process [17,19]. The power spectral density of the

experimental background noise typically has the form:

S(f )~c0zc1f zc2f 2z1=f ð22Þ

Its components arise mainly from shot and thermal noises

imposed onto the patch, electrode and hardware capacitance and,

sometimes, it has an additional 1/f component associated with the

noise of neuronal membrane [30,31].The covariance matrix of

stationary background noise is Toeplitz and can be well

approximated by a low order semiseparable matrix.

In this work we assume that background noise is Gaussian and

model it as the sum of Nnoise = 144 first-order autoregressive (AR)

processes [17,19]:

xt~
XNnoise

k~1

xt,k, xt,k~Qkx(t{1),kzskwt,k, wt,k*N(0,1) ð23Þ

The spectral density of the resulting process is a sum of

Lorentzians and it can well approximate Eq. 22 [17,19]. The

covariance matrix of xt has a form

cnoise
m (tl,tj)~

XNnoise

k~1

s2
k

1{Q2
k

expflog(Q
{tl=Dt

k )g exp log (Q
tj=Dt

k )
n o

~pnoise
l qnoise

j

ð24Þ

because the autocorrelation of AR(1) process is a decaying

exponential.
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Since the macroscopic current covariance is the sum

cmzcm
noise, it is quasiseparable with components, expressed by

Eq.13 or Eq.18.

The background noise statistics (i.e. parameters sk and Qk) can

be obtained from parts of recordings, where signal is not present,

using the maximum likelihood estimation algorithm (Eqs.12–18).

To obtain initial estimates of sk and Qk, used as a starting point for

the maximization of the noise log-likelihood, a statistical estimate

of noise autocorrelation was fitted with the sum of several

exponentials (Eq. 24).

The open-channel noise is usually associated with shot noise in

the single-channel current as well as with conformational

fluctuations of the channel protein [32,33]. The excess noise of

the closed state is zero and a standard deviation for the open state

is typically about 3% of the single channel current [32].

Assuming correlated open-channel noise, one must have an a

priori knowledge about the noise model and statistics. In some cases

this information can be obtained from single-channel experiments

with a particular type of the ion channel [19,32,34]. Neglecting the

correlations of noise with macroscopic current [30], the covariance

matrix of noise can be added to the covariance matrix of the

current. Alternatively, the excess noise can be considered as arising

from open channel transitions between several additional

subconductance levels or it can be the consequence of the fast

openings and closings of the channel [35]. In this case the

estimation of the noise model can be treated as a specific case of

the model topology selection problem (see Discussion).

In this work, we used two models of excess noise: 1) In the first

model, for simplicity, open-channel noise was assumed to be white

[32]. Thus, the term

varnoise t,tð Þ~
X

o

po tð ÞNchs1,o
2 ð25Þ

was added to the diagonal of the covariance matrix of the

macroscopic current. Here s1 is the standard deviation of the

open-channel noise for a single channel, varnoise is the variance of

the open-channel noise for the macroscopic current.

2) In the second model each open state was split into two states

with single-channel currents i1~iozs1 and i2~io{s1. The rate

of transitions between these states was 100 ms21. The parameters

of noise models (s1 for the first model and i1, i2 for the second one)

were then estimated together with the kinetic constants.

Summing up, the algorithm, we have introduced, is quite

general as it can be used for the estimation of ion channel kinetic

models from the macroscopic currents under Gaussian colored

background and open-channel excess noises.

Log-likelihood Global Maximum Search
Finally, to obtain the required model parameters (rate constants,

conductances and the number of channels) from a set of

macroscopic currents, we search for the log-likelihood global

maximum. In order to do this, we minimize negative log-

likelihood using graduated optimization. Initial estimates of each

parameter are randomly and uniformly chosen from the

logarithmic scale interval, h0=10,h0
:10½ �, where h0 is a vector

composed of the true parameter values, i.e. of values utilized by

the macroscopic current generator (see below).

The whole minimization procedure is divided into sequential

minimization steps. On the first step negative log-likelihood of the

first 5 currents regularly sampled at 50 points each is minimized,

and the estimated parameters are taken as initial parameters for

the next minimization step. The procedure is repeated for each

consequent step in the following manner: for the second step we

sample each of the 5 currents at 100 points, and for the third step

– at 200 points. Next, we sample currents at 200 points but

consequently increase the number of currents on each step, taking

N = 7, 10, 14, 18, 25, 30, 40, 50, 66, 85, 100, 125, 150, 200, 250,

330, 400 and 500 currents for minimization. On the final steps we

minimize negative log-likelihood of the whole set of 500 currents

and sample them, on each step, at 200, 400, 800, 1600 and finally

at 2500 points. When the dependence of the algorithm perfor-

mance on the number of currents is tested (see Results), we stop to

increase the number of currents, taken for minimization, on a

desired value of N, and then increase the number of points from

200 to 2500 in the abovementioned manner.

To test the convergence of the algorithm, we have minimized

the negative log-likelihood of a particular set of 200 currents using

40 different randomly chosen initial sets of parameters. The

algorithm failed to find a global minimum in less than 10% of all

cases. The values of log-likelihood in its maximum differed

between samples by no more than 1026 for all cases when global

minimum was found.

Thus, for all calculations in this work we rerun minimization 3

times, each time starting from the different initial parameter set

and then chose those of the parameter estimates which had the

best log-likelihood. In doing so we obtained negative log-likelihood

global minimum with the probability 99.9%.

Minimization was done using sequential quadratic program-

ming (SQP) method embedded in MATLAB Optimization

toolbox function fmincon. During the search, all parameters were

bounded within the interval h0=50,h0
:50½ �. The linear/nonlinear

equality or inequality constraints on the parameters, described

elsewhere [21] can be also easily imposed, because they are

inherent to the fmincon function, designed to find a minimum of

nonlinear constrained multivariable function.

Macroscopic Current Generator
We tested the performance of the algorithm with a set of

macroscopic currents generated by Monte-Carlo simulation. In

the most part of this work we did that for GABAA currents using a

kinetic scheme of GABAA receptor [36] which is shown in Fig. 1.

Kinetic rates were adapted from [36] and were as follows:

koff = 0.13 ms21, d1 = 0.14 ms21, d2 = 1.5 ms21, r1 = 0.02 ms21,

r2 = 0.12 ms21, a1 = 1.5 ms21, a2 = 1 ms21, b1 = 0.15 ms21, b2 =

8 ms21; kon1 = 4 mM21 ms21, kon2 = 8 mM21 ms21; i1 = 1 pA,

i2 = 1 pA; Nch = 500; An example of the simulated current is given

by Fig. 1 A, B.

Two different types of simple stimulation protocols (Fig. 1 C)

were used to generate the macroscopic currents. According to the

first protocol, referred to as brief stimulation, the receptors were

stimulated by a brief (modeled as a d-function) application of

saturating GABA concentration. In this case all channels were

considered to be in RG2 state right after a termination of GABA

application. In the second protocol (referred to as brief stimulation

with preincubation) receptors were persistently activated by GABA

having a low (6 mM) constant concentration and the same brief

application of saturating GABA concentration was done on top of

this concentration (Fig. 1 B)

A total of 1000 currents were simulated using each of these two

protocols. Sampling interval for each current was chosen to be

Dt = 0.2 ms. The segments of simulated currents from 1 ms to

501 ms after the brief stimulation were taken for the consequent

log-likelihood maximization.

For the most part of this work we have considered currents

under white noise. In order to do this a random number taken

from the normal distribution with zero mean and variance

s2 = 9pA2 was added to each generated current at each time point.

Fast Estimation of Kinetics from Macroscopic Data
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In addition, we have conducted several computational experi-

ments with more realistic noise model. Background noise was

modeled as a sum of 4 AR(1) processes with parameters

Q~½0:0067, 0:61, 0:96, 0:999� (when the sampling interval was

Dt~0:2 ms) and s~½0:32, 1:0, 1:42, 0:72�, pA (obtained from the

approximation of the whole-cell patch clamp background noise

autocorrelation function by the sum of 4 exponentials, see Eqs.

23–24). The open-channel excess noise was modeled as white

noise with standard deviation (per open channel) s1~0:1 pA for

each conducting state.

In order to directly validate that our approach may evaluate

the fast opening rate constants within channel models obtained

using a single channel analysis [37–40] we have also generated

macroscopic GABAA receptor currents based on recently

published detailed model (Figure 7A in [41]). The model has

been modified by increasing the opening and closing rate

constants for one of the channel conducting states (k48 and k84)

from 1.66 to 66.4 ms21 and from 1.986 to 7.944 ms21,

respectively. The kinetic model parameters were as follows:

koff = 0.33 ms21, k34 = 0.521 ms21, k43 = 1.362 ms21, k45 =

1.648 ms21, k540.34 ms21, k46 = 0.205 ms21, k64 = 0.223 ms21,

k67 = 1.216 ms21, k76 = 0.153 ms21, k48 = 66.4 ms21, k84 =

7.944 ms21; kon = 17 mM21 ms21; i = 3 pA, Nch = 500. Five sets

of 500 currents each were generated by Monte-Carlo method as

described for the previous model. The macroscopic current was

simulated using the 30-ms application of saturating GABA

concentration on top of the respective constant GABA concen-

tration (0, 2, 6, 15 and 5000 mM for each set, respectively). Each

of 725 parameter searches utilized 5 sets of 50 currents that were

randomly selected for each GABA concentration from the

initially generated sets. Sampling interval was set at Dt = 30 ms.

Realistic colored noise was added to the currents. Parameters of

noise model were obtained from whole-cell recordings of cultured

hippocampal neurons using a sampling interval of 30 ms. The

recordings were filtered and with 30 kHz analog 3-pole Bessel

filter. The root mean square of noise (12.4 pA) and noise

Figure 1. GABAA receptor model, stimulation protocols and simulated currents. Macroscopic currents were simulated by Monte-Carlo
method using a standard kinetic scheme of synaptic GABAA receptor [36]. (A) Simulated currents produced by a brief (0.2 ms) application of
saturating GABA concentration to 500 unliganded receptors. A thin red horizontal line corresponds to a zero current. White noise with the standard
deviation of 3 pA was added to the initially generated currents. (B) Simulated currents evoked by saturating GABA application to receptors that were
preincubated with 6 mM GABA. (C) Protocol of GABA applications for panels A and B. (D) The kinetic model used in simulations of macroscopic GABAA

receptors. The model consists of single and double-bound closed states RG and RG2, that are linked to corresponding open and desensitized states
O1, D1 and O2, D2, respectively. Both single- and double-liganded open states are thought to have the same conductance of 1 pA. Rate constants
(adapted from ref. [36]) were as follows: koff = 0.13, d1 = 0.14, d2 = 1.5, r1 = 0.02, r2 = 0.12, a1 = 1.5, a2 = 1, b1 = 0.15, b2 = 8 (ms{1); kon1 = 4, kon2 = 8
(mM{1ms{1).
doi:10.1371/journal.pone.0029731.g001
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parameters Q~½0:01, 0:93, 0:993, 0:9998� and s~½12, 1:6, 2:3,
1:2�, pA were obtained from the approximation of the whole-cell

patch clamp background noise autocorrelation function by the

sum of 4 exponentials. A single-channel current amplitude was set

at 3 pA, which is comparable with GABAA channel current

recorded at 100–120 mV driving force.

Estimation of Errors
The errors of the maximum likelihood approximation of the

kinetic rates, described in this work, were estimated with a

bootstrap analysis. To do that 20 to 40 bootstrap samples were

generated for each stimulation protocol sampling with replace-

ment from initially generated set of 1000 traces.

For each bootstrap sample we rerun minimization 3 times, each

time starting from different initial parameters. The estimated

model parameters, hML, were obtained from the trial that resulted

in the best log-likelihood and was considered to be a global

maximum.

The accuracy of estimated model parameters was evaluated as a

deviation of these parameters (hML) from those (h0) used for the

generation of the currents (i.e.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hML{h0ð Þ2

p
h0

).

The algorithm was implemented in MATLAB (see A4 in Text

S1). Source codes are freely available at: http://code.google.com/

p/multi-channel-data-analysis/.

Results

Estimation of Model Parameters Using a New MLE
Method

We tested the performance of our algorithm on simulated

GABAA receptor macroscopic currents (Macroscopic Current

Generator in Methods). A standard model of this ligand-gated

channel was chosen for the simulations [42] and two types of

simple stimulation protocols were implemented during the

simulations: (i) a brief application of saturating GABA concentra-

tion (brief stimulation) to unliganded receptors, and (ii) the same

application of saturating GABA concentration applied to the

receptors, preincubated with a low (6 mM) constant concentration

of GABA (brief stimulation with preincubation, Methods and Fig. 1

C). The first protocol resembles synaptic GABA release in certain

type of synaptic connections [34,43–48] while the second one

enables estimating the time constants of GABA binding (kon1,

kon2), which otherwise could be hardly derived from the

macroscopic traces obtained within the first protocol.

A set of 1000 macroscopic currents was generated for each

protocol and examples of such currents are shown in Fig. 1 A and

B, respectively. The currents evoked by a brief stimulation had the

mean amplitude of 370 pA and a decay well approximated by a

sum of two exponentials with amplitudes of 159 pA and 149 pA

and decay times of 5.2 and 89 ms, respectively. The currents

resemble postsynaptic currents routinely recorded in cortical

GABAergic synapses [49]. Steady state currents generated in a

response to a low level of constant GABA concentration (6 mM)

had the mean amplitude of 50 pA with variance of 32 pA2.

Channel state occupancies during these steady state currents were

as follows: R – 18.3%, RG – 6.8%, RG2 – 1.3%, O1 – 0.7%, O2 -

10%, D1 -47.4%, D2 – 15.6%. Thus, both single and double-

bound states were reasonably represented in the generated

currents, enabling estimation of kon1, kon2 from current fluctua-

tions. The mean amplitude of macroscopic currents generated

using the brief stimulation with preincubation was 78 pA (Fig. 1B).

Using our algorithm the model parameters were estimated from

a set of two groups of currents: 100 currents evoked by the brief

stimulation and 100 currents evoked by the brief stimulation with

preincubation. These two groups were combined for the analysis,

and their log-likelihood was estimated as a sum of log-likelihoods

of each group. Each group of 100 currents was randomly sampled

with replacement from the corresponding initially generated set of

1000 currents. To estimate the algorithm accuracy, the parameter

search was performed for 20 sets of 200 currents obtained in the

above manner (see Log-likelihood Global Maximum Search in

Methods for details). For each run, the initial parameter values

(red lines in Fig. 2) were chosen randomly and uniformly in the

logarithmic scale from the range h0=10,h0
:10½ �, where h0 denotes

a vector of true parameter values, i.e. parameters used for the

macroscopic current generation.

Parameter estimates (blue lines in Fig. 2) were in good

agreement with their true values (green lines in Fig. 2). The

relative error of each parameter estimate (i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hML{h0ð Þ2

p
h0

, where

hML is estimated parameter value), evaluated by bootstrapping (see

Methods), was less than 10% (Fig. 3; 4th point of each curve): koff -

1.6%, d1 - 10%, d2- 3.1%, r1 - 12.5%, r2 - 0.8%, a1 - 8.4%, a2 -

0.5%, b1 - 6.3%, b2 - 1.4%, i - 0.5%, Nch - 0.7%, kon1 - 4.6% kon2

- 4.1%. Relative errors of parameters, estimated using the inverse

Hessian matrix of log Lh (Eq. 5 in Methods) were in close

agreement with their bootstrap estimates: koff - 1.2%, d1 - 17%,

d2- 1.3%, r1 - 17%, r2 - 1.1%, a1 - 3.5%, a2 - 1.0%, b1 - 6.5%, b2 -

0.9%, i - 0.8%, Nch - 1.2%, kon1 - 2.8%, kon2 - 2.2%.

To obtain sampling distributions of estimates, the parameter

search was repeated 606 times using the same dataset of 200

currents. Each of the resulting distributions was Gaussian-shaped

and narrow, with the sample mean that was very close to the true

value (Fig. 4). All estimates, except for d1, r1, b1, had only slight

positive or negative bias of about 1% (calculated as (h{h0)=h0).

Sampling distributions of these rate constant estimates had

coefficients of variation (CV) of about 5%, except for kon2

(CV = 13%) and a1 (CV = 12%). Only d1, r1, b1 and kon1 estimates

had the sampling distributions with more than 15% CV and the

bias of about 4–10%.

Algorithm Accuracy and Sample Size
The amount of data necessary for a particular algorithm to

secure a given accuracy of parameters is an important issue. For

example, for synaptic currents it is hard to collect more than a few

hundred traces in steady state conditions necessary for applicabil-

ity of practically any existing algorithm [50]. Therefore, we

explored a dependence of accuracy, expressed as a relative error of

evaluated parameters on the number of macroscopic currents

taken for likelihood maximization (Fig. 3). To this end, 6 groups of

currents were selected with each group consisting of 26 sets of

randomly sampled currents. The number of currents in these sets,

N, was different, N~ 30, 50, 100, 200, 400, 1000½ �, and N=2
currents were generated using each stimulation protocol as

described in the previous section. The model parameters used

for generation of the macroscopic currents were estimated for

these groups of currents using our maximum likelihood method.

Fig. 3 demonstrates that the error of each parameter estimate

steadily decreases with the number of currents taken for the

analysis. It is also worth noting that parameters koff , d2, r2, a2, b2,

i, Nch can be evaluated with less than 10% error even from the set

of 50 currents. At the same time, parameters a1, b1, kon1, kon2 can

be estimated from a set of 200–400 currents and only estimation of

parameters d1, r1 with the same accuracy requires about 1000

currents.

Thus, even in the case of complex channel models our

algorithm can accurately evaluate important model parameters
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such as the channel conductance, the number of channels and

kinetic constants determining channel desensitization using

experimentally realistic number of macroscopic currents obtained

within two simple stimulation protocols.

Method Accuracy and Sampling Rate
Reduction in the sampling rate, i.e., in the number of data

points in each macroscopic current, can significantly speed up the

log-likelihood computation, and thus the estimation of the model

parameters [22]. An important issue, however, is how the accuracy

of the estimates decreases with the reduction of the sampling rate,

and how many model parameters could be reliably estimated.

In order to explore this issue, 5 groups of currents having

different number of data points were obtained in the following

way. Initially 1000 currents with a sampling interval of 0.2 ms

were generated using the brief stimulation protocol with (500

currents) and without (500 currents) preincubation with GABA as

described in the first chapter of the Results. Thereafter 26 sets of

1000 currents were randomly sampled from these initially

generated macroscopic currents. Finally, NT evenly spaced in

time data points were selected from these currents with

NT~ 2500, 1600, 800, 400, 200½ � for each group, respectively.

The number of data points in the groups of macroscopic currents

corresponded to the sampling rates of f ~ 5, 2:5, 1:67,½

0:83, 0:385� kHz that are in a range of conventional sampling

rates used in electrophysiological recordings of macroscopic

currents.

The parameter search showed that the error of the estimated

single-channel conductance, i, the number of channels, Nch, and the

rate of escape from the desensitized state, r2, was smaller than 3%

and almost independent of the sampling rate. It is also worth noting

that most of the other model parameters estimated from the

currents sampled at the lowest rate differed from their true values by

less than 10%, while some parameters could not be evaluated at all

(Fig. 5). At the same time, increasing sampling frequency from 0.385

to 5 kHz significantly improved the accuracy of the estimates of

parameters kon1, kon2, koff , b1 (‘slow’ constants) as well as of b2, d2,

a1, a2 (‘fast’ constants) and Nch and allowed estimating the

parameters that could not be evaluated at lower rates.

Thus, we may conclude that using the method proposed in this

work the channel conductance and the number of channels can be

efficiently and accurately evaluated from the macroscopic currents

recorded at low sampling rates. At the same time the accuracy of

almost all parameter estimates significantly improves with the

sampling rate increase (regardless of whether the constant is ‘fast’

or ‘slow’), arguing in favor of importance of the method capability

to efficiently analyze non-filtered macroscopic currents or to select

the large number of data points in the analyzed currents.

Figure 2. Convergence of the method for the case of combined dataset. Each of 20 performed parameter searches utilized two sets of
simulated currents: 100 currents without and 100 currents with preincubation with 6 mM GABA, similar to that used in Fig. 1 A–C. Each black trace
shows how the estimate of parameter indicated on the top evolved during maximization of the likelihood of a particular set of currents. Each point in
the traces represents an iteration of the maximization algorithm. Initial values of each parameter (red dashes) were chosen randomly and uniformly in
the logarithmic scale from the interval h0=10, h0

:10½ �, where h0 denotes their true values (green dashes). Blue dashes mark parameter values, to which
the algorithm converged. The algorithm converged for all estimated parameters. A black horizontal bar corresponds to 2500 log-likelihood
evaluations.
doi:10.1371/journal.pone.0029731.g002
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Method Sensitivity to Colored Noise and Open-Channel
Excess Noise

In order to test the method behavior under more realistic noise

we have conducted computational experiments such that the

generated macroscopic currents included colored noise, which was

estimated from whole-cell patch clamp recordings, and substantial

(10% of single channel current) excess noise (see Macroscopic

Current Generator in Methods).

In first series of these experiments the excess noise was modeled

as white noise and its standard deviation, s1, was considered as an

additional unknown parameter of the model.

The errors of the parameters evaluated by the method were:

koff - 5.7%, d1 - 30%, d2- 7.2%, r1 - 36%, r2 - 1.1%, a1 - 11.7%,

a2 - 10.8%, b1 - 17%, b2 - 8%, i - 2.2%, Nch - 4.0%, kon1 - 12.5%

kon2 - 11.4%, s1-48.2%.

Relative errors of parameters, estimated using the inverse

Hessian matrix of log Lh (Eq. 5 in Methods) were: koff - 5.9%, d1 -

26%, d2- 7.7%, r1 - 26%, r2 - 1.3%, a1 - 11.0%, a2 - 11.8%, b1 -

13%, b2 - 10%, i - 2.3%, Nch - 4.9%, kon1 - 10.4% kon2 - 9.8%, s1-

59.2%.

The excess noise, which was modeled in second series of

experiments, was thought to arise from fast transitions of the

channel between two subconductance states. When this model of

excess noise was used the errors of the parameters evaluated by the

method were approximately the same as in the first series of

experiments: koff - 5.7%, d1 - 21%, d2- 8.1%, r1 - 25%, r2 - 1.2%,

a1 - 11.6%, a2 - 11.7%, b1 - 17%, b2 - 8.6%, i - 1.8%, Nch - 3.7%,

kon1 - 11.0% kon2 - 15.1%, s1 - 50.2%.

Relative errors of parameters, estimated using the inverse of a

Hessian matrix of log Lh (Eq. 5 in Methods) were: koff - 6.3%, d1 -

21%, d2- 8.1%, r1 - 21%, r2 - 1.3%, a1 - 10.6%, a2 - 11.6%, b1 -

14%, b2 - 10%, i - 1.9%, Nch - 4.8%, kon1 - 9.5% kon2 - 11.1%.

Thus, both models were in good agreement with each other, but

addition of a realistic noise significantly decreased the accuracy of

most parameter estimates. Nevertheless, all parameters can still be

estimated with a reasonable accuracy.

All kinetic constants corresponding to double-bound states as

well as channel conductance and the number of channels were

evaluated with very high accuracy while evaluation of the

constants for single-bound states had lower accuracy due to minor

representation of O1 state in the generated currents. Using a

combination of two stimulation protocols, we also succeeded in

finding rate constants for transitions RRRG (kon1) and RGRRG2

(kon2) with less than 8% error.

To additionally address a problem of method sensitivity to a

signal-to-noise ratio and deviations from Gaussian statistics for the

low number of channels [22], the macroscopic currents containing

white background noise (3 pA) were generated and analyzed for a

set of 50 GABAA channels, the number of channels close to one in

a single postsynaptic density. Most parameter estimates were still

Figure 3. Dependence of relative error of the parameter estimates on the number of currents taken for minimization. Each point
represents an averaged (over 26 sets of currents) standard deviation of the estimated parameter from its true value. The number of currents,N , used
for the parameter search, increases along each curve from left to right, N~ 30, 50, 100, 200, 400, 1000½ �. The currents were simulated using the brief
stimulation protocol with (N=2 currents) and without (N=2 currents) preincubation with GABA. Most parameters, including the channel conductance
and the number of channels, were estimated with less than 10% error using only 50 simulated currents.
doi:10.1371/journal.pone.0029731.g003
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informative (errors: koff - 9%, d1 - 105%, d2- 9.3%, r1 - 72%, r2 -

1.7%, a1 - 24%, a2 - 7.6%, b1 - 73%, b2 - 19%, i - 1.2%, Nch -

2.5%, kon1 - 58% kon2 - 42%) indicating that the method could be

potentially applicable to the analysis of miniatures and postsyn-

aptic currents recorded from single synapses.

Evaluation of Fast Kinetic Rates from Noisy Macroscopic
Currents

The results discussed so far were obtained using the model of

GABAA receptor that was originally derived from the analysis of

macroscopic currents (Fig. 1 D, [36]). However, other topologies

and parameter ranges of GABAA receptor models have been

recently obtained based on a single-channel analysis of GABA

receptor currents recorded in heterologous systems [41,51]. For

consistency with the previous results, we have chosen to use the

recently published GABAA receptor model [41] to test how the

presented method performs with a single-channel analysis-based

model. The kinetic model topology is shown in Fig. 6. This model

was obtained using a segmented K-means method for data

idealization that can underestimates fast kinetic rates [52].

Furthermore, the rates of channel gating obtained from single-

channel recordings of ligand-gated channels often reach values as

high as 130 ms21, as it has been recently shown for nicotinic and

glycine receptors [37–40]. Considering these facts we modified the

model [41] by increasing the opening and closing rate constants

for one of the channel conducting states (k48 and k84) from 1.66 to

66.4 ms21 and from 1.986 to 7.944 ms21, respectively (Fig. 6).

Thus, the obtained GABAA receptor model allowed us to test how

the presented method performs with models having fast gating

kinetics (see Methods).

Realistic colored noise having the root mean square of 12.4 pA

was added to these currents. The parameters of noise model were

obtained from whole-cell recordings of cultured hippocampal

neurons using a sampling interval of 30 ms (see Methods for further

details). A total of 250 currents were randomly sampled from 2500

initially generated macroscopic currents for the subsequent

analysis.

Relative errors of parameter estimates evaluated by boot-

strapping were: koff - 3.0%, kon - 1.4%, k34- 3.0%, k43 - 4.6%, k45

- 24%, k54 - 16%, k46 - 9.7%, k64 - 15%, k67 - 9.8%, k76 - 7.6%

k48 - 3.0%, k84 - 9.9%, i - 2.7%, Nch - 4.1%;

Relative errors of parameter estimates evaluated using Hessian

inverse were: koff - 2.7%, kon - 1.3%, k34- 2.9%, k43 - 4.1%, k45 -

24%, k54 - 15%, k46 - 8.3%, k64 - 13%, k67 - 9.2%, k76 - 7% k48 -

3.1%, k84 - 8.7%, i - 2.4%, Nch - 3.8%.

Sampling distributions of the estimates were Gaussian-shaped

and narrow, with the sample mean that was in each case very close

to the true parameter value (Fig. 7). The estimates demonstrated

Figure 4. Sampling distributions of model parameter estimates. The graphs show the sampling distribution for each parameter estimate
in the case when the combined dataset was used. The parameters are indicated on the top of respective graphs. Red vertical lines mark true
parameter values. All distributions are narrow, have a Gaussian shape and centered very close to the true parameter values. Each of 606 parameter
searches utilized two sets of simulated currents: 100 currents without and 100 currents with preincubation with 6 mM of GABA, similar to that used in
Fig. 1 A–C.
doi:10.1371/journal.pone.0029731.g004
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only slight negative bias (calculated as (h{h0)=h0) of about 0.5%

(koff , kon, k34, k43, k76, k48, i, Nch) or 3% (k54, k46, k64, k67 and

k84) except for k45, which had 9.5% bias. Sampling distributions of

the abovementioned rate constant estimates had coefficients of

variation (CV) of about 3% and 12%, respectively. Only k45

estimate had the sampling distribution with CV = 26%.

Thus, given appropriately recorded and filtered macroscopic

currents our method can reliably estimate very fast kinetic rates in

realistically complex models, similar to those obtained using the

single-channel analysis.

Algorithm Applicability to Analysis of Synaptic Currents
A protocol with brief channel stimulation by a saturating

neurotransmitter concentration that was used for the macroscopic

current simulation is a model of synaptic quantal release for a

certain type of synapses [34,43–48]. Therefore, we wondered

about a possibility to accurately evaluate channel model

parameters from macroscopic currents generated with the only

brief stimulation protocol instead of two protocols described

above.

Initially, the parameter search was performed using 200

macroscopic currents simulated in a response to the brief pulse

of saturating GABA concentration applied to receptors being in

the unliganded state. This number of currents is an upper limit of

the number of experimental postsynaptic currents that can be

routinely recorded in steady state conditions, which are necessary

for applicability of MLE methods to the experimental data. The

currents were randomly sampled with replacement from the

corresponding initially generated set of 1000 currents. In order to

determine an accuracy of parameter estimates the parameter

search was repeated for 30 sets of macroscopic currents obtained

in the manner described above. It appeared that parameters koff ,

d2, r2, a2, b2, i and Nch were evaluated with an excellent accuracy

(errors: koff - 2.2%, d2- 2.0%, r2 - 1.2%, a2 - 1.3%, b2 - 2.8%, i -

0.6%, Nch - 1.1%) using 200 macroscopic currents resembling

postsynaptic ones (Fig. 8). These particular parameters could also

be estimated with a good accuracy already from 50 currents

obtained with the brief stimulation protocol (errors: koff - 4.4%,

d2- 5.0%, r2 - 2.7%, a2 - 3.9%, b2 - 7.3%, i - 1.5%, Nch - 2.0%).

Thus, these results open a possibility to substantially reduce the

amount of data necessary to secure a given accuracy of the most

important channel parameters, that is an important issue in the

case of synaptic current studies.

Two constants characterizing transitions between the single-

bound open and closed states, a1 and b1, were also identified using

200 macroscopic currents, although less accurately (a1 - 6.8%, b1 -

21%) than the above-mentioned parameters (Fig. 8). The only

parameters that the method failed to identify in the case of brief

stimulation protocol were kinetic constants d1, r1, related to the

single-bound desensitized state. It is worth noting that kinetic

Figure 5. Dependence of relative error of the parameter estimates on the sampling rate. Each point represents an averaged (over 26 sets
of 1000 currents) standard deviation of the estimated parameter from its true value. 500 currents without and 500 currents with preincubation with
GABA were used. The number of points, Nt, in each of the currents used for the parameter search, increases along each curve from left to right,
Nt~ 200, 400, 800, 1600, 2500½ �, corresponding to the sampling rates of 0.385, 0.83, 1.67, 2.5 and 5.0 kHz, respectively. The accuracy of most
parameter estimates steeply depended on the sampling rate.
doi:10.1371/journal.pone.0029731.g005
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constants kon1 and kon2 could not be identified using the brief

stimulation protocol.

Thus, identification of parameters related to the single-bound

states as well as to binding GABA to the receptors requires the

second stimulation protocol, whereas other model parameters

were identified and accurately estimated in the case of the brief

stimulation, implying a possibility to apply the method for

analyzing synaptic macroscopic currents.

Although most of the model parameters were identified by both

the brief stimulation protocol and a set of two protocols (the brief

stimulation with and without preincubation) it was interesting to

compare the algorithm convergence and accuracy of parameter

estimates for the experimentally realistic number of macroscopic

currents. Results of such comparison for 200 currents are

demonstrated in Fig. 9. Points on the left correspond to the

deviation of the initial values of each parameter from their true

values, and points on the right show the relative error of each

parameter estimate. It was found that the algorithm did not

converge only for GABA binding constants kon1, kon2 and the

error of estimates was significantly larger only for parameters d1,

r1, b1 in the case of the brief stimulation protocol compared to the

set of two protocols (Fig. 9, black versus blue lines).

As a result we have concluded, that in the case of the simplest

stimulation protocol resembling a neurotransmitter concentration

profile during a synaptic vesicle release, most kinetic rates of

synaptic receptor model, as well as the number of channels and

their conductance could be reliably and precisely estimated, and

the values for constants related to single-bound states might be

Figure 6. Single-channel analysis based GABAA receptor model, stimulation protocols and simulated currents. Macroscopic currents
were simulated by Monte-Carlo method using single-channel analysis based kinetic scheme of GABAA receptor [36]. Complex colored noise with the
standard deviation of 3 pA was added to the initially generated currents. (A) Simulated currents produced by a 30-ms application of saturating GABA
concentration to 500 unliganded receptors. (B, D–F) Simulated currents evoked by saturating GABA application to receptors that were preincubated
with 2, 6, 15 and 5000 mM of GABA, respectively. A thin red horizontal line corresponds to a zero current. (C, G). GABA applications protocols for
panels A, B and D–F, respectively. (H) The kinetic model of GABAA receptor used in simulations of macroscopic GABAA receptor current. The model is
based on a single-channel data analysis and consists of one single-bound closed state RG, 3 double-bound closed states RG2

1 RG2
2 and RG2

3, and 3
open states O1, O2 and O3. It is suggested that all open states have got the same single-channel current of 3 pA. The published model parameters
[41] have been modified by increasing the opening and closing rate constants for one of the channel conducting state (k48 and k84) from 1.66 to
66.4 ms21 and from 1.986 to 7.944 ms21, respectively. Other rate constants were as follows: koff = 0.33, k34 = 0.521, k43 = 1.362, k45 = 1.648, k54 = 0.34,
k46 = 0.205, k64 = 0.223, k67 = 1.216, k76 = 0.153, (ms21); kon = 17 (mM21Nms21).
doi:10.1371/journal.pone.0029731.g006
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restricted to a relatively narrow range. These results raise a

possibility that kinetic models of synaptic receptors in their native

biochemical environment could be analyzed in detail using

routinely recorded macroscopic postsynaptic currents.

Convergence and Accuracy of MLE Methods Critically
Depend on Taking into Account Local Time Correlations

An important advantage of the method, presented in this work,

is that it approximates the likelihood of the macroscopic currents

including the information contained in local time correlations of

the data. We suggested that additional information about channel

dynamics, which is present in the local time correlations, might

allow for the method to evaluate the model parameters reliably

without using complicated stimulation protocols (i.e. the protocol

with the large number of concentration or voltage steps).

This could give our method a considerable advantage over ones

considering the information about the variance of currents only

[21]. This advantage could be especially important for analyzing

synaptic receptors when utilizing fast and complicated stimulation

protocols are hardly possible. To quantitatively demonstrate this

advantage of the method, the convergence and accuracy of

parameter estimates were analyzed for our method against the

MLE approximation disregarding the local time correlations. To

implement the approximated MLE, the calculation of the likelihood

function using our method was simplified by substituting zeros for

all off-diagonal elements of the covariance matrix of the currents,

which is equivalent to the approximation described in [21].

Two groups of currents: (i) 200 currents generated using the

brief stimulation protocol and (ii) 200 currents generated using

brief stimulation protocols with and without preincubation (100

currents for each protocol) were taken for the analysis. The

parameter search was performed for the case of full covariance

(our method) for two groups of currents and for the case of the

approximated MLE method for the second group of the currents.

The search results are demonstrated in Fig. 9 (blue and black lines

for our approach versus red lines for the approximated MLE),

where points on the left correspond to the deviation of the initial

values of each parameter from their true values, and points on the

right represent the relative error of each parameter estimate. It is

clearly seen that the method presented in this work outperforms

the approximated MLE. The approximated MLE provides

reliable estimates only for the parameters r2, i and Nch, whereas

Figure 7. Sampling distributions of parameter estimates for the single-channel analysis-based model. The graphs show the sampling
distribution for each parameter estimate. Macroscopic currents were simulated by Monte-Carlo method using a kinetic model of GABAA receptor
based on a single-channel data analysis (Fig. 6) and having a fast channel opening rate constant of 66.4 ms21. The simulated currents were produced
by a brief (30 ms) application of saturating GABA concentration to 500 GABAA receptors. Complex colored noise was added to the initially generated
currents. The estimated model parameters are indicated on the top of each respective graph. Red vertical lines mark true parameter values.
Distributions are narrow, Gaussian-shaped and centered very close to the true parameter values. Each of 725 parameter searches utilized 250
simulated currents (see Methods for further details).
doi:10.1371/journal.pone.0029731.g007
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our method could accurately evaluate all model parameters for the

same set of two stimulation protocols (blue lines for our approach

compared to red lines for the approximated MLE) and identified

most of the parameters even in the case of the single stimulation

protocol resembling the synaptic vesicle release (black lines for our

approach compared to red lines for the approximated MLE).

Moreover, the presented method allowed to estimate i and Nch

significantly better compared to their estimates obtained with the

approximated MLE.

Thus, accounting for the local time correlations provided by our

method is crucial for the detailed analysis of ligand-gated channel

kinetics using the experimental results obtained with simple

stimulation protocols. These protocols (especially the brief

stimulation protocol resembling the synaptic vesicle release) are

potentially feasible within conventional experimental studies of

synaptic receptors and together with our method allow for the

analysis and complete identification of receptor model parameters.

Discussion

In this work we describe a new maximum likelihood method for

evaluation of the ion channel rate constants, the number of

channels and single channel conductance from macroscopic

currents. The macroscopic current is formulated as a non-

stationary Gaussian process and the likelihood of the data is

maximized with respect to the above mentioned estimated

parameters. We have noticed that the covariance matrix of

macroscopic currents is quasiseparable. Fast and exact estimation

of the likelihood function was performed using this remarkable

feature of the covariance. It resulted in developing of the method

that takes into account local time correlations and simultaneously

scales linearly with the number of channel states, thus efficiently

and accurately estimating channel model parameters.

We have also developed a new approach of likelihood gradient

evaluation which is almost independent of the number of model

parameters and could be used for fast evaluation of kinetic model

topology.

The present work was restricted to the analysis of simulated

GABAA receptor currents. It was shown that the new method can

estimate the channel conductance, the number of channels, and

most kinetic constants from the realistic number of simulated

GABAergic macroscopic currents using one simple stimulation

protocol resembling a synaptic vesicle release, arguing in favor of

the method applicability to the analysis of synaptic currents.

Relative Performance of Different MLE Methods
The main advantage of the current method over the most

computationally efficient exact MLE method for Gaussian

Figure 8. Convergence of the method in the case of brief stimulation. Each of 30 performed parameter searches utilized a set of 200
currents. Each black trace represents the evolution of the respective parameter estimate (indicated on the top) during the maximization of likelihood
of a particular set of currents. Each point in the traces represents an iteration of the maximization algorithm. Initial values of each parameter (red
dashes) were chosen randomly and uniformly in the logarithmic scale from the interval h0=10,h0

:10½ �, where h0 denotes their true values (green
dashes). Blue dashes mark parameter values, to which the algorithm converged. The method converged for almost all estimated parameters except
of GABA binding constants kon1 , kon2 and it showed rather poor convergence for the slow rate constants d1 and r1 . The black horizontal bar
corresponds to 2500 log-likelihood evaluations.
doi:10.1371/journal.pone.0029731.g008
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approximation of macroscopic currents [22], is that it scales

linearly with the model complexity, NS , (i.e. with the number of

states allowed by the model topology) compared to the cubic

dependence on NS in the MLE method suggested earlier [22].

Indeed, we estimated that the number of operations required by

the previous method for the log-likelihood evaluation is approx-

imately equal to 2N3
Sz5N2

Sz3NSNO

� �
NNT elementary opera-

tions (Eq. 46, 47, 50, 51, 54, 55 in [22]), versus 2 NSz1ð Þzð
2 NSz1ð Þ2zNS NOz3ð Þ

N
ÞNNTz2Nstim NSz1ð Þ2 NzNSz1ð Þ elemen-

tary operations (see Eqs. 12–18 in Methods) required by the

presented method. It results in a substantial improvement of

computational efficiency for complex realistic models. For example,

for a standard model of GABAA receptor with 7 states described in

this work and macroscopic currents evoked by the simple stimulation

protocol, the presented method requires approximately 58 times less

elementary operations when a set of 200 macroscopic currents is

analyzed. At the same time, both methods calculates likelihood

function exactly, resulting in convergence to the same model

parameters (for additional comparisons of the presented method with

the previous Kalman filter based method [22] see A5 in Text S1).

In addition to the fast calculation of likelihood, we have also

developed an approach that allows for fast calculations of log-

likelihood gradient. A computational cost of gradient calculation in

the suggested approach is weakly dependent on the model

complexity and the number of estimated parameters (Efficient

Estimation of the Log-likelihood Gradient in Methods and A2 in

Text S1). For the sufficiently large number of currents and simple

stimulation protocol, the gradient calculation requires approxi-

mately 2 times more elementary operations then the calculation of

the likelihood function. In contrast, a standard finite difference

approach requires Nh=2 times more operations, where Nh is the

number of model parameters (see Eq. 19 for details).

We have also shown that taking into account local time

correlations of the macroscopic currents resembling synaptic ones

is really important for the convergence and accuracy of parameter

estimates in the case of realistic numbers of stimulation protocols

and currents. Indeed, the GABAAR model parameters have been

completely identified and accurately evaluated by our method,

using only two simple stimulation protocols. On the other hand, an

approximated MLE, that uses the diagonal covariance matrix and

ignores the local time correlations [21], can estimate only 3 out of

15 model parameters (Fig. 9). At the same time, the presented

method requires 2NS times more operations for the likelihood

estimation. However, taking into account that the time required

for calculations of parameters of GABAAR model described in this

Figure 9. Dependence of relative error of the parameter estimates on the stimulation protocol. Significance of local time correlations.
For each parameter (indicated on the top) points on the left correspond to the deviation of its initial values from the true ones; points on the right
correspond to the deviation of parameter estimates, evaluated by the respective method, from their true values. Black lines denote that parameters
were estimated from a set of 200 currents generated with the brief stimulation protocol without preincubation with GABA. Blue lines denote that
parameters were estimated for a set of currents generated using brief stimulation protocol with (100 currents) and without (100 currents)
preincubation with GABA. Red lines denote the case when the local time correlations were disregarded (100 currents with and 100 currents without
preincubation). In the latter case, the likelihood function was calculated using the covariance matrix with all off-diagonal elements substituted by
zeros [21].
doi:10.1371/journal.pone.0029731.g009
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work is about 5–10 min (see below), the presented method is not

too computationally expensive even compared to the MLE

methods ignoring the local time correlations. Thus, we may

conclude that the suggested method outperforms ones disregarding

local time correlations in terms of required number of macroscopic

currents and complexity of stimulation protocols necessary to

reach a given accuracy of evaluated parameters.

The covariance fitting approach [20] also fits both the

magnitude of the macroscopic current and the strength of the

correlation between different time points and uses the full

covariance matrix representation as a function of model

parameters. However, this approach utilizes log-likelihood ap-

proximation by a squared deviation of a model covariance from its

statistical estimate, instead of exact calculation,. In addition the

method scales as the square of the number of samples and

therefore is computationally limited only to subsets of points in the

currents. As it was shown above (Fig. 5) the accuracy of parameter

estimates constantly and significantly improves up to the sampling

rates being as high as 5 kHz when the local time correlations of

simulated GABAA receptor currents are taken into account. This

strongly argues in favor of analysis of high-frequency current

fluctuations that should certainly result in faster and more accurate

log-likelihood estimation.

Thus, the presented method evaluates the channel kinetics using

both the time course and the random fluctuations of the

macroscopic currents, thus securing the maximal accuracy possible

with MLE thus far, and simultaneously substantially improves

computation efficiency due to faster calculations of the likelihood

and likelihood gradient.

Method Applicability for Arbitrary Stimulation Protocols
The proposed method is applicable to the analysis of both

voltage- and ligand-gated ion channels. Its important feature is

the ability to perform the parameter search using the macro-

scopic currents elicited by both simple (no changes in the rate

matrix) and complex (arbitrary) stimulation protocols. Continu-

ously changing arbitrary stimuli can be approximated with a

series of step functions and the rate matrix for each step is

modified by an instantaneous change of those of transition

probabilities that depend on a neurotransmitter concentration (if

ligand-gated channels are under study) or membrane potential (in

a case of voltage-gated channels). At the same time, calculations

performed by the method are the most efficient in the case when

stimulation protocol consists of a small number of step functions

(see Fast Calculation of Log-likelihood in Methods). Additionally

we have shown that even the simple protocols might be sufficient

for the accurate estimation of ion channel model parameters

(Fig. 2, 8, 9).

The performance of the presented approach is good enough to

promptly analyze experimental macroscopic currents recorded

from a set of ligand- or voltage-gated channels. For example,

estimation of 13 parameters of the GABAA receptor model having

7 states from simulated currents (500 channels, 200 currents of

2500 points each) takes about 5–10 min on a 2.8 GHz Intel

Core2Duo PC. Additionally, the method can be adapted for the

analysis of currents filtered by averaging over a short time interval.

This would enable to speed up the estimation of some model

parameters without impairing estimates accuracy.

Thus, the method could be an efficient and accurate tool for the

analysis of parameters of complex ion channel models, channel

interactions with pharmacological agents and modulators, and of

other cases when the minimal kinetic scheme includes many states

and transitions and when arbitrary stimulation protocols are

utilized.

The method can be applied for identifying a broad class of

linear dynamical systems beyond the domain of ion channel

kinetic model inference. For the complex linear dynamical systems

the method can significantly outperform methods based on

Kalman filter if i) at least several traces are obtained with each

stimulation protocol or ii) a stimulation protocol is relatively

simple.

Kinetic Model Size and Topology Selection
In this study we proceeded from the assumption that the kinetic

model topology was known. At the same time, the presented

method can give significant advantages in choosing the model size

and topology based on differences in the goodness of fit. In

perspective, the method could be used in two ways. First, it can

substantially increase the quality of evaluation of the model

topology when the log-likelihood is used as a score function in the

previously described methods [20,21,53–58].

Second, our method makes it possible to efficiently find kinetic

constants even for the complex ion channel models since the log-

likelihood gradient computation almost linearly depends on the

number of states and is almost independent of the number of

transitions between the model states. Thus, it now becomes

possible to perform the parameter search, starting from the most

complicated model topology, which might be suggested for the

particular ion channel and which includes the large number of

states and the whole set of theoretically feasible transitions between

these states. This search should result in the most likely parameter

set, hML, of this complicated model. In the case of the large

number of macroscopic currents the likelihood,Lh, as a function of

the parameter vector, h, is well approximated by the Gaussian

function with the mean equal to hML and the inverse of covariance

matrix is equal to Hessian of log Lh, evaluated at the point

h~hML. We propose to use this Laplace approximation for the

fast search of the most probable model within a set of models

having smaller size and simpler topology using Bayesian statistics

methods [59].

Method Applicability to Analysis of Synaptic Currents
The brief channel stimulation with the saturating GABA

concentration simulated in this work can be considered as a

model of synaptic vesicle release in certain types of synapses.

Indeed, after synaptic GABA release from the synaptic vesicle, its

concentration in the synaptic cleft decreases by a factor of 10

during less than 0.1 ms [43] and in many types of synapses

neurotransmitters almost completely saturate the postsynaptic

receptors [34,44–48]. Thus, it is possible that postsynaptic current

fluctuations in these synapses occur mainly due to stochastic

nature of the respective postsynaptic receptor gating. In this

particular case trial-to-trial variations of neurotransmitter concen-

tration in the synaptic cleft [46,60], and other presynaptic factors

[45,60–62] should not contribute to the fluctuations. It is also

possible to reach the saturation of postsynaptic receptors in these

and other types of synapses by increasing the probability of vesicle

release, e.g. using high concentrations of extracellular calcium [34]

or by increasing the neurotransmitter content of synaptic vesicles

[63]. Thus, in many experimentally conceivable situations a direct

application of the presented method to the analysis of macroscopic

postsynaptic currents can yield accurate estimates of the channel

conductance, the number of channels, and substantial number of

kinetic rates (Fig. 8).

However, the information from the macroscopic currents

evoked by the synaptic vesicle release could not be enough if a

whole set of parameters should be evaluated for a particular

ligand-operated synaptic channel (Fig. 9). As it was shown (Fig. 1,
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2), all kinetic rates could be accurately estimated only if the

currents evoked by synaptic GABA release were combined with an

external GABA application to the same synaptic receptors.

Although it is technically challenging to apply a neurotransmitter

selectively to synaptic receptors, combination of local GABA

application (e.g, by iontophoresis or by puff application [64]) with

local presynaptic stimulation [65,66] could potentially resolve this

problem. In this case, noise induced by extrasynaptic channel

activation can be estimated from currents induced by the local

neurotransmitter application after blocking of synaptic currents

with an irreversible use-dependent inhibitor of the synaptic

receptors (e.g, picrotoxin for GABAA or MK-801 for NMDA

receptors, respectively [67,68]). Other approach could be a

combination of temporary use-dependent block of synaptic

channels with competitive irreversible block of extrasynaptic

receptors. The GABA concentration within the synaptic cleft

during applications can be calibrated based on the dependence of

postsynaptic current amplitude on the known bath applied GABA

concentration.

In this study we have shown that the newly introduced method

can accurately evaluate parameters of synaptic receptor model

under conditions of saturation of the fixed number of postsynaptic

receptors. At the same time, it seems possible to modify the

described method in order to apply it for the analysis of any

postsynaptic current, i.e. for the case when each postsynaptic

receptor is potentially subjected to a different brief neurotrans-

mitter profile in each particular trial. Then, the number of

channels in single and double bound states, Nch1 and Nch2, could

be estimated separately for each current, I1:NT
, by means of

minimization of each log Lh with respect to these additional

parameters. Then, �xx0 in Eqs. 17 should be modified to utilize Nch1,

Nch2 instead of Nch. Thus, such an improvement of the method

might lead to the development of the algorithm suited for accurate

model analysis of any types of synaptic receptors using routinely

recorded macroscopic postsynaptic currents.
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